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The recent dramatic increase in online data availability has allowed researchers to explore

human culture with unprecedented detail, such as the growth and diversification of

language. In particular, it provides statistical tools to explore whether word use is similar

across languages, and if so, whether these generic features appear at different scales

of language structure. Here we use the Google Books N-grams dataset to analyze the

temporal evolution of word usage in several languages. We apply measures proposed

recently to study rank dynamics, such as the diversity of N-grams in a given rank,

the probability that an N-gram changes rank between successive time intervals, the

rank entropy, and the rank complexity. Using different methods, results show that there

are generic properties for different languages at different scales, such as a core of

words necessary to minimally understand a language. We also propose a null model

to explore the relevance of linguistic structure across multiple scales, concluding that

N-gram statistics cannot be reduced to word statistics. We expect our results to

be useful in improving text prediction algorithms, as well as in shedding light on the

large-scale features of language use, beyond linguistic and cultural differences across

human populations.

Keywords: culturomics, N-grams, language evolution, rank diversity, complexity

1. INTRODUCTION

The recent availability of large datasets on language, music, and other cultural constructs has
allowed the study of human culture at a level never possible before, opening the data-driven field
of culturomics [1–13]. In the social sciences and humanities, lack of data has traditionally made it
difficult or even impossible to contrast and falsify theories of social behavior and cultural evolution.
Fortunately, digitalized data and computational algorithms allow us to tackle these problems with a
stronger statistical basis [14]. In particular, the Google BooksN-grams dataset [2, 15–22] continues
to be a fertile source of analysis in culturomics, since it contains an estimated 4% of all books
printed throughout the world until 2009. From the 2012 update of this public dataset, we measure
frequencies per year of words (1-grams), pairs of words (2-grams), up until N-grams with N = 5
for several languages, and focus on how scale (as measured by N) determines the statistical and
temporal characteristics of language structure.
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We have previously studied the temporal evolution of word
usage (1-grams) for six Indo-European languages: English,
Spanish, French, Russian, German, and Italian, between 1800
and 2009 [23]. We first analyzed the language rank distribution
[24–27], i.e., the set of all words ordered according to their
usage frequency. By making fits of this rank distribution with
several models, we noticed that no single functional shape fits
all languages well. Yet, we also found regularities on how ranks
of words change in time: Every year, the most frequent word in
English (rank 1) is “the,” while the second most frequent word
(rank 2) is “of.” However, as the rank k increases, the number
of words occupying the k-th place of usage (at some point in
time) also increases. Intriguingly, we observe the same generic
behavior in the temporal evolution of performance rankings in
some sports and games [28].

To characterize this generic feature of rank dynamics, we
have proposed the rank diversity d(k) as the number of words
occupying a given rank k across all times, divided by the number
T of time intervals considered (for [23], T = 210 intervals
of 1 year). For example, in English d(1) = 1/210, as there is
only one word (“the”) occupying k = 1 every year. The rank
diversity increases with k, reaching a maximum d(k) = 1 when
there is a different word at rank k each year. The rank diversity
curves of all six languages studied can be well approximated by a
sigmoid curve, suggesting that d(k) may reflect generic properties
of language evolution, irrespective of differences in grammatical
structure and cultural features of language use. Moreover, we
have found rank diversity useful to estimate the size of the core
of a language, i.e., the minimum set of words necessary to speak
and understand a tongue [23].

In this work, we extend our previous analysis of rank
dynamics to N-grams with N = 1, 2, . . . 5 between 1855 and
2009 (T = 155) for the same six languages, considering the
first 10, 913 ranks in all 30 datasets (to have equal size and

FIGURE 1 | Rank evolution of N-grams in French. Rank trajectories across time for N-grams (N = 1, . . . , 5) that are initially in rank 1, 10, 100, and 1, 000 at the year

1855. The plot is semilogarithmic, so similar changes across ranks correspond to changes proportional to the rank itself. Other languages (not shown) behave in a

similar way: changes are more frequent as N increases. We have added a small shift over the y-axis for some curves, to see more clearly how the most frequently

used N-grams remain at k = 1 for long periods of time.

avoid potential finite-size effects). In the next section, we present
results for the rank diversity of N-grams. We then compare
empirical digram data with a null expectation for 2-grams that are
randomly generated from the monogram frequency distribution.
Results for novel measures of change probability, rank entropy,
and rank complexity follow. Change probability measures how
often words change rank (even if they have visited the same
ranks before). Rank entropy applies Shannon information to the
words appearing at each rank, so it can be more precise than rank
diversity, as it also considers the probability of words occurring
at each rank. Rank entropy can be used to calculate rank
complexity, which can be seen as a balance between variability
and adaptability. Next, we discuss the implications of our results,
from practical applications in text prediction algorithms, to the
emergence of generic, large-scale features of language use despite
the linguistic and cultural differences involved. Details of the
methods used close the paper.

2. RESULTS

2.1. Rank Diversity of N-Gram Usage
Figure 1 shows the rank trajectories across time for selected N-
grams in French, classified by value of N and their rank of
usage in the first year of measurement (1855). The behavior of
these curves is similar for all languages: N-grams in low ranks
(most frequently used) change their position less than N-grams
in higher ranks, yielding a sigmoid rank diversity d(k) (Figure 2).
Moreover, as N grows, the rank diversity tends to be larger,
implying a larger variability in the use of particular phrases
relative to words. To better grasp how N-gram usage varies in
time, Tables S1–S30 in the Supplementary Information list the
top N-grams in several years for all languages. We observe that
the lowest ranked N-grams (most frequent) tend to be or contain
function words (articles, prepositions, conjunctions), since their
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FIGURE 2 | Rank diversity for different languages and N-grams. Binned rank diversity d(k) as a function of rank k for all languages and N values considered

(continuous lines). We also include fits according to the sigmoid in Equation (1) (dashed lines), with µ, σ , and the associated e error summarized in Table 1.

Windowing is done averaging d(k) every 0.05 in log10 k.

use is largely independent of the text topic. On the other hand,
content words (nouns, verbs, adjectives, adverbs) are contextual,
so their usage frequency varies widely across time and texts. Thus,
we find it reasonable that top N-grams vary more in time for
larger N. Since rank diversity grows relatively fast, it implies that
most ranks have a diversity close to one. Thus, most N-grams
have a very high variability in time.

As Figure 2 shows, rank diversity d(k) tends to grow with
the scale N since, as N increases, it is less probable to find N-
grams with only function words (especially in Russian, which
has no articles). For N = 1, 2 in some languages, function
words dominate the top ranks, decreasing their diversity, while
the most popular content words (1-grams) change rank widely
across centuries. Thus, we expect the most frequent 5-grams to
change relatively more in time [for example, in Spanish, d(1) is
1
155 for 1-grams and 2-grams, 7

155 for 3-grams, 15
155 for 4-grams,

and finally 37
155 for 5-grams]. Overall, we observe that all rank

diversity curves can be well fitted by the sigmoid curve

8µ,σ (log10 k) =
1

σ
√
2π

∫ log10 k

−∞
e−

(y−µ)2

2σ2 dy, (1)

where µ is the mean and σ the standard deviation of the
sigmoid, both dependent on language and N value (Table 1).
In previous works [23, 28] it has been shown that the diversity
follows a sigmoid-like curve with log(k) as the independent
variable. The diversity corresponds to the first hitting time and
this one is proportional to the cumulative of the distribution. If
multiplicative, independent, dynamical factors are present, then
the distribution is a lognormal one, Gaussian with log(k) as
independent variable. Then, the cumulative, the first hitting-time
distribution, will be an erf(log(k)) function. This erf function

has a sigmoid shape, as the one we have found in the data and
therefore, it could be the origin of the sigmoid-like pattern.

In Cocho et al. [23], we used the sigmoid fits to approximate
language “cores”: the essential number of words considered
necessary to speak a language. Estimates of language cores range
between 1,500 and 3,000 words [23]. After obtaining a sigmoid fit
for a language, we defined the core to be of sizeµ+2σ , obtaining
much closer estimates than previous statistical studies. We are
not suggesting that the rank diversity determines language core
size, but that it can be used as a correlate to identify the number
of commonly used words.

In Figure 3 we see the fitted values of µ and σ for all datasets
considered. In all cases µ decreases with N, while in most cases
σ increases with N, roughly implying an inversely proportional
relation between µ and σ .

2.2. Null Model: Random Shufflin of
Monograms
In order to understand the dependence of language use — as
measured by d(k) — on scale (N), we can ask whether the
statistical properties ofN-grams can be deduced exclusively from
those of monograms, or if the use of higher-order N-grams
reflects features of grammatical structure and cultural evolution
that are not captured by word usage frequencies alone. To
approach this question, we consider a null model of language
in which grammatical structure does not influence the order of
words. We base our model on the idea of shuffling 1-gram usage
data to eliminate the grammatical structure of the language, while
preserving the frequency of individual words (more details in
Methods, section 4.2).

Frontiers in Physics | www.frontiersin.org 3 May 2018 | Volume 6 | Article 45

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Morales et al. Rank Dynamics of Word Usage

T
A
B
L
E
1
|
F
it
p
a
ra
m
e
te
rs

fo
r
ra
n
k
d
iv
e
rs
ity

fo
r
d
iff
e
re
n
t
la
n
g
u
a
g
e
s,
N
-g
ra
m
s
a
n
d
n
u
ll
m
o
d
e
l.

1
g
ra
m
s

2
g
ra
m
s

3
g
ra
m
s

4
g
ra
m
s

5
g
ra
m
s

R
a
n
d
o
m

2
g
ra
m
s

µ
σ

R
2

µ
σ

R
2

µ
σ

R
2

µ
σ

R
2

µ
σ

R
2

µ
σ

R
2

E
n
g
lis
h

2
.2
5
9

0
.6
2
2

0
.0
2

2
.1
3

0
.7
2

0
.0
1
6

1
.8
3
4

0
.8
1
6

0
.0
1
4

1
.7
4
8

0
.7
8
1

0
.0
1
2

1
.5
4
6

0
.8
1
7

0
.0
1

2
.6
0
5

0
.5
9
8

0
.0
2
4

F
re
n
c
h

2
.2
5
4

0
.6
3
7

0
.0
2
1

2
.1
7
8

0
.6
9
3

0
.0
1
7

1
.7
9
6

0
.8
2
8

0
.0
1
3

1
.6
2
9

0
.8
2
5

0
.0
1
1

1
.3
4
8

0
.8
6
2

0
.0
1

2
.6
8
4

0
.5
9
8

0
.0
2
2

G
e
rm

a
n

2
.2
3
1

0
.5
9
8

0
.0
1
8

2
.1
2
7

0
.6
9
5

0
.0
1
5

1
.6
9
5

0
.8
3
1

0
.0
1
2

1
.4
8
3

0
.8

0
.0
1

0
.9
9
9

0
.9
2
3

0
.0
0
7

2
.5
0
9

0
.6
3
6

0
.0
2

It
a
lia
n

2
.1
9
7

0
.6
3
6

0
.0
1
8

2
.0
1
6

0
.7
2
6

0
.0
1
4

1
.6
3

0
.8
3
6

0
.0
1
1

1
.2
3

0
.9
4
4

0
.0
0
9

0
.9
4
5

0
.9
5
4

0
.0
0
7

2
.5
3

0
.6
2
7

0
.0
1
9

R
u
ss
ia
n

2
.0
6
3

0
.6
0
3

0
.0
1
5

1
.8
1
4

0
.7
6
6

0
.0
1
1

1
.5
4
9

0
.7
7
6

0
.0
0
9

1
.4
1
1

0
.7
1
8

0
.0
0
8

1
.2
5
2

0
.7
0
9

0
.0
0
6

2
.2
2
8

0
.6
2
8

0
.0
1
7

S
p
a
n
is
h

2
.1
1
5

0
.7

0
.0
1
8

2
.0
6
1

0
.6
8
1

0
.0
1
8

1
.6
8
3

0
.8
5

0
.0
1
2

1
.3
7
6

0
.8
9
8

0
.0
1

1
.0
5
3

0
.9
3
8

0
.0
0
8

2
.5
7
3

0
.5
5
1

0
.0
2
4

M
e
a
n

µ
,
s
ta
n
d
a
rd

d
e
vi
a
ti
o
n

σ
,
a
n
d
e
rr
o
r
e
fo
r
th
e
s
ig
m
o
id
fit
o
f
th
e
ra
n
k
d
iv
e
rs
it
y
d
(k
)
a
c
c
o
rd
in
g
to
E
q
u
a
ti
o
n
(1
).
W
e
a
ls
o
s
h
o
w
th
e
fit
p
a
ra
m
e
te
rs
fo
r
th
e
n
u
ll
m
o
d
e
lo
f
F
ig
u
re

4
.

FIGURE 3 | Fitted parameters for rank diversity. Parameters µ and σ for the

sigmoid fit of the rank diversity d(k), for all languages (indicated by colors) and

N-values (indicated by numbers). We observe an (approximate) inversely

proportional relation between µ and σ .

2.2.1. Rank Diversity in Null Model
As can be seen in Figure 4, the rank diversity of digrams
constructed from shuffled monograms is generally lower than for
the non-shuffled digrams, although it keeps the same functional
shape of Equation (1) (see fit parameters in Table 1). In the
absence of grammatical structure, the frequency of each 2-gram
is determined by the frequencies of its two constituent 1-grams.
Thus, combinations of high frequency 1-grams dominate the low
ranks, including some that are not grammatically valid—e.g., “the
the”, “the of”, “of of”—but are much more likely to occur than
most others. Moreover, the rank diversity of such combinations is
lower thanwe see in the non-shuffled data because the low ranked
1-grams that create these combinations are relatively stable over
time. Thus, we can conclude that the statistics of higher order N-
grams is determined by more than word statistics, i.e., language
structure matters at different scales.

2.2.2. z-Scores in Null Model
The amount of structure each language exhibits can be quantified
by the z-scores of the empirical 2-grams with respect to the
shuffled data. Following its standard definition, the z-score of
a 2-gram is a measure of the deviation between its observed
frequency in empirical data and the frequency we expect to see
in a shuffled dataset, normalized by the standard deviation seen
if we were to shuffle the data and measure the frequency of the
2-gram many times (see section 4.2 for details).

The 2-grams with the highest z-scores are those for which
usage of the 2-gram accounts for a large proportion of the usage
of each of its two constituent words. That is, both words are
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FIGURE 4 | Rank diversity in the null model. Rank diversity d(k) of both empirical and randomly generated 2-grams. The rank diversity of the null model tends to be to

the right of that of the data, i.e., lower. Windowing in this and similar figures is done in the same way as in Figure 2.

FIGURE 5 | z-scores between empirical and null model digrams. z-scores, calculated from Equation (13), for the top 105 2-grams in 2008. Each point represents a

2-gram found in the empirical data. The blue dots show the median z-score of logarithmically binned values (first bin contains only the first rank; each consecutive bin

is twice as large as the previous one). The inset shows the same values on a linear scale y axis, with a dashed line indicating z = 0.

more likely to appear together than they are in other contexts
(for example, “led zeppelin” in the Spanish datasets), suggesting
that the combination of words may form a linguistic token that is

used in a similar way to an individual word. We observe that the
majority of 2-grams have positive z-scores, which simply reflects
the existence of non-random structure in language (Figure 5).
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What is more remarkable is that many 2-grams, including some
at low ranks (“und der,” “and the,” “e di,”) have negative z-scores;
a consequence of the high frequency and versatility of some
individual words.

After normalizing the results to account for varying total word
frequencies between different language datasets, we see that all
languages exhibit a similar tendency for the z-score to be smaller
at higher ranks (measured by the median; this is not the case for
the mean). This downward slope can be explained by the large
number of 2-grams that are a combination of one highly versatile
word, i.e., one that may be combined with a diverse range of other
words, with relatively low frequency words (for example “the
antelope”). In such cases, z-scores decrease with rank as z ∼ k−1/2

(see section 4.2).

2.3. Next-Word Entropy
Motivated by the observation that some words appear alongside
a diverse range of other words, whereas others appear more
consistently with the same small set of words, we examine the
distribution of next-word entropies. Specifically, we define the
next-word entropy for a given word i as the (non-normalized)
Shannon entropy of the set of words that appear as the second
word in 2-grams for which i is the first. In short, the next-
word entropy of a given word quantifies the difficulty of
predicting the following word. As shown in Figure 6, words with
higher next-word entropy are less abundant than those with
lower next-word entropy, and the relationship is approximately
exponential.

2.4. Change Probability of N-Gram Usage
To complement the analysis of rank diversity, we propose a
related measure: the change probability p(k), i.e., the probability
that a word at rank k will change rank in one time interval. We
calculate it for a given language dataset by dividing the number
of times elements change for given rank k by the number of
temporal transitions, T− 1 (see section 4 for details). The change
probability behaves similarly to rank diversity in some cases. For
example, if there are only two N-grams that appear with rank 1,
d(1) = 2/155. If one word was ranked first until 1900 and then a
different word became first, there was only one rank change, thus
p(1) = 1/154. However, if the words alternated ranks every year
(which does not occur in the datasets studied), the rank diversity
would be the same, but p(1) = 1.

Figure 7 shows the behavior of the change probability p(k)
for all languages studied. We see that p(k) grows faster than
d(k) for increasing rank k. The curves can also be well fitted
with the sigmoid of Equation (1) (fit parameters in Table 2).
Figure 8 shows the relationship between µ and σ of the sigmoid
fits for the change probability p(k). As with the rank diversity,
µ decreases with N for each language, except for German
between 3-grams and 4-grams. However, the σ values seem to
have a low correlation with N. We also analyze the difference
between rank diversity and change probability, d(k) − p(k)
(Figure S1). As the change probability grows faster with rank k,
the difference becomes negative and then grows together with

FIGURE 6 | Next-word entropy for different languages and null model. The

next-word entropy is calculated for each word using Equation (15). The plotted

values are the normalized frequencies (i.e., probabilities) of words whose

next-word entropy falls within each bin; the first bin contains values greater

than or equal to 0 and less than 1/2, the second contains values greater than

or equal to 1/2 and less than 1, and so on.

the rank diversity. For large k, both rank diversity and change
probability tend to one, so their difference is zero.

2.5. Rank Entropy of N-Gram Usage
We can define another related measure: the rank entropy E(k).
Based on Shannon’s information, it is simply the normalized
information for the elements appearing at rank k during all time
intervals (see section 4). For example, if at rank k = 1 only
two N-grams appear, d(1) = 2/155. Information is maximal
when the probabilities of elements are homogeneous, i.e., when
each N-gram appears half of the time, as it is uncertain which of
the elements will occur in the future. However, if one element
appears only once, information will be minimal, as there will
be a high probability that the other element will appear in the
future. As with the rank diversity and change probability, the
rank entropy E(k) also increases its value with rank k, even faster
in fact, as shown in Figure 9. Similarly, E(k) tends to be higher as
N grows, and may be fitted by the sigmoid of Equation (1) at least
for high enough k (see fit parameters in Table 3) Notice that since
rank entropy in some cases has already high values at k = 1, the
sigmoids can have negative µ values.

The µ and σ values are compared in Figure 10. The behavior
of these parameters is more diverse than for rank diversity and
change probability. Still, the curves tend to have a “horseshoe”
shape, where µ decreases and σ increases up to N ≈ 3, and then
µ slightly increases while σ decreases.

It should be noted that the original datasets for tetragrams
and pentagrams are much smaller than for digrams and trigrams.
Whether this is related with the change of behavior in σ between
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FIGURE 7 | Change probability for different languages and N-grams. Binned change probability p(k) as a function of rank k for all languages and N values considered

(continuous lines). We also include fits according to the sigmoid in Equation (1) (dashed lines), as in Figure 2.

TABLE 2 | Fit parameters for change probability for different languages.

1 grams 2 grams 3 grams 4 grams 5 grams

µ σ R2
µ σ R2

µ σ R2
µ σ R2

µ σ R2

English 1.488 0.553 0.009 1.3 0.536 0.009 0.868 0.655 0.006 0.869 0.598 0.005 0.677 0.609 0.004

French 1.626 0.401 0.009 1.303 0.571 0.008 0.792 0.664 0.005 0.793 0.563 0.004 0.738 0.429 0.004

German 1.472 0.543 0.009 1.249 0.561 0.007 0.535 0.826 0.004 0.657 0.587 0.004 0.186 0.691 0.003

Italian 1.439 0.436 0.008 1.035 0.631 0.006 0.564 0.67 0.004 0.362 0.669 0.003 0.086 0.704 0.003

Russian 1.204 0.574 0.006 0.774 0.714 0.005 0.772 0.559 0.004 0.692 0.491 0.004 0.518 0.516 0.003

Spanish 1.48 0.355 0.009 1.283 0.558 0.009 0.532 0.761 0.005 0.398 0.777 0.003 0.062 0.826 0.003

Mean µ, standard deviation σ , and error e for the sigmoid fit of the change probability p(k) according to Equation (1).

N = 3 and N = 4 for the different measures remains to be
explored, probably with a different dataset.

2.6. Rank Complexity of N-Gram Usage
Finally, we define the rank complexity C(k) as

C(k) = 4E(k)(1− E(k)). (2)

Thismeasure of complexity represents a balance between stability
(low entropy) and change (high entropy) [29–31]. So complexity
is minimal for extreme values of the normalized entropy [E(k) =
0 or E(k) = 1] and maximal for intermediate values [E(k) = 0.5].
Figure 11 shows the behavior of the rank complexity C(k) for all
languages studied. In general, since E(k) ≈ 0.5 for low ranks,
the highest C(k) values appear for low ranks and decrease as
E(k) increases. C(k) also decreases withN. Moreover, C(k) curves
reach values close to zero when E(k) is close to one: around
k = 102 for N = 5 and k = 103 for N = 1, for all languages.

3. DISCUSSION

Our statistical analysis suggests that human language is an
example of a cultural construct where macroscopic statistics
(usage frequencies of N-grams for N > 1) cannot be
deduced frommicroscopic statistics (1-grams). Since not all word
combinations are valid in the grammatical sense, in order to
study higher-order N-grams, the statistics of 1-grams are not
enough, as shown by the null model results. In other words,
N-gram statistics cannot be reduced to word statistics. This
implies that multiple scales should be studied at the same time to
understand language structure and use in amore integral fashion.
We conclude not only that semantics and grammar cannot be
reduced to syntax, but that even within syntax, higher scales (N-
grams with N > 1) have an emergent, relevant structure which
cannot be exclusively deduced from the lowest scale (N = 1).

While the alphabet, the grammar, and the subject matter
of a text can vary greatly among languages, unifying statistical
patterns do exist, and they allow us to study language as a social
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and cultural phenomenon without limiting our conclusions to
one specific language. We have shown that despite many clear
differences between the six languages we have studied, each
language balances a versatile but stable core of words with less
frequent but adaptable (and more content-specific) words in a
very similar way. This leads to linguistic structures that deviate far
from what would be expected in a random “language” of shuffled

FIGURE 8 | Fitted parameters for change probability. Parameters µ and σ for

the sigmoid fit of the change probability p(k), for all languages (indicated by

colors) and N-values (indicated by numbers).

1-grams. In particular, it causes the most commonly used word
combinations to deviate further from random that those at the
other end of the usage scale.

If we are to assume that all languages have converged on
the same pattern because it is in some way “optimal,” then it is
perhaps this statistical property that allows word combinations
to carry more information that the sum of their parts; to allow
words to combine in the most efficient way possible in order to
convey a concept that cannot be conveyed through a sequence of
disconnected words. The question of whether or not the results
we report here are consistent with theories of language evolution
[32–34] is certainly a topic for discussion and future research.

It should be noted that our statistical analyses conform to a
coarse grained description of language change, which certainly
can be performed at a much finer scale in particular contexts [35–
39]. Using other datasets, the measures used in this paper could
be applied to study how words change at different timescales,
as the smallest 1t possible is 1 year in the Google Books N-
grams datasets. For example, with Twitter, one could vary 1t
from minutes to years. Would faster timescales lead to higher
rank diversities? This is something to be explored.

Apart from studying rank diversity, in this work we have
introduced measures of change probability, rank entropy, and
rank complexity. Analytically, the change probability is simpler
to treat than rank diversity, as the latter varies with the number
of time intervals considered (T), while the former is more stable
(for a large enough number of observations). Still, rank diversity
produces smoother curves and gives more information about
rank dynamics, since the change probability grows faster with
k. Rank entropy grows even faster, but all three measures [d(k),
p(k), and E(k)] seem related, as they tend to grow with k andN in
a similar fashion. Moreover, all three measures can be relatively
well fitted by sigmoid curves (the worst fit has e = 0.02, as

FIGURE 9 | Rank entropy for different languages and N-grams. Binned rank entropy E(k) as a function of rank k for all languages and N values considered (continuous

lines). We also include fits according to the sigmoid in Equation (1) (dashed lines), as in Figure 2.
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TABLE 3 | Fit parameters for rank entropy for different languages.

1 grams 2 grams 3 grams 4 grams 5 grams

µ σ R2
µ σ R2

µ σ R2
µ σ R2

µ σ R2

English 0.741 0.892 0.01 0.619 0.913 0.009 −0.288 1.294 0.003 −0.454 1.332 0.003 −0.276 1.169 0.004

French 0.863 0.848 0.012 0.398 1.077 0.01 −0.521 1.395 0.002 −0.464 1.302 0.002 −0.494 1.207 0.002

German 0.799 0.859 0.01 0.176 1.182 0.007 −0.609 1.403 0.002 −0.405 1.195 0.002 −0.434 1.052 0.001

Italian 0.783 0.855 0.011 −0.273 1.349 0.004 −0.427 1.281 0.002 −0.184 1.032 0.003 −0.717 1.184 0.001

Russian 0.459 0.958 0.009 −0.419 1.321 0.003 −0.19 1.097 0.002 0.091 0.87 0.003 0.052 0.822 0.002

Spanish 0.61 0.977 0.012 0.598 0.901 0.008 −0.721 1.443 0.002 −0.503 1.259 0.002 −0.404 1.089 0.002

Mean µ, standard deviation σ , and error e for the sigmoid fit of the rank entropy E(k) according to Equation (1).

FIGURE 10 | Fitted parameters for rank entropy. Parameters µ and σ for the

sigmoid fit of rank entropy E(k), for all languages (indicated by colors) and

N-values (indicated by numbers).

seen in Tables 1–3). Our results suggest that a sigmoid functional
shape fits rank diversity the best for low ranks, as the change
probability and rank entropy have greater variability in that
region. To compare the relationship between rank diversity and
the novel measures, Figures S2–S4 show scatter plots for different
languages and N values. As it can be seen from the overlaps, the
relationship between d(k) and the other measures is very similar
for all languages and N values.

In Cocho et al. [23], we used the parameters of the sigmoid fit
to rank diversity as an approximation of language core size, i.e.,
the number of 1-grams minimally required to speak a language.
Assuming that these basic words are frequently used (low k) and
thus have d(k) < 1, we consider the core size to be bounded
by log10 k = µ + 2σ . As Table 4 shows, this value decreases
withN, i.e.,N-gram structures with largerN tend to have smaller
cores. However, if the number of different words found on cores

is counted, they increase from monograms to digrams, except
for Spanish and Italian. From N = 2, the number of words in
cores decreases constantly for all languages. This suggests that
core words can be combined to form more complex expressions
without the requirement of learning new words. English and
French tend to have more words in their cores, while Russian has
the least. It is interesting to note that the null model produces
cores with about twice as many words as real 2-grams. Also,
only in language cores rank complexity values are not close to
zero. In other words, only ranks within the core have a high rank
complexity. Whether rank diversity or rank complexity are better
proxies of language core size is still an open question.

Our results may have implications for next-word prediction
algorithms used in modern typing interfaces like smartphones.
Lower ranked N-grams tend to be more predictable (higher z-
scores and lower next word entropy on average). Thus, next-word
prediction should adjust the N value (scale) depending on the
expected rank of the recent, already-typed words. If these are not
in top rankedN-grams, thenN should be decreased. For example,
on the iOS 11 platform, after typing “United States of”, the system
suggests “the”, “all”, and “a”, as the next-word prediction by
analyzing 2-grams. However, it is clear that the most probable
next-word is “America”, as this is a low-ranked 4-gram.

Beyond the previous considerations, perhaps the most
relevant aspect of our results is that the rank dynamics of
language use is generic not only for all six languages, but for
all five scales studied. Whether the generic properties of rank
diversity and related measures are universal still remains to be
explored. Yet, we expect this and other research questions to be
answered in the coming years as more data on language use and
human culture becomes available.

4. METHODS

4.1. Data Description
Data was obtained from the Google Books N-gram dataset1,
filtered and processed to obtain ranked N-grams for each year
for each language. Data considers only the first 10, 913 ranks, as
this was the maximum rank available for all time intervals and
languages studied. From these, rank diversity, change probability,
rank entropy, and rank complexity were calculated as follows.

1https://books.google.com/ngrams/info
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FIGURE 11 | Rank complexity for different languages and N-grams. Binned rank complexity C(k) as a function of rank k for all languages and N values considered.

Rank complexity tends to be greater for lower N, as rank entropy increases with N.

TABLE 4 | Language core parameters. Upper bound rank log10 k = µ + 2σ for the estimated core size of all languages studied, according to the sigmoid fit of

Equation (1), as well as the number of words included in the N-grams within the core in the year 2009.

1 grams 2 grams 3 grams 4 grams 5 grams Random 2 grams

µ + 2σ No. of words µ + 2σ No. of words µ + 2σ No. of words µ + 2σ No. of words µ + 2σ No. of words µ + 2σ No. of words

English 3.503 3,182 3.57 3,716 3.465 2,918 3.311 2,047 3.18 1,514 3.801 6,322

French 3.528 3,371 3.563 3,657 3.452 2,829 3.279 1,899 3.071 1,178 3.881 7,601

German 3.426 2,668 3.517 3,288 3.358 2,279 3.083 1,212 2.844 699 3.78 6,032

Italian 3.47 2,952 3.468 2,936 3.302 2,006 3.117 1,308 2.853 713 3.784 6,078

Russian 3.269 1,858 3.346 2,218 3.101 1,261 2.848 705 2.67 467 3.483 3,042

Spanish 3.515 3,275 3.424 2,656 3.382 2,410 3.172 1,487 2.929 850 3.675 4,728

Rank diversity is given by

d(k) = |X(k)|
T

, (3)

where |X(k)| is the cardinality (i.e., number of elements) that
appear at rank k during all T = 155 time intervals (between
1855 and 2009 with 1-year differences, or 1t = 1). The change
probability is

p(k) =
∑t=T−1

t=0 1− δ(X(k, t),X(k, t + 1))

T − 1
, (4)

where δ(X(k, t),X(k, t + 1)) is the Kronecker delta; equal to zero
if there is a change of N-gram in rank k in 1t [i.e., the element
X(k, t) is different from element X(k, t + 1)], and equal to one if
there is no change. The rank entropy is given by

E(k) = −κ

|X(k)|
∑

i=1

pi log pi, (5)

where

κ = 1

log2 |X(k)|
, (6)

so as to normalize E(k) in the interval [0, 1]. Note that |X(k)| is the
alphabet length, i.e., the number of elements that have occurred at
rank k. Finally, the rank complexity is calculated using Equations
(2) and (5) [30].

4.2. Modeling Shuffled Data
We first describe a shuffling process that eliminates any structure
found within the 2-gram data, while preserving the frequency
of individual words. Consider a sequence consisting of the most
frequent word a number of times equal to its frequency, followed
by the second most frequent word a number of times equal to its
frequency, and so on all the way up to the 10, 913thmost frequent
word (i.e., until all the words in the monogram data have been
exhausted). Now suppose we shuffle this sequence and obtain
the frequencies of 2-grams in the new sequence. Thus, we have
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neglected any grammatical rules about which words are allowed
to follow which others (we can have the same word twice in the
same 2-gram, for example), but the frequency of words remains
the same.

We now derive an expression for the probability that a 2-gram
will have a given frequency after shuffling has been performed.
Let fi denote the number of times the word i appears in the text,
and fij the number of times the 2-gram ij appears. Additionally,
F =

∑

i fi. We want to know the probability P(fij) that ij
appears exactly fij times in the table. We can think of P(fij) as
the probability that exactly fij occurrences of i are followed by j.
Supposing fi < fj, fij is determined by fi independent Bernoulli
trials with the probability of success equal to the probability that
the next word will be j, i.e., fj/F. In this case we have

P(fij) =
(

fi

fij

) (

fj

F

)fij (

1−
fj

F

)fi−fij

. (7)

This distribution meets the condition that allows it to be
approximated by a Poisson distribution, namely that fifj/F is
constant, so we have

P(fij) ≈
λ
fij
ij e

−λij

fij!
, (8)

where

λij =
fifj

F
(9)

is the mean, and also the variance, of the distribution of values of
fij.

For each 2-gram we calculate the z-score. This is a normalized
frequency of its occurrence, i.e., we normalize the actual
frequency fij by subtracting the mean of the null distribution and
dividing by the standard deviation,

zij =
fij − µij

σij
=

fij − λij
√

λij
. (10)

In other words, the z-score tells us howmany standard deviations
the actual frequency is from the mean of the distribution derived
from the shuffling process. The result is that the 2-grams with the
highest z-scores are those which occur relatively frequently but
their component words occur relatively infrequently.

4.2.1. Normalization
To compare z-scores of different languages, we normalize
to eliminate the effects of incomplete data. Specifically, we
normalize z-scores by dividing by the upper bound (which
happens to be equal in order of magnitude to the lower bound).
The highest possible z-score occurs in cases where fi = fj = fij =
f . Therefore λij = f 2/F and

zij ≤
√
F

(

1− f

F

)

<
√
F, (11)

so an upper bound exists at
√
F. Similarly, The lowest possible z-

score would hypothetically occur when fi = fj ≈ F/2 and fij = f ,
giving

zij ≤
√
F

F

(

2f − F

2

)

> −
√
F

2
. (12)

We thus define the normalized z-score as

ẑij =
zij√
F
. (13)

4.2.2. The Relationship Between Rank and z-Score
To understand how the z-score changes as a function of rank, we
look at another special case: suppose that i is a word that is found
to be the first word in a relatively large number of 2-grams, and
that all occurrences of the word j are preceded by i. In such cases
we have fi,j = fj, so Equation (13) reduces to

ẑij =
(

1

fi
− 1

F

)

(fifj)
1/2. (14)

Now consider only the subset of 2-grams that start with i and end
with words that are only ever found to be preceded by i. Since fi
is constant within this subset, we have ẑij = Af

1/2
j , where A is

a constant. If we now assume that Zipf ’s law holds for the set of
second words in the subset, i.e., that fj = Br−1

j where rj is the

rank of j and B another constant, then we have ẑij = Cr
−1/2
j , with

C a third constant.

4.2.3. Data
Unlike in other parts of this study, the shuffling analysis is applied
to the 105 lowest ranked 2-grams.

4.3. Next-Word Entropy
The relationship between rank and z-score of 2-grams appears
to be, at least partially, a consequence of the existence of high
frequency core words that can be followed by many possible next
words. This diversity of next words can be quantified by what
we call the next-word entropy. Given a word i, we define the
next-word entropy, Enwi , of i to be the (non-normalized) Shannon
entropy of the distribution of 2-gram frequencies of 2-grams that
have i as the first word,

Enwi = −
∑

i

fij

fi
log

(

fij

fi

)

. (15)

4.4. Fitting Process
The curve fitting for rank diversity, change probability, and rank
entropy has been made with the scipy-numpy package using
the non-linear least squares method (Levenberg-Marquardt
algorithm). For rank entropy, we average data over each ten

ranks, ki =
∑n/10

i=0 ki
10 , as well as over rank entropy values,

E(ki) =
∑n/10

i=0 E(ki)
10 . With this averaged data, we adjust a

cumulative normal (erf function) over the data of log10(ki) and
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E(ki). For rank diversity and change probability, we average data
over points equally spaced in log10(ki). Like for rank entropy,
a sigmoid (Eq. 1) is fitted for log10(k) and d(k), as well as
for log10(k) and p(k). To calculate the mean quadratic error,
we use

e =

√

∑n
i=1(X̂i − Xi)2

n
, (16)

where X̂i is the value of the sigmoid adjusted to rank ki and Xi is
the real value of d(ki). For p(k) and E(k) the error is calculated in
the same way.
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