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Abstract. The problem of finding a low rank approximation of a given
measurement matrix is of key interest in computer vision. If all the el-
ements of the measurement matrix are available, the problem can be
solved using factorization. However, in the case of missing data no sat-
isfactory solution exists. Recent approaches replace the rank term with
the weaker (but convex) nuclear norm. In this paper we show that this
heuristic works poorly on problems where the locations of the missing
entries are highly correlated and structured which is a common situation
in many applications.

Our main contribution is the derivation of a much stronger convex
relaxation that takes into account not only the rank function but also
the data. We propose an algorithm which uses this relaxation to solve
the rank approximation problem on matrices where the given measure-
ments can be organized into overlapping blocks without missing data.
The algorithm is computationally efficient and we have applied it to sev-
eral classical problems including structure from motion and linear shape
basis estimation. We demonstrate on both real and synthetic data that
it outperforms state-of-the-art alternatives. 1

1 Factorization Methods and Convex Relaxations

The ability to find the best fixed rank approximation of a matrix has been
proven useful in applications such as structure from motion, photometric stereo
and optical flow [5,23,9,3,10]. The rank of the approximating matrix typically
describes the complexity of the solution. For example, in non-rigid structure from
motion the rank measures the number of basis elements needed to describe the
point motions [5]. Therefore a good optimization criterion consists of a trade-off
between rank and residual errors, leading to formulations of the type

min
X

µ rank(X) + ‖X −M‖2F , (1)

where M is a matrix of measurements. The above problem can be solved using
the singular value decomposition (SVD) followed by truncation of the singular
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values, but the strategy is limited to problems without missing data and out-
liers. The issue of outliers has received a lot of attention lately. In [8,21,24] the
more robust ℓ1 norm is used. While experimental results indicate robustness to
suboptimal solutions, these methods are still local in that updates are computed
using a local approximation of the objective function. To handle missing data
[2] replaces the Frobenious norm with the spectral norm. It is shown that if the
missing data forms a Young pattern the globally optimal solution can be com-
puted. For general problems [2] proposes an alternation over Young patterns.

A recent heuristic that has been shown to work well is to replace the rank
function with the nuclear norm [19,7,9,18,1]. This leads to formulations of the
type

min
X

µ‖X‖∗ + ‖W ⊙ (X −M)‖2F , (2)

whereW is a matrix with entryWij = 1 ifMij has been observed,Wij = 0 other-
wise and ⊙ denotes elementwise multiplication. It can be shown [19,7] that if the
location of the missing entries are random then problem (2) provides the correct
low rank solution. However, in many applications such as structure from motion,
missing entries are highly correlated. When a scene point cannot be tracked any
longer (either due to occlusion or appearance change) it rarely appears again.
This gives rise to certain sparsity patterns (often diagonally dominant) in W

which are not random.
Figure 1 shows the results of a synthetic experiment. Here we generated a

100 × 100 matrix A = UV T of rank 3 by randomly selecting 100 × 3 matrices
U and V with elements selected from a Gaussian distribution (with mean 0 and
standard deviation 1). To generate the measurement matrix M we then added
Gaussian noise with standard deviation 0.05 to each entry in A.

Fig. 1. Left : The pattern of missing data (red lines show the blocks used by our al-
gorithm). Available measurements are located close to the diagonal. Middle: Absolute
errors of the (rank 3) solution obtained using (2)2. Right : Absolute errors of the (rank
3) solution obtained using the proposed approach.

2 µ was chosen so that the first three singular values accounted for 99% of the solution.
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In an effort to strengthen the nuclear norm formulation, [1] adds prior infor-
mation using the generalized trace norm. The formulation is related to (2) by a
reweighing of the data term and can incorporate knowledge such as smoothness
priors. The availability of such information can improve the estimation, however
the formulation still uses the nuclear norm for regularization. On a high level
our approach is similar to [1] in that it also attempts to find a stronger convex
relaxation by considering not just the rank function but also the data. How-
ever, in contrast to [1] we do not add priors to the problem but simply use the
information in the available measurements.

The motivation for replacing the rank function with the nuclear norm in (2) is
that it is the convex envelope of the rank function on the set {X ;σmax(X) ≤ 1}.
That is, it is the tightest possible convex relaxation on this set. The constraint
σmax(X) ≤ 1 is however not present in (2). In fact, the convex envelope of an
unconstrained rank function is the zero function. In this paper we show that
a significantly more accurate convex envelope can be computed if a solution
estimate X0 is available. Specifically, we compute the convex envelope of

f(X) = µ rank(X) + ‖X −X0‖2F . (3)

We will refer to this function as the localized rank function. Compared to the
nuclear norm constraint σmax(X) ≤ 1, the term ‖X−X0‖2F effectively translates
the feasible region to a neighborhood around X0 instead of the trivial solution 0.
Therefore our convex envelope can penalize smaller singular values harder than
larger ones, while the nuclear norm tries to force all singular values to be zero.

The work most similar to ours is perhaps [13] where the convex envelope
of a vector version of our problem (the cardinality function and the ℓ2-norm) is
computed. In contrast, here we are interested in the matrix setting. Furthermore,
in [13] the ℓ2-norm is centered around the origin. In our work the translation is
an essential component required to avoid penalizing large singular values.

Minimizing the convex envelope of (3) gives the same result as min f(X).
The significant advantage of using the envelope instead is that it is convex and
therefore can be combined with other convex constraints and functions. We
propose to utilize it for problems with missing data patterns as exemplified in
Figure 1. More specifically, our convex relaxation is applied to sub-blocks of the
matrix with no missing entries rather than the nuclear norm of the entire matrix
X . In effect, this can be seen as minimizing the rank of each sub-block separately
and due to the convexity of our approximation, it is possible to enforce that
the sub-blocks agree on their overlap. Furthermore, we show that under mild
assumptions it possible to extract a solution to the full matrix X that has rank
equal to the largest rank of the sub-blocks. We present an ADMM [4] based
approach for obtaining a solution which only requires to compute SVDs of the
sub-blocks rather than the whole matrix resulting in an efficient implementation.
In summary, we derive tight convex relaxations for a class of problems with a
large amount of missing entries that outperform state-of-the-art methods.
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Notation. Throughout the paper we use σi(X) to denote the ith singular
value of a matrix X . The vector of all singular values is denoted σ(X). With
some abuse of notation we write the SVD of X as U diag(σ(X))V T . For ease of
notation we do not explicitly indicate the dependence of U and V on X . The
scalar product is defined as 〈X,Y 〉 = tr(XTY ), where tr is the trace function,
and the Frobenius norm ‖X‖F =

√

〈X,X〉 =
√

∑

σ2
i (X). Truncation at zero is

denoted [a]+, that is, [a]+ = 0 if a < 0 and a otherwise.

2 The Convex Envelope

In this section we show that it is possible to compute a closed form expression
for the convex envelope of the localized rank function (3).

Finding the envelope of f is equivalent to computing f∗∗ = (f∗)∗, where

f∗(Y ) = max
X

〈Y,X〉 − f(X), (4)

is the Fenchel conjugate of f [20]. By completing squares, f∗(Y ) can be written

f∗(Y ) = max
k

max
rank(X)=k

∥

∥

∥

∥

1

2
Y +X0

∥

∥

∥

∥

2

F

−‖X0‖2F −
∥

∥

∥

∥

X − (
1

2
Y +X0)

∥

∥

∥

∥

2

F

−µk. (5)

Note that the first two terms are independent of X and can be considered as
constants in the maximization over X and k. In addition k is fixed in the inner
maximization. For a fixed k, the maximizing X is given by the best rank k

approximation of 1
2Y +X0 which can be obtained via an SVD of 1

2Y +X0 by
setting all singular values but the k largest to zero. Inserting into (5) we get

f∗(Y ) = max
k

∥

∥

∥

∥

1

2
Y +X0

∥

∥

∥

∥

2

F

− ‖X0‖2F −
n
∑

i=k+1

σ2
i (
1

2
Y +X0)− µk (6)

= max
k

∥

∥

∥

∥

1

2
Y +X0

∥

∥

∥

∥

2

F

− ‖X0‖2F −
n
∑

i=k+1

σ2
i (
1

2
Y +X0)−

k
∑

i=1

µ. (7)

To select the best k we note that the largest value is achieved when k fulfills

σ2
k(
1

2
Y +X0) ≥ µ ≥ σ2

k+1(
1

2
Y +X0). (8)

For the maximizing k the last two sums can be written

n
∑

i=k+1

σ2
i (
1

2
Y +X0) +

k
∑

i=1

µ =

n
∑

i=1

min

(

µ, σ2
i (
1

2
Y +X0)

)

. (9)

Therefore we get the conjugate function

f∗(Y ) =

∥

∥

∥

∥

1

2
Y +X0

∥

∥

∥

∥

2

F

− ‖X0‖2F −
n
∑

i=1

min

(

µ, σ2
i (
1

2
Y +X0)

)

. (10)
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We next proceed to compute the bi-conjugate f∗∗(X) = maxY 〈X,Y 〉 − f∗(Y ).
To simplify computations we change variables to Z = 1

2Y +X0 and maximize
over Z instead. We get

f∗∗(X) = max
Z

2〈X,Z −X0〉 − ‖Z‖2F + ‖X0‖2F +

n
∑

i=1

min(µ, σ2
i (Z)). (11)

The first three terms can, by completing squares, be simplified into ‖X−X0‖2F −
‖Z −X‖2F . Furthermore, since ‖X −X0‖2F does not depend on Z we get

f∗∗(X) = ‖X −X0‖2F +max
Z

(

n
∑

i=1

min
(

µ, σ2
i (Z)

)

− ‖Z −X‖2F

)

. (12)

The sum in (12) only depends on the singular values of Z and is therefore
unitarily invariant. We also note that −‖Z −X‖2F = −‖Z‖2F +2〈Z,X〉− ‖X‖2F .
The term ‖Z‖2F is unitarily invariant and by von Neumann’s trace inequality,
we know that 〈Z,X〉 ≤ ∑n

i=1 σi(Z)σi(X). Equality is achieved if X and Z have
SVDs with the same U and V . Hence, for Z to maximize the sum in (12), its
SVD should be of the form Z = U diag(σ(Z))V T if X = U diag(σ(X))V T .

What is left now is to determine the singular values of Z and because both
terms containing σi(Z) are separable, we can consider one at a time. Hence we
need to solve maxσi(Z) min(µ, σ2

i (Z))− (σi(Z)− σi(X))2. There are two cases:

(i) If σi(Z) ≤ √
µ then the problem simplifies to maxσi(Z) σ2

i (Z) − (σi(Z) −
σi(X))2. Expanding the square, this objective function is 2σi(X)σi(Z) −
σ2
i (X). The singular value σi(X) is positive and the optimal choice is there-

fore σi(Z) =
√
µ.

(ii) If σi(Z) ≥ √
µ we need to solve maxσi(Z) µ−(σi(Z)−σi(X))2. The maximum

is clearly achieved in σi(Z) = σi(X).

Summarizing the two cases, the optimal Z has σi(Z) = max(
√
µ, σi(X)).

We now insert Z into (12) to find the expression for the bi-conjugate. Note
that min

(

µ, σ2
i (Z)

)

= min
(

µ, max(µ, σ2
i (X))

)

= µ, and that ‖Z − X‖2F =
∑n

i=1

[√
µ− σi(X)

]2

+
. Hence, the convex envelope is given by

f∗∗(X) = Rµ(X) + ‖X −X0‖2F , (13)

where

Rµ(X) =

n
∑

i=1

(

µ− [
√
µ− σi(X)]

2
+

)

. (14)

In [22] the authors propose a rank regularizer which for some parameter choices
is equivalent to Rµ. However, they make no connection to the convex envelope
of f and simply minimize it in a non-convex framework.

Figure 2 shows a one dimensional version of (13). To the left is the term

µ−
[√

µ− σ
]2

+
which is in itself not convex. For singular values larger than

√
µ
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it gives a constant penalty. When the quadratic term σ2 is added the result is a
convex penalty, see the middle graph in Figure 2. For σ <

√
µ the function has

a linear shape (red dashed curve) similar to the nuclear norm, while for σ ≥ √
µ

it behaves like the quadratic function µ + σ2. Note that the one dimensional
version of f is identical to µ + σ2 everywhere except for σ = 0. In the right

image we plotted the graphs of µ−
[√

µ− σ
]2

+
+ (σ − σ0)

2 for σ0 = 0, 1, 2. If σ0

is large enough the function will not try to force σ to be zero.

√
µ

µ

√
µ

2µ

√
µ

2µ

Fig. 2. One dimensional visualizations of (13) for µ = 2. Left: The graph of µ −
[√

µ− σ
]2

+
. Middle: The graph of µ−

[√
µ− σ

]2

+
+σ2. If µ is large its shape resembles

the nuclear norm. Right: The graphs of µ−
[√

µ− σ
]2

+
+ (σ − σ0)

2 for σ0 = 0, 1, 2.

3 A Block Decomposition Approach

Next we present our approach for solving the missing data problem. The idea is
to try to enforce low rank of sub-blocks of the matrix where no measurements
are missing using our convex relaxation.

Let Ri and Ci, i = 1, ..,K be a subset of row and column indices for each block.
By Pi : R

m×n 	→ R
|Ri|×|Ci| we will mean the (linear) operator that extracts the

elements with indices in Ri×Ci and forms a sub-matrix of size |Ri| × |Ci|. If M
is our (partially filled) measurement matrix, then the submatrix Pi(M) has no
missing values. We seek to minimize the non-convex function

f(X) =

K
∑

i=1

µi rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2F , (15)

by replacing it with the convex envelopes of the localized rank function (13),

fR(X) =

K
∑

i=1

Rµi
(Pi(X)) + ‖Pi(X)− Pi(M)‖2F . (16)

Note that we do not explicitly enforce that the rank of X is penalized, but
instead this is accomplished via the rank penalization of the sub-matrices. In
the next subsection, we shall see that the rank of the full matrix X and the
rank of its sub-matrices Pi(X) are strongly related. Also note that since the
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blocks have overlaps this formulation counts some residuals more than others. It
is possible to add a term ‖W r ⊙ (X−M)‖2F to ensure that each residual error is
counted equally many times, but we have experimentally found that this makes
little difference and we therefore ignore this term for ease of presentation.

3.1 Constructing the Full Matrix X

Let us now assume that we have solved the convex relaxation of problem (16).
However, as only the sub-matrices of X are involved in the optimization, we still
need to find the complete matrix X . Let rmax denote the maximum rank over
all sub-matrices. We shall show the following result:

Lemma 1. Let X1 and X2 be two given matrices with overlap matrix X22 as

depicted in Figure 3, and let r1 = rank(X1) and r2 = rank(X2). Suppose

that rank(X22) = min(r1, r2), then there exists a matrix X with rank(X) =
max(r1, r2). Additionally if rank(X22) = r1 = r2 then X is unique.

Proof. We will assume (w.l.o.g) that r2 ≤ r1, and look at the blockX2. The over-
lap X22 is of rank r2 so there are r2 linearly independent columns in [XT

22 XT
32]

T

and rows in [X22 X23]. Now the rank of X2 is r2 and we can find coefficient
matrices C1 and C2 such that

[

X23

X33

]

=

[

X22

X32

]

C1 and
[

X32 X33

]

= C2

[

X22 X23

]

. (17)

We therefore set X13 := X12C1 and X31 := C2X21. To determine the rank of
the resulting X we first look at the number of linearly independent columns. By
construction, the columns [XT

13 XT
23 XT

33]
T are linear combinations of the other

columns, and similarly, the rows [X31 X32 X33] are linear combinations of the
other rows. Hence, the number of linear independent columns (or rows) has not
increased. Therefore X has the same rank as X1. The uniqueness in the case of
r1 = r2 can easily be proven by contradiction. ⊓⊔

We now present a simple way to extend the solution beyond the blocks. The
completion of two blocks is in practice performed by finding rank rmax factor-
izations of X1 and X2 using SVD (see Figure 3),

X1 = U1V
T
1 and X2 = U2V

T
2 where Uk ∈ R

mk×r, Vk ∈ R
nk×r. (18)

The low rank factorizations are however not unique because for any invertible
H , U1V

T
1 = (U1H)(H−1V T

1 ). To find the unknown H we consider the block

X22 = Û1V̂1
T
= Û2V̂2

T
, where ÛiV̂i

T
is the restriction of the UiV

T
i to X22. Then

Û1 = Û2H and V̂1
T
= H−1V̂2

T
=⇒ HV̂1

T
= V̂2

T
, (19)

which we solve in a least squares sense. In this way we iteratively combine the
sub-blocks. Other approaches, such as nullspace matching methods used in [17]
and [12], are also possible. Note however, that in each iteration we only compute
the SVD of the new (smaller) block allowing efficient implementation.
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X11 X12 ?

X21 X22 X23

? X32 X33

X =

X2 = U2 V
T
2

H H
−1

X1 = U1 V
T
1

Fig. 3. Left: The matrix X contains two overlapping blocks X1 and X2. The goal is to
fill in the missing entries X13 and X31 such that rank(X) is kept to a minimum. Right:
The low-rank factorizations of the two blocks X1 and X2. The overlap is marked in
both the blocks and the factorizations.

3.2 Selecting µ

The regularizer Rµ in (14) only penalizes singular values less than
√
µ. This

gives a clear way to set how much variation in the data we allow to be explained
by measurement noise.

If a fixed rank r solution is desired, then the parameters µi in (15) can
be found iteratively by solving the problem and then updating each µi to be
slightly smaller than σ2

r (Pi(X)). This ensures that only singular values less than
σr(Pi(X)) are penalized in each block.

4 An ADMM Implementation

In this section we present a simple approach for computing a solution to our
formulation. Working with the sub-blocks of a matrix, the ADMM scheme is a
natural choice for implementation. Furthermore, our objective function is convex,
so convergence to the optimal value is guaranteed [4].

For each block Pi(X) we introduce a separate set of variables Xi and en-
force consistency via the linear constraints Xi − Pi(X) = 0. We formulate an
augmented Lagrangian of (15) as

K
∑

i=1

(

Rµi
(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(X) + Λi‖2F − ρ‖Λi‖2F

)

. (20)

At each iteration t of ADMM we solve the subproblems

Xt+1
i = argminXi

Rµi
(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(X

t) + Λt
i‖2F , (21)

for i = 1, ...,K and

Xt+1 = argminX

K
∑

i=1

ρ‖Xt+1
i − Pi(X) + Λt

i‖2F . (22)
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Here Λt
i, i = 1, ...,K are the scaled dual variables whose updates at iteration t

are given by
Λt+1
i = Λt

i +Xt+1
i − Pi(X

t+1). (23)

The second subproblem (22) is a separable least squares problem with closed
form solution. In the next section we compute the solutions of (21). Note that
these are completely independent of each other and could in principle be solved
in parallel.

4.1 The Proximal Operator

Ignoring constants, the objective function in (21) can be written

F (Xi) = G(Xi)− 2〈Y,Xi〉, (24)

where

G(Xi) =

n
∑

j=1

(

− [
√
µ− σj(Xi)]

2
+

)

+ (1 + ρ)‖Xi‖2F , (25)

and Y = Pi(M) + ρ(Pi(X
t) − Λt

i). Due to convexity it is sufficient to find Xi

such that 0 ∈ ∂F (Xi) to optimize F . Define the function g : Rn 	→ R by

g(σ) =

n
∑

i=1

gi(σi), (26)

where gi(σ) = −
[√

µ− |σ|
]2

+
+ (1 + ρ)σ2. Then g is an absolutely symmetric

convex function and G can be written G(X) = g◦σ(X). IfX = U diag(σ(X))V T

then according to [15], the sub-differentials of G and g are related by

∂G(X) = U diag(∂g ◦ σ(X))V T . (27)

The function g(σ) is a sum of one dimensional functions and therefore its sub-
differential can easily be computed by considering the components of the sum
separately. The functions gi(σ) are differentiable everywhere except in σ = 0
where ∂gi(0) = [−2

√
µ, 2

√
µ]. For any other σ we have

∂gi

∂σ
= −2 sgn(σ) [

√
µ− |σ|]+ + 2(1 + ρ)σ. (28)

To solve 0 ∈ ∂F (Xi) we now construct a solution to 2Y ∈ ∂G(Xi). If Y =
U diag (σ(Y ))V T then it can be verified that Xi = U diag (σ(Xi))V

T where

σi(X) =

⎧

⎪

⎨

⎪

⎩

σi(Y )
1+ρ

if σi(Y ) ≥ (1 + ρ)
√
µ

σi(Y )−√
µ

ρ
if
√
µ ≤ σi(Y ) ≤ (1 + ρ)

√
µ

0 if σi(Y ) ≤ √
µ

(29)

fulfills all the required constraints.
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5 Experiments

In this section we evaluate the quality of our relaxation on both synthetic and
real data. All experiments were run on a computer running Ubuntu 13.04 with
an Intel I7-3930K CPU and 64 GB of RAM. The algorithms were implemented
in Matlab and the block update in ADMM was not parallelized.

5.1 Evaluation of the Convex Relaxation

We emprically evaluate the performance of the convex relaxation fR(X) in (16)
for the non-convex objective function f(X) in (15). Note that in the case of a
single block K = 1, fR(X) is a tight convex relaxation of f(X). Therefore we
test the performance when we have more blocks (K = 7).

We generated random 100 × 100 rank 3 matrices. This was done by sam-
pling U, V ∈ R

100×3 from a Gaussian distribution with zero mean and unit
variance and then forming the measurement matrix M = UV T . The observa-
tion matrix W was chosen to be a band-diagonal matrix with bandwidth 40
similar to the matrix in Figure 1. The blocks were laid out along the diagonal
such that their overlap was 6× 6 and contained no missing data. We then solved
X∗

R = argminX fR(X) with µi = 1 and varying degrees of Gaussian noise added
to M . For each noise level, the test was repeated 1000 times and the results av-
eraged. In the left of Figure 4 we plot the averages of f(X∗

R) and fR(X∗
R). Note

that if f(X∗
R) = fR(X∗

R) then X∗
R is a global minimizer of f .

For comparison we substituted the rank function for the nuclear norm. The
nuclear norm is also convex, hence it can be used in our block decomposition
framework. Therefore we did the same experiment with

fN (X) =

K
∑

i=1

µi‖Pi(X)‖∗ + ‖Pi(X)− Pi(M)‖2F . (30)

The comparative results can be seen in the left graph of Figure 4. Note that the
constraint σmax(Pi(X)) ≤ 1 can be violated, so fN is not necessarily a lower
bound on f .

5.2 Comparison to Non-Convex Approaches

Next we compare our methods performance to two state-of-the-art non-convex
methods: OptSpace [14] and Truncated Nuclear Norm Regularization (TNNR)
[11]. OptSpace is based on local optimization on Grassmann manifolds and in
TNNR an energy which penalizes the last (n−r) singular values is minimized. In
[11] the authors propose three algorithms. In our experiments TNNR-ADMMAP
performed the best and therefore we only include this in our comparison.

The experiment was generated in the same way as in Section 5.1. Both
OptSpace and TNNR-ADMMAP try to find the best fixed rank approxima-
tion. In contrast our method penalizes a trade-off between the rank and residual
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Fig. 4. Evaluation of the proposed formulation on synthetic data with varying noise
levels. Left : Comparison of our convex relaxation solution X∗

R with the nuclear norm
X∗

N . Right : The error ‖W ⊙ (X −M)‖F for varying noise levels.

errors. We therefore iterate our method over µi to achieve the correct rank. Typ-
ically only one or two iterations are required. To the right in Figure 4, we plot
the average values of ‖W ⊙ (X −M)‖F for the different approaches.

It should be noted that on most problem instances OptSpace and TNNR
performed similarly or even slightly better than our approach. The reason for
this is that these non-convex approaches try to directly optimize the correct
criterion while we use a convex relaxation (and, in addition, our blocks do not
cover all the data). Hence, if they converge to the correct solution it will be at
least as good as ours. However, as can be seen in Figure 4, local minima raise
their average errors.

For the experiment the average run times were 0.88s (our), 20.94s (OptSpace)
and 21.44s (TNNR). It is hard to make a fair comparison of different algorithms
since it depends on implementations and various tuning parameters. Though we
think these running times reflect the fact that we only need to optimize over
the blocks and need not keep track of the full matrix while solving our convex
problem.

5.3 Real Data

Structure from Motion. We now consider the well-known Oxford dinosaur
sequence3. The measurement matrix M contains the 2D coordinates of the
tracked 3D points. The measurement matrix M will have rank 4 since we do
not account for the translation in the affine camera model. In this experiment
we consider an outlier free subset consisting of 321 3D points where each point
is seen in at least six images. The observation matrix W contains 77% missing
data and exhibits the band diagonal structure which is typical for structure from
motion problems. The matrix W and the selected blocks for this experiment can
be seen in the left graph of Figure 5.

In Figure 6 we show the resulting image point trajectories of our method
versus the nuclear norm approach with missing data, cf. (2). We optimize (2)

3 http://www.robots.ox.ac.uk/$\sim$vgg/data/data-mview.html

http://www.robots.ox.ac.uk/$\sim $vgg/data/data-mview.html
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Fig. 5. Structured data patterns of observations (matrix W ) and sub-blocks for the
dino, book, hand and banner sequences.

using ADMM with the shrinkage operator from [6]. For comparison we also
show the matrix found by performing a full perspective reconstruction (using
bundle adjustment) followed by truncating the reprojections to rank 4. The
errors ||W ⊙ (X−M)||F for the three solutions were 73.2 (our), 1902.5 (nuclear)
and 116.2 (perspective). The nuclear norm favors solutions where elements away
from the observed data have small values. Therefore its trajectories are stretched
towards the origin. Out of the three, the perspective reconstruction captures
the turntable motion best. However, its error is higher than our solution and
therefore, seen as a low-rank approximation problem, our solution is better. The
run times were 14.58s (our) and 18.11s (nuclear).

Fig. 6. From Left to Right : Observed image point trajectories, results obtained with
the proposed algorithm, with the nuclear norm formulation (2) and with perspective
reconstruction followed by projecting onto rank 4 using SVD.

Linear Shape Basis Models. Next we consider the linear shape basis model
common in non-rigid structure from motion. Let Xf be the 2D- or 3D- coordi-
nates of N tracked points in frame f . The model assumes that in each frame the
coordinates are a linear combination of some unknown shape basis vectors, i.e.

Xf =

K
∑

k=1

CfkSk, f = 1, ..., F, (31)

where Sk is the shape basis and C is the coefficient matrix. The measurement
matrix M consists of the observations of Xf stacked on top of each other. The el-
ements of the observation matrixW indicate if the point was successfully tracked
in the particular frame. We search for a solution with as few basis elements as
possible by finding a low rank approximation of M .
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Fig. 7. Frames 1, 121, 380 and 668 of the book sequence. The solution has rank 3.

Fig. 8. Frames 1, 210, 340 and 371 of the hand sequence. The solution has rank 5.

Fig. 9. Frames 70, 155, 357 and 650 of the banner sequence. The solution has rank 9.

Fig. 10. From left to right: Our solution (frame 329), nuclear norm solution (frame
329), our solution (frame 650), nuclear norm solution (frame 650)

We consider three problem instances of varying rank. In the first two (see
Figures 7 and 8) we track image points through a video sequence using the stan-
dard KLT tracker [16]. Due to occlusion and appearance changes only a subset
of the points were successfully tracked throughout the entire sequence. Using
(16) we found a low-rank approximation of the measurement matrix. The re-
sults can be seen in Figures 7 and 8. Blue dots correspond to the reconstructions
of the successfully tracked points. The available measurements for these points
are indicated by green crosses. Red dots are the reconstructed point positions
for points with no measurements available. The run times for the book and hand

sequences were 34.3s and 35.1s.
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In the third problem we used an RGB-D camera to track the 3D-position of a
point grid on a moving piece of fabric (see Figure 9). Here missing data is due to
limited field of view of the camera and missing depth values. To obtain 3D grid
coordinates in a common coordinate system from each video frame we registered
the cameras using the patterns visible on the wall. Figures 9 and 10 show the
results in 2D and 3D. In Figure 10 we also plot the nuclear norm solution of
(2) for comparison. The same tendency to move undetected points towards the
origin is visible. The run times for the banner sequence were 17.7 min (our)
and 2.7 min (nuclear). In this instance we used a large number of blocks. With
these blocks and this size of matrix, it is still faster to factorize the entire matrix
compared to factorizing all the blocks without parallelization. On average our
method spends 0.6s while the nuclear norm approach spends 0.2s per iteration
computing SVDs.

The right of Figure 5 shows the data patterns and the selected blocks for the
three problems. Note that in the book sequence, the blocks leave a relatively
large portion of the available measurements unused.

6 Conclusions and Future Work

In this paper we have proposed a method for low-rank approximation of matrices
with missing elements. The approach is based on a new convex relaxation - the
strongest one possible - of the localized rank function. Unlike the nuclear norm,
it is able to avoid penalizing large singular values. Our experiments clearly show
the benefits of being able to do so in a convex framework. It should be noted
that the presented results are the outputs of our approach without refinement.
In cases where the relaxation is not tight, the solution can be used as a starting
point for local optimization to obtain even better results.

The proposed method only has to compute the SVD of small sub-matrices,
therefore it has potential to tackle large-scale problems. Furthermore, the ADMM
approach allows to perform computations in a parallel and distributed manner.

A limitation of the formulation is that in its current form it is sensitive to
outliers. The issue has received a lot of attention lately, for example, using the
arguably more robust ℓ1-norm [8,21,24] and it is something that we intend to
address in the near future.

In our experiments we have exclusively used rectangular (manually selected)
sub-blocks of the measurement matrix. This is however not a limitation. Blocks
can be formed from any rows and columns in the matrix. How to select these
blocks so as to cover as many measurements as possible and achieve sufficiently
large overlaps is still an open problem.
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