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Abstract

 

—A new approach to the design of rank-order filters based on the effective use of spatial relations
between image elements is proposed. Many rank-order processing techniques can benefit from this approach,
such as noise suppression, local contrast enhancement, and local detail extraction. An extension of the approach
to rank-order filtering of three-dimensional signals is also discussed. The performance of the proposed rank-
order filters in suppressing mixed additive and impulse noise in a test image is compared to that of conventional
rank-order algorithms. The comparisons are made using criteria of a mean square error, a mean absolute error,
and a subjective human visual error.
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1. INTRODUCTION

In recent years, the use of nonlinear filters based on
the calculation of rank-order statistics [1] has been
increasing in computer and optical research [2–31].
There are several classes of nonlinear filters which
incorporate rank-order operations in one way or
another. A particular list of the filters includes median
filters [2–4], multistage and multilevel median filters
[5–7], stack filters [8, 9], alpha-trimmed mean filters
[10–12], order-statistics filters [13–17], morphological
filters [18–20], and rank-order filters [21–31]. These fil-
ters have proven to be very effective for removing addi-
tive and impulse noise and image enhancing and restor-
ing. Moreover, they exhibit excellent robustness and
provide solutions when linear filters are inappropriate.
Perhaps their success in image processing is caused by
their ability to suppress noise without destroying
important image details, such as edges and fine lines.

In the design of rank-order filters, image elements of
a moving window are sorted in ascending order that is
called the variational row. The output of the rank-order
filter is a function over elements of the variational row
built around the central element of the window. Since
rank-order filters take into account local image content
(local statistics), the rank-order filtering is locally adap-
tive. A drawback of conventional rank-order filters is
that they inadequately use spatial relations between
image elements, because they reorder the elements of a
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two-dimensional moving window into a one-dimen-
sional sequence (variational row).

In this paper, we suggest to design rank-order filters
with the use of spatial relations between image ele-
ments. The filters make use of spatial and rank informa-
tion of the input image within a moving window to pro-
duce the output. We introduce a path between two arbi-
trary elements in the window. Two elements of the
window are spatially connected if there is a path
between them. A set of elements possesses the property
of spatial connectivity if all elements of the set are spa-
tially connected. The output of the proposed filters is a
function over spatially connected elements of the vari-
ational row of a moving window. By using spatial con-
nectivity of elements, various rank-order filters can be
designed for edge preservation, detail retention, and
additive and impulse noise reduction.

The paper is organized as follows. Section 2 pro-
vides a review of rank-order filters using structural and
estimation approaches for the filter design. Section 3
introduces a new approach to the design of rank-order
filters using spatial relations between image elements.
The rank-order filtering of three-dimensional signals is
also considered. In Section 4, we illustrate the perfor-
mance of the proposed rank-order filters comparing
them with conventional rank algorithms for suppress-
ing mixed additive and impulse noise. The comparisons
are made in terms of objective and subjective criteria.
Section 5 summarizes our conclusions.

2. RANK-ORDER FILTERS

Two different approaches to designing rank-order
filters can be used. They may be called the structural
approach and the estimation approach [9, 22]. The first
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approach relies on structural descriptions of the image
and the process, which alters it, while the second relies
on statistical descriptions. Rank-order filters are con-
sidered in the context of these two approaches. We use
the notion of neighborhood in order to define various
structures in the image. The structures are local and
global grayscale signal variations which are known to
be present in the original image. They can be degraded
by noise. The goal is to design a rank-order filter that
preserves or modifies in a desired way the structures of
the original image by eliminating noise and undesirable
structures.

The rank filtering is a locally adaptive processing of
the signal in a moving window. First, using different
neighborhoods, we define desirable structures in the
window. Next, the estimation approach can be applied
to the elements of the neighborhood structures to com-
pute an estimate of the central pixel of the window with
respect to different criteria.

Let us introduce some useful notation and defini-
tions: 

 

s

 

 = {

 

s

 

n

 

, 

 

m

 

} is a vector of pixels of the image to be

processed that has 

 

Q

 

 grayscale levels of quantization;

 

n

 

, 

 

m

 

 are coordinates of the pixels, 

 

n

 

 = 1, 2, …, 

 

N

 

 and

 

m

 

 = 1, 2, …,

 

 M

 

; 

 

L

 

 = 

 

N

 

 

 

×

 

 

 

M

 

 is the size of image matrix;

 

v

 

 = {

 

v

 

n

 

, 

 

m

 

} is a vector of pixels of the noise-free (origi-

nal) image;  = { } is a vector of pixels of the

resulting image. For each image pixel, a spatial neigh-
borhood of an arbitrary size can be defined as a set of
pixels that geometrically surround the given one. Such
a neighborhood consisting of pixels nearest to the given
one is referred to as the 

 

S

 

-neighborhood. Actually, pix-
els of the 

 

S

 

-neighborhood often coincide with those of
the moving window. Weighted order statistics filters are
successfully applied in various areas of image process-
ing. They often outperform conventional rank-order fil-
ters in terms of noise attenuation capability. We intro-
duce the weighted spatial neighborhood (

 

S

 

w

 

-neighbor-

hood) as a generalization of the 

 

S

 

-neighborhood. Let
{

 

w

 

n

 

, 

 

m

 

} be positive integer weights with an odd sum.

The 

 

S

 

w

 

-neighborhood centered at each image pixel is a

set obtained from the 

 

S

 

-neighborhood by duplicating its
pixels 

 

w

 

n

 

, 

 

m

 

 times. In the cases of nonstationary additive

noise and time-varying data, it is preferable to keep the
size of the 

 

S

 

-neighborhood sufficiently small so that the
signal and noise can be considered approximately sta-
tionary over the window area.

An important notion in order statistics is a varia-
tional row. It is defined as the one-dimensional
sequence {

 

V

 

(

 

r

 

)} of 

 

K

 

 pixels whose elements are sorted
in ascending order with respect to their values: {

 

V

 

(

 

r

 

):

 

V

 

(

 

r

 

) 

 

≤

 

 

 

V

 

(

 

r

 

 + 1), 

 

r

 

 = 1, 2, …, 

 

K

 

}. Here, 
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) and 
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) are
called the 

 

r

 

th order statistics and the rank of the value

 

V

 

, respectively. Both the rank and the order statistics
can be computed from the local histogram {

 

h

 

(

 

q

 

), 

 

q

 

 =
0, …, 

 

Q

 

 – 1} of the signal distribution over the 

 

S

 

-neigh-

v̂ v̂ n m,

 

borhood (

 

S

 

w

 

-neighborhood) centered at each pixel as
follows:

(1)

In addition, all the parameters of rank-order filters are
functions of local (or short-time) histograms computed
over pixels of the spatial neighborhoods. Therefore, the
computational complexity of rank-order processing
depends on the calculation of local histograms. In the
digital calculation of local histograms, the shape of a
moving window should be rectangular, because only in
this case do fast recursive algorithms exist. However,
for a large window size the calculation is troublesome.
Recently, parallel optical–digital methods of local his-
togram calculation over the 

 

S

 

-neighborhood [27] and
the 

 

S

 

w

 

-neighborhood [28] have been proposed. These
methods consist of a time-sequential threshold decom-
position of an image followed by convolutions of the
resulting binary slices with a kernel and element-wise
operations that are digitally performed on the convolu-
tion results.

To describe different structures in the image, we
define the following subsets over the 

 

S

 

-neighborhood
or the 

 

S

 

w

 

-neighborhood [22, 28, 31]:

 

EV

 

-neighborhood is a subset of pixels {

 

v
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} whose
values deviate from the value of the central pixel 

 

v

 

k

 

, 

 

l

 

 by
no more than predetermined quantities –

 

ε

 

v

 

 and +

 

ε

 

v

 

; i.e.,

(2)
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-neighborhood is a subset of 

 

K

 

 pixels {
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n
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m

 

}
whose values are nearest to the value of the central
pixel 

 

v

 

k

 

, 

 

l

 

; i.e.,

(3)

A subset of pixels {

 

v

 

n

 

, 

 

m

 

} whose ranks deviate from
that of the central pixel by no more than predeter-
mined quantities 

 

−ε

 

r

 

 and +

 

ε

 

r

 

 is called the 

 

ER

 

-neigh-
borhood; i.e.,

(4)

The choice of neighborhood (NBH) is defined by the
available 

 

a priori

 

 information on the processed image.
For example, if 

 

a priori

 

 information about the geomet-
rical size 

 

K

 

 of the details to be preserved is known, then
the 

 

KNV

 

-neighborhood can be used. The parameter 

 

K

 

 is
chosen of the order of the detailed area to be preserved
after further processing. The choice of the 

 

EV

 

-neigh-
borhood helps us to take into account 

 

a priori

 

 informa-
tion about either the spread of the signal to be preserved
or the noise fluctuation to be suppressed. The

 

ER

 

-neighborhood is often used in the edge extraction
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algorithms and in the algorithms for suppressing a mix-
ture of additive Gaussian noise and noise with a distri-
bution having heavy tails. The size of the ER-neigh-
borhood is determined by the part of the outliers in the
distribution. Finally, note that the size of the S-neigh-
borhood should be nearly twice as big as the size of the
minimal structure to be preserved. All the introduced
neighborhoods are presented in Fig. 1.

Three types of estimation borrowed from the theory
of robust estimation of location parameters [32, 33]
may be used to compute an estimate of the central pixel
of the neighborhoods: (i) the L-estimator based on lin-
ear combination of order statistics; (ii) the R-estimator
derived from rank tests; and (iii) the M-estimator or the
maximum likelihood estimator. All three types of estima-
tion can be implemented using a few basic operations over
the introduced neighborhoods. The operations are defined
as follows: SIZE (NBH) is the quantity of pixels form-
ing the neighborhood, MEAN(NBH) is the sample
mean over the neighborhood, MED(NBH) is the median
value over the neighborhood, MIN(NBH) is the minimum
over the neighborhood, MAX(NBH) is the maximum
over the neighborhood, and CUT(NBH) is the cross cut
through the neighborhood; i.e.,

(5)

where MN < MX, MN and MX are the predefined values
for the cross-cut operation.

CUT NBH( )

MN if v k l, MN<
v k l, if MN v k l, MX≤ ≤
MX if v k l, MX ,>






=

The output of L-type filters can be expressed as a
fixed linear combination of the order statistics over the
pixels of a chosen NBH subset of the S- or Sw-neighbor-
hoods. The L-filter treats the input image as an image
with the locally constant mean. Suppose that the origi-
nal image is corrupted by zero-mean independent iden-
tically distributed (i.i.d.) additive noise. The L-filters
have a well-designed methodology, as they are the esti-
mators that minimize the mean-squared error between
the filter output and the noise-free signal. In this case,
the optimal estimate is the solution to the following
implicit equation:

(6)

In general, Eq. (6) can be solved iteratively,

(7)

where i is the iteration number and at the first iteration

{ } = {sn, m}.

The output of R-type filters is rather affected by rel-
ative ranks of data than by the actual values of data.
This class of filters has its basis in the rank estimate of
statistical theory. The output is an arbitrary order statis-
tics, e.g., the rth order statistics V(r), of a sequence
obtained by linear transformation of the input pixels of
a chosen NBH subset of the S- or Sw-neghborhoods;
i.e.,

(8)

v̂ n m, MEAN NBH v n m,( ).=

v̂ n m,
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MEAN NBH v̂ n m,
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Fig. 1. An example of local neighborhoods.
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where FUN(x) is an arbitrary linear function of the
input neighborhood pixels. Different linear functions
yield different structures of R-filters. For example, let
us consider the signal model used for the L-filter. If the
mean absolute error between the filter output and the
noise-free signal is used, the optimal estimate is the
median value over the pixels of a chosen NBH subset of
the S- or Sw-neghborhoods,

(9)

and its iterative solution is given by

(10)

where { } = {sn, m}. Obviously, if the order statis-

tics V(r) is the median value and the linear function
FUN(x) is the identical transformation, then the filter in
Eq. (10) is a particular case of the R-filter in Eq. (8).

The output of M-type filters is defined as a solution
of the equation

(11)

where FUN(x) is an odd, continuous, and sign-preserv-
ing function. Suppose that the original image is cor-
rupted by zero-mean i.i.d. additive noise. Then, for an
even function p(x) which is nondecreasing in x, we can

define an estimate  of the central pixel v that min-

imizes

(12)

If FUN(x) = dp(x)/dx, it equivalently satisfies Eq. (11).
Such estimates are generalized forms of maximum-
likelihood estimates, and the estimator is called an
M-estimator. Let us consider an example of M-type filters.
Using the definition of the M-type filter, suppose that

(13)

where t and A are positive constants. The output of the
filter is the optimal maximum-likelihood estimate. It
can be written as the sample mean over the pixels of a
chosen NBH subset, which has a limited signal range

(14)

and its iterative processing is given by

(15)

where { } = {sn, m} is initial condition.

Note that, in practice, the size of the moving win-
dow is limited, and, in general, real-life images do not
have locally constant means. Therefore, all the men-
tioned estimates should be computed iteratively. It also
has to be noted that each iteration can change the prop-

v̂ n m, MED NBH v n m,( ),=

v̂ n m,
i 1+

MED NBH v̂ n m,
i( ),=

v̂ n m,
1

MEAN FUN NBH sn m, v̂ n m,–( )( ) 0,=

v̂ n m,

M
v̂ n m,

IN MEAN p NBH sn m, v̂ n m,–[ ]( )( )[ ] .

FUN x( )
At, x t≥
Ax, x t<

At, x– t,≤





=

v̂ n m, MEAN CUT NBH sn m,( )( ),=

v̂ n m,
i 1+

MEAN CUT NBH v̂ n m,
i( )( ),=

v̂ n m,
1

erties of noise. This implies that one should change the
type of the neighborhood and operation over pixels of
this neighborhood at each iteration.

The choice of the neighborhoods for rank-order
algorithms is very important: it should be statistically
meaningful. In particular, one should take into account
the types of deviations of the actual model from the
ideal one. Therefore, we treat the signal model as an
approximation for the majority of image data. The
minority of the image data such as outliers or deviating
signal substructures are not taken into consideration. In
general, if the noise distribution is Gaussian, a better
estimate is provided by the sample mean operation; if
the noise distribution has heavy tails, either the median
or other order-statistic gives a better result. In the case
of one-sided distribution, the minimum/maximum
operations are appropriate.

Now we introduce several rank-order algorithms
constructed with the use of basic neighborhoods and
operations. The alpha-trimmed filter (α-TM filter) is an
example of L-type filters [10]

(16)

The output of the filter is the trimmed mean value. The
number of data values dropped from the average is con-
trolled by the quantities –εr and +εr. It is obvious that
the extreme values, both low and high, are removed at
each end of the variational row. The algorithms in Eqs.
(15) and (16) are similar. The only difference is that the
α-TM filter rejects certain data values in the window,
whereas the filter in Eq. (15) only limits the influence
of some data values. The modification of the α-TM fil-
ter called the MTM filter can be written as [11]

(17)

Here, the number of pixels used in averaging is not
fixed as it was in the previous case. The algorithm
yields the arithmetic mean of order statistics values of
the EV-neighborhood which is formed at the median
value of each image pixel of the S- or Sw-neghborhoods.
The median value can be computed over pixels of a
small moving window. This filter is referred to as the
double window MTM filter [11]. Another noise clean-
ing algorithm using the KNV-neighborhood is written
as [23]

(18)

The filter takes the average of a fixed number of values
in the window closest to the central pixel, including the
pixel itself.

An example of a smoothing algorithm based on esti-
mation over the EV-neighborhood is given by [24, 25]

(19)

where it is recommended to choose ε
v
 = 1.5σ assuming

that the standard deviation of additive Gaussian noise is
known. The purpose of this processing is to automati-

v̂ n m,
i 1+

MEAN ER MED v̂ n m,
i( )( ).=

v̂ n m,
i 1+

MEAN EV MED v̂ n m,
i( )( ).=

v̂ n m,
i 1+

MEAN KNV v̂ n m,
i( ).=

v̂ n m,
i 1+

MEAN EV v̂ n m,
i( ),=
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cally adjust the window size depending on the place of
processing—an edge or a smooth region.

An edge-detection algorithm can be defined as fol-
lows:

(20)

where F is a gain coefficient of the difference between
values of pixels of the two chosen ranks, R and L.

A local-contrast enhancement algorithm has the
form

(21)

where A and B are normalization constants. This algo-
rithm is also called local histogram equalization.

An algorithm for suppressing mixed additive and
impulse noise is as follows [30]:

(22)

where Thldi is a threshold value of outlier detection at
the ith iteration and “–” denotes the set difference oper-
ation. The algorithm yields either the sample mean of
pixels of the EV-neighborhood or the medium value of
pixels of the S-neighborhood. The size of the S-neigh-
borhood is usually chosen smaller than that of the mov-
ing window. Moreover, the pixels associated with outli-
ers are excluded from the S-neighborhood. Thus, the
additive noise is suppressed by the arithmetic averaging

v̂ n m, V r R=( ) V r L=( )–( ) F,×=

v̂ n m, Ar v n m,( ) B,+=

v̂ n m,
i 1+

=  

MEAN EV v̂ n m,
i[ ]( ),

if SIZE EV v̂ n m,
i[ ]( ) Thld

i≥

MED S v̂ n m,
i[ ] EV v̂ n m,

i[ ]–( ), otherwise,








inside the EV-neighborhood of each image pixel, while
the pulse noise is removed by the median operation.
This algorithm and its modifications are used in our
computer experiments.

3. RANK-ORDER FILTERS WITH SPATIALLY 
ADAPTIVE NEIGHBORHOODS

The use of spatial neighborhoods in image process-
ing reflects the fact that the pixels that are geometrically
close to each other belong to the same structure or
detail. It is also assumed that the pixels that belong to
the same details of an image are highly correlated and
fall into the same cluster of the local histogram where
the central pixel of the S-neighborhood falls. Therefore,
by using the introduced neighborhoods, we can easily
extract these pixels from the local histograms. How-
ever, the spatial proximity does not always form spatial
clusters. Figure 2 demonstrates that the pixels of the
neighborhoods defined in Section 2 are not necessarily
spatially connected to the central pixel of the neighbor-
hood (the spatial connectivity is defined here by their
belonging to one image detail). In Fig. 2, the three test
images have the same one-dimensional histogram but
differ greatly in the content of the images. It seems to
contradict the natural assumption that all the pixels
from the same neighborhood belong to the same detail
of the image. Therefore, one can conclude that conven-
tional rank-order filters designed with the use of one-
dimensional local histograms barely exploit spatial
relations between image elements, because they reorder
the pixels of two-dimensional spatial neighborhoods
into one-dimensional variational rows or local histo-
grams. In other words, the representations of spatial
relations in local histograms and variational rows may
poorly describe image structures and detail orienta-
tions. To overcome this drawback, we supplement the
neighborhood definitions introduced in Section 2 by
requirements for all the pixels of the neighborhood to
be spatially connected to each other.

First, we introduce some important definitions for
the pixels of the neighborhood.

Definition 1. Two different pixels vk, l and vm, n are
spatial neighbors if their coordinates satisfy the follow-
ing condition: |k – m | + |l – n | = ∆, where ∆ is a positive
constant called an order of connectivity.

Definition 2. A path from the pixel vk, l to the pixel
vm, n (k ≤ m and l ≤ n) is a sequence of pixels A1, A2, …,
Ah of the neighborhood, where A1 = vk, l , Ah = vm, n and
Ai + 1 is a spatial neighbor of Ai (i = 1, 2, …, h – 1).

Definition 3. Two pixels are called spatially con-
nected if there is a path between them in the neighbor-
hood.

Definition 4. A neighborhood region is spatially
connected if all of its pixels are spatially connected.

We denote a spatially connected region of the order
of connectivity ∆ which is formed from the set X, as

Fig. 2. Three different images having the same histogram.
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CON∆(X). The parameter ∆ is suitable to describe con-

nected regions of images corrupted with impulse noise.
In this case, ∆ can be determined by the probability of
impulse noise. In the algorithms used in our computer
simulations, ∆ is equal to 1 or 2.

Using the definitions, we introduce the concept of
an adaptive neighborhood (ANBH). The size and shape
of an adaptive neighborhood depend on characteristics
of image data and on parameters, which define mea-
sures of homogeneity of pixel sets. Thus, an adaptive
neighborhood is a spatially connected region con-
structed for each pixel; it consists of the spatially con-
nected pixels that satisfy the property of similarity with
the central pixel. This property can be described by
using the EV-, ER-, and KNV-neighborhoods introduced
in Section 2. First, we form the EV-, ER-, and
KNV-neighborhoods from the pixels of the moving
window; then, from these neighborhoods, we construct
spatially connected regions including the central pixel.
New sets are adaptive neighborhoods, referred to as
AEV-, AER-, and AKNV-neighborhoods, respectively.
These adaptive neighborhoods are defined as follows.

An EV-neighborhood is a subset of pixels {vn, m} of

the S-neighborhood, which are spatially connected with
the central pixel vk, l and whose values deviate from the

value of the central pixel by no more than the predeter-
mined quantities –ε

v
 and +ε

v
; i.e.,

(23)

An AKNV-neighborhood is a subset of a specified number
K of pixels {vn, m} of the S-neighborhood, which are spa-

tially connected with the central pixel vk, l and whose val-

AEV v k l,( )
=  CON∆ v n m, : v k l, ε

v
– v n m, v k l, ε

v
+≤ ≤{ }( ).

ues are nearest to the value of the central pixel vk, l; i.e.,

(24)

An AER-neighborhood is a subset of pixels {vn, m} of
the S-neighborhood, which are spatially connected with
the central pixel vk, l and whose ranks deviate from that
of the central pixel by no more than the predetermined
quantities –εr and +εr; i.e.,

(25)

The choice of an adaptive neighborhood is defined by
the available a priori information on the processed
image. The output of filtering is a value computed as
the basic operations MEAN(ANBH), MED(ANBH),
SIZE(ANBH), MIN(ANBH), MAX(ANBH), and
CUT(ANBH) at all possible pixels in the adaptive
neighborhood. The operations may be iteratively
applied several times. Note, that the adaptive neighbor-
hoods are not formed across region boundaries; there-
fore, noise suppression will not blur image edges as
often happens with other techniques.

Most of the applications of the rank-order filters are
limited to one- or two-dimensional signals. However,
applications with three-dimensional signals are already
numerous and still growing. For example, most of the
data collected by satellites, by computer vision sys-
tems, and by medical imaging systems (transmission,
reflection, and emission tomography) are three-dimen-
sional signals. A common way to process three-dimen-
sional signals is to consider them as multichannel sig-
nals and apply rank algorithms developed for signals of
lower dimension to each channel. This approach is
especially reasonable for applications, where the corre-
lation of the values from different channels is very low.
If the pixels of the three-dimensional signal are corre-
lated to each other, then it is preferable to compute the
parameters of rank-order filters from pixels of a three-
dimensional window moving across the signal. Figure 3
shows a curve (a fine line) in a three-dimensional space.
Typical examples of such signals are vessels in a posi-
tion emission tomography (PET) image. Note that in
impulse noise environments, only the proposed
approach guarantees a correct signal processing. Noise
smoothing based on one- or two-dimensional rank-
order filters applied along different axes will remove
the signal. An extension of the concept of spatially
adaptive neighborhoods from two-dimensional to
P-dimensional signals is straightforward.

Let {v(k)} = {v(k1, k2, …, kP)} be a discrete

P-dimensional signal, where k ∈  ZP, and Z is a set of
integers. The spatial neighborhood for every multidi-
mensional sample is defined as a set of samples which

AKNV v k l,( )

=  CON∆ V r( ): v k l, V r( )– MIN=

r p=

p K 1–+

∑
 
 
 

.
p

AER v k l,( ) CON∆=

× v n m, : r v k l,( ) εe r v n m,( ) r v k l,( )≤ ≤– εr+{ } .

vk, l, m

Fig. 3. Spatial connectivity of samples of a three-dimen-
sional signal.
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surround the given one with respect to the distance
chosen as

(26)

Conventional rank-order filters map all the samples
of the P-dimensional neighborhood into one-dimen-
sional variational row. The output of the filters is a func-
tion over the elements of the variational row. During
processing multidimensional signals with conventional
rank-order filters signal structures and detail orienta-
tions are not taken into account. For this reason, one can
expect their poor performance on multidimensional
signals. In a similar manner, we supplement the neigh-
borhood definitions by requiring that all the samples of
the neighborhood should be spatially connected to each
other in a P-dimensional space.

Definition 5. Two different samples v(k) and v(l)
are spatial neighbors in a P-dimensional space with the
order of connectivity ∆ if the distance between them is
lP(v(k), v(l)) = ∆.

Using Definitions 2–4, one can define the adaptive
neighborhoods for multidimensional signals and then
apply the basic operations over the neighborhoods. Many
rank-order processing techniques (such as noise suppres-
sion, local contrast enhancement, and detail extraction)
may be implemented by applying the concept of adaptive
neighborhood to multidimensional signals.

In our computer simulation, we use rank-order fil-
ters based on the AEV-neighborhood. The adaptive
neighborhood can be constructed from the EV-neigh-
borhood using a region-growing algorithm [34]. In Sec-
tion 4, we illustrate the ability of AEV-neighborhood to
tune itself to contextual details and fine structures of
test images.

4. COMPUTER EXPERIMENTS

Signal processing of an image degraded by additive
and impulse noises is of interest in a variety of applica-
tions. Computer experiments were carried out to illus-
trate and compare the performance of conventional and
proposed algorithms. The question was how well, rela-
tive to other filters, did each algorithm remove the noise
and preserve fine structures. However, it is difficult to
define an error criterion for accurate estimation of

lP v k( ) v n( ),( ) ki ni– .

i 1=

P

∑=

image distortion. In this paper, we base our compari-
sons on the mean square error (MSE), the mean abso-
lute error (MAE), and the subjective visual criterion.
The empirical normalized mean square error is given by

(27)

where {vn, m} and { } are the original image and its

estimate (filtered image), respectively. In our simula-
tions, N = M = 512 (512 × 512 image resolution) and
each pixel has 256 levels of quantization. The empirical
normalized mean absolute error is defined as

(28)

Finally, we use an enhanced difference visual display to
assess the error in a human visual error criterion. If
there is no error in pixel location between the original
image and the filtered image, this pixel is displayed in
gray. When the error is maximum, the pixel is displayed
either black or white. This difference image is the base
of our subjective error criterion, and it provides us with
information about the distortions introduced by a filter
as well as the noise suppression capability of the algo-
rithm. These error measures allow us to evaluate the
performance of each filter.

Figure 4a shows the original test image. The image
contains piecewise solid regions and fine details. The
signal values of different regions in the image are as
follows: the background value is 148, the “tree” value
is 133, the “cloud” value is 165, the “sun” value is 230,
the “house” value is 189, and the “windowpane” values
are 181, 175, 165, and 165. In order to better illustrate
the significance of the spatial pixel connectivity, we
insert the thin dark lines in the picture separating adja-
cent solid areas.

4.1. Test Image Corrupted by Additive Noise

Figure 4b shows the test image corrupted by zero-
mean additive Gaussian noise. The standard deviation
of the noise is σ = 15. Note that the signal difference
between adjacent regions in the picture is often of the
order of σ. Table 1 shows the difference between the
original and noisy images in terms of the MSE and
MAE.

Let us compare two rank-order algorithms. RA_0 is
the rank algorithm given in Eq. (22). The number of
iterations is 2. The filter parameters at each iteration are
as follows: the sizes of the moving windows are 25 × 25

MSE

v n m, v̂ n m,–
2

m 1=

M

∑
n 1=

N

∑

v n m,
2

m 1=

M

∑
n 1=

N

∑
---------------------------------------------------,=

v̂ n m,

MEA

v n m, v̂ n m,–

m 1=

M

∑
n 1=

N

∑

v n m,

m 1=

M

∑
n 1=

N

∑
-------------------------------------------------.=

Table 1.  Results of suppressing additive noise with rank-
order filters

Type of filters
Measured errors

MSE MAE

Noisy image 0.0112 0.0871

RA_0 0.0005 0.0088

RA_1_2 0.0001 0.0014
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and 41 × 41; the value ε
v
 of the EV-neighborhood is

always equal to 30; the size of the S-neighborhood for
removing noise outliers is 3 × 3; the threshold values of
outlier detection are 4 and 0. The proposed algorithm
RA_1_2 is the same rank algorithm as RA_0; however,
it uses the AEV-neighborhood with the connectivity

order of 1 or 2. The number of iterations is 4, and the
size of the moving window in all iterations is 35 × 35.
The value ε

v
 of the AEV-neighborhood is always equal

to 30. The size of the S-neighborhood for removing
impulse noise is 5 × 5. The threshold values are 0, 0, 3,
and 3. The orders of connectivity are 1, 1, 2, and 2.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) Original test image, (b) noisy image (additive noise), (c) image processed with conventional rank algorithm RA_0,
(d) enhanced difference between the original image and image filtered by RA_0, (e) image processed with the proposed algorithm
RA_1_2, and (f) enhanced difference between the original image and image filtered by RA_1_2.
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Figures 4c and 4e show the images processed with
conventional rank algorithm RA_0 and with the pro-
posed algorithm RA_1_2, respectively. Figures 4d and 4f
show enhanced differences between (d) the original
image and the image filtered with RA_0 and (f)
between the original image and the image filtered with

RA_1_2. We observe that the noise reduction capability
of both filters is very good on the smooth regions. How-
ever, the conventional rank filter RA_0 has a poor per-
formance on edges. The distortions are caused by the
pixels of different adjacent signal areas that are used in
smoothing. Since the filter RA_1_2 only works with

(a) (b)

(d)(c)

(e)

Fig. 5. (a) Noisy image (mixed additive and impulse noise), (b) image processed with rank filter RM_0, (c) enhanced difference
between the original image and the image filtered with RM_0, (d) image processed with rank filter RM_1_2, and (e) enhanced dif-
ference between the original image and the image filtered with RM_1_2.
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spatially connected regions, it yields a very good result
on the edge of adjacent regions. Table 1 shows the error
retained and introduced by each of the filters according
to the MSE and MAE error criteria.

4.2. Test Image Corrupted by Mixed Additive
and Impulse Noise

Figure 5a shows the test image with additive zero-
mean Gaussian noise degraded by the impulse noise.
The standard deviation of the additive noise is σ = 15.
The probability of noise impulse is 0.2 and, if it occurs,
it can be positive or negative with equal probability 0.1.
In the simulations, the values of the impulse were set to
0 or 255. Table 2 shows the difference between the orig-
inal and noisy images in terms of the MSE and MAE.

In our computer experiments, we compared two fol-
lowing algorithms. RM_0 is the conventional rank algo-
rithm given in Eq. (22). The number of iterations is 4. The
filter parameters at each iteration are as follows: the
sizes of moving windows are 25 × 25, 5 × 5, 7 × 7, and
25 × 25; the values ε

v
 of the EV-neighborhood are 30,

12, 12, and 30; the size of the S- neighborhood for
removing noise outliers is 3 × 3; the threshold values of
outlier detection are 0, 3, 6, and 9. RM_1_2 is the same
rank algorithm as RM_0; however, it uses the
AEV-neighborhood with the connectivity order of 1 or 2.
The number of iterations is 6. The size of the moving
window in all iterations is 35 × 35. The values ε

v
 of the

AEV-neighborhood are 30, 15, 15, 21, 25, and 30. The
size of the S- neighborhood for removing impulse noise
is 5 × 5. The threshold values are 1, 3, 4, 7, 11, and 0.
The orders of connectivity are 1, 1, 1, 2, 2, and 1.

Figures 5b and 5d show the processed images with
(b) rank filter RM_0 and (d) rank filter RM_1_2. Fig-
ures 5c and 5e show enhanced differences between (c)
the original image and the image filtered with RM_0
and (e) the original image and the image filtered with
RM_1_2. Table 2 shows errors according to MSE and
MAE error criteria. It is obvious, that the conventional
rank filter has a poor performance in this case also. It
has the same drawbacks as in the case of additive noise.
Moreover, impulse noise detection goes often wrong at
thin lines under the noise, which leads to the erroneous
removal of these lines. The proposed filter RA_1_2
uses spatial pixel connectivity and, thus, efficiently
reduces mixed (additive and impulse) noise while pre-
serving fine structures and details.

5. CONCLUSION

In this paper, we present a new approach to design-
ing the rank-order filters for suppressing additive and
impulse noise, local contrast enhancement, and local
detail extraction. The approach makes explicit use of
spatial relations between image elements. An extension
of this approach to rank-order filtering of three-dimen-
sional signals is also presented. The proposed rank fil-
ters are very attractive for image-processing applica-

tions. Extensive testing has shown that, when the input
image is degraded by mixed additive and impulse noise,
the proposed rank-order filters outperform the conven-
tional rank-order filters in terms of the MSE, MAE, and
the subjective visual criterion.
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