Rank Modulation for Flash Memories

Anxiao (Andrew) Jiang* Robert Mateescd ~ Moshe Schwartz Jehoshua BrucK

*Department of Computer Science tcalifornia Institute of Technology {Electrical and Computer Engineering
Texas A&M University 1200 E California Blvd., Mail Code 136-93 Bemx@®n University
College Station, TX 77843, U.S.A. Pasadena, CA 91125, U.S.A. Bbeva 84105, Israel
ajiang@cs.tamu.edu {mateescu,brudk@paradise.caltech.edu schwartz@ee.bgu.ac.il

Abstract—We explore a novel data representation scheme for charge level in a minimal number of programming cycles. As
multi-level flash memory cells, in which a set ofn cells stores mentioned above, flash memory technology does not support
information in the permutation induced by the different charge c5rge removal from individual cells. As a result, the peogr
levels of the individual cells. The only allowed charge-placement _ . | is desi dt fi | h th
mechanism is a “push-to-the-top” operation which takes a single ming cycle sequence IS designed to cau '_Ous y approac e
cell of the set and makes it the top-charged cell. The resulting target charge level from below so as to avoid undesired globa
scheme eliminates the need for discrete cell levels, as well aserases in case of overshoots. Consequently, these attstifipts
overshoot errors, when programming cells. _ require many programming cycles, and they work only up to

We present unrestricted Gray codes spanning all possible-cell a moderate number of levels per cell.

states and using only “push-to-the-top” operations, and also a& | dditi to th d f t . th
struct balanced Gray codes. We also investigate optimal rewriting n adaion fo the need for accurate programming, the

schemes for translating arbitrary input alphabet into n-cell states Move to multi-level flash cells also aggravates reliabifitize
which minimize the number of programming operations. same reliability aspects that have been successfully Gdndl

in single-level flash memories may become more pronounced
)) and translate into higher error rates in stored data. Onk suc
Flash memoryis a non-volatile memory technology thate|evant example is errors that originate from lowemory
is both electrically programmable and electrically erdsab endurance[3], by which a drift of threshold levels in aging
Its reliability, high storage density, and relatively lowost {evices may cause programming and read errors.
have made flash memory a domil_’lant non-volatile memory\\e therefore propose thank modulationscheme, whose
technology and a prominent candidate to replace the weli, is to eliminate both the problem of overshooting while
established magnetic recording technology in the nea'réuwprogramming cells, and the problem of memory endurance in
The most conspicuous property of flash storage is its inhefying devices. In this scheme, an ordered set ofulti-level
ent asymmetry between cell programming (charge placemegé)is stores the information in the permutation inducedHsy t
and cell erasing (charge removal). While adding charge tozgarge levels of the cells. In this way, no discrete levets ar
single cell is a fast and simple operation, removing chargfeded (i.e., no need for threshold levels) and only a basic
from a single cell is very d|ff|cglt. In fact, today, most ('fcharge—comparing operation (which is easy to implement) is
not all) flash memory technologies do not allow a single c&lbquired to read the permutation. If we further assume that
to be erased but rather only a large block of cells. Thus,yge only programming operation allowed is raising the charg
single-cell erase operation requires the cumbersome $80CRye| of one of the cells above the current highest qmesk-
of copying an entire block to a temporary location, erastng ig-the-toy), then the overshoot problem is no longer relevant.
and then programming all the cells except for the single celjygitionally, the technology may allow in the near future th
to be erased. _ decrease of all the charge levels in a block of cells by a
To keep up with the ever-growing demand for densgfnstant amount smaller than the lowest charge levieick
storage, themulti-level flash celconcept is used to increaseyefiatior), which would maintain their relative values, and
the number of stored bits in a cell [4]. Instead of the usuglys |eave the information unchanged. This can eliminate a
single-bit flash memories, where each cell is in one of tWasignated erase step, by deflating the entire block wheneve
states (erased/programmed), each multi-level flash caiést o memory is not in use.
one ofg levels and can be regarded as a symbol over a discretgynce g new data representation is defined, several tools are
alphabet of size). This is done by designing an appropriatgequired to make it useful. In this paper we present Gray
set ofthreshold levelsvhich are used to quantize the charggoges that bring to bear the full representational power of
level readings to symbols from the discrete alphabet. a0k modulation, and data rewriting schemes. Error-ctinge
Fast and accurate programming schemes for multi-levélges for rank modulation are the subject of a companion
flash memories are a topic of significant research and deS}Qéber [11]. The Gray code [6] is an ordered list of distinct
efforts [12], [7], [1]. All these and other works share thgength 1 binary vectors such that every two adjacent words
attempt to iteratively program a cell to an exact prescribqﬁ1 the list) differ by exactly one bit flip. They have since
This work was supported in part by the Caltech Lee Center fidvafced been generalized in countless ways and may now be defined
Networking. as an ordered set of distinct states for which every state

I. INTRODUCTION

followed by a states; 1 such thats;,; = t(s;), wherete T 2 < i< n, to the front:
is a transition functionfrom a predetermined sé&t defining
the Gray code. In the original codé,is the set of all possible
single bit flips. Usually, the séf consists of transitions which Throughout this work, our state spaSewill be the set of
are minimal with respect to some cost function, thus creatipermutations ovefn], and our set of transition functions will
a traversal of the state space which is minimal in total coste the sef of “push-to-the-top” functions. We call such codes
For a comprehensive survey of combinatorial Gray codes, tlegthn Rank Modulation Gray Code@:-RMGC).

reader is referred to [13]. . .
. .. E lel.A le of 8-RMGC is the foll :
Some of the Gray code constructions we describe mducéampe n example of & s the foflowing

ti([at, ..., 8i-1,8;,8i41,--.,0n)) = [@;,081,...,8;_1,8;41,- .-, 0n].

a simple algorithm for generating the list of permutations. 123132
. . : . 2 1 2 3 1 3
Efficient generation of permutations has been the subject of 331 2 2 1

much research as described in the general survey [13], an))
the more specific [14] (and references therein). In [14] tH@gﬁtr e_{f/’;’: gs; rgglgilogf;;Zrt:t‘?ofg%';;';igg”:’%Sri‘il/‘z“fgog;;ﬂt

transitions we use in this paper are called “nested cyclin Thi 1l obvious] G
and the algorithms cited there produce lists which are nayGr-2- fa, 13, 12, t3, t3. This sequence will obviously create a Gray

codes since some of the permutations repeat, which makes‘fﬂge regardiess of the choice of first column.
algorithms inefficient. We will now show a basic recursive construction for
We also investigate rewriting schemes for rank modulatioRMGCs. The resulting codes aogclic and complete in the
Since erasing/reprogramming cells is expensive, it is vesgnse that they span the entire state space. Our recursien ba
important to maximize the number of times data can be the simple2-RMGC: [1,2], [2,1].
rewritten between two erasure operations [2], [9], [10]r Fo Now let us assume we have a cyclic and complete-
rank modulation, the key is to minimize the highest charge-RMGC, which we callC,_1, defined by the sequence of
level of cells. We present two rewriting schemes that argansitionst(1), ¢, ... #(1=1)Y) and wheret(("=1!) = ¢,,
respectively, optimized for the worst-case and average-cd.e., a “push-to-the-top” operation on the second elemettie
performance. permutatiof. We further assume that the transitipnappears
The paper is organized as follows: Section Il describesaaleast twice. We will now show how to construgt, a cyclic
Gray code that is cyclic and complete (i.e., it spans theentand complete:-RMGC with the same property.
symmetric group of permutations); Section Il introduces a We set the first permutation of the code to [e2, ..., n],
Gray code that is cyclic, complete and balanced, optimizind then use the transitiont§!), +(2), ..., #("=D!=1) to get
the transition step and also making it suitable for blockadefla list of (n — 1)! permutations we call the firdilock of the
tion; Section IV presents a rewriting scheme that is optimabnstruction. By our assumption, the permutations in tisis |
for the worst-case performance, and a dynamic programmiage all distinct, and they all share the property that thest |
algorithm to find the optimal prefix code for the average costement isn (since all the transitions use just the first- 1

of rewriting; Section V concludes this paper. elements). Furthermore, sine€” VY = ¢, we know that
the last permutation generated so faflsl,3,...,n —1,n].
Il. DEFINITIONS AND BASIC CONSTRUCTION We now uset, to create the first permutation of

- the second block of the construction, and then use
Let S be astate spaceand letT be a set oftransition (1) 4(2) (n-1)!-1) again to create the entire second

functions where everyt € T is a functiont : S — S. A Gray pock. We repeat this process — 1 times, i.e., use the
codeis an ordered listq, so, . .., S5, Of distinct elements from sequence of transition), +2) . #((n=1)!=1) ¢ 4 total of

§ such that for everyl <i < m —1, 511 = t(s;) for some ;1 times to construct — 1 blocks, each containing: — 1)!
teT. If s1 = t(sy) for somet € T, then the code isyclic. permutations.

If the code spans the entire spageve call it complete The following two simple lemmas are given without proof.
Let [n] denote the set of integefd, 2, ..., n}. An ordered _
set ofn flash memory cells namet 2, . .., n, each containing Lemma 2.In any block, the last element of all the permutations

a distinct charge level, induces a permutatiorirdfby writing is constant. The list of last elem'ents in the blocks conggdirs
the cell names in descending charge ldvg) ay, ..., a,],i.e., ™"~ 1,...,3,1. The element is never a last element.

the cella; has the highest charge level whilg has the lowest. | emma 3. The second element in the first permutation in every
The state space for the rank modulation scheme is therefgygck is2. The first element in the last permutation in every
the set of all permutations ovén], denoted bysS,,. block is als@.

As described in the previous section, the basic minimal-cos

operation on a given state is a *push-to-the-top” operatipn structed so far form a cyclic but not completeRMGC, that

which a single cell has its charge level increased so as to we call C’, which may be schematically described as follows
the highest of the set. Thus, for our basic construction, the ! y y

setT of minimal-cost transitions between states CONSISts Ofirpjg |ast requirement merely restricts us to haveisedsomewherasince
n — 1 functions pushing thé-th element of the permutation, we can always rotate the set of transitions to makee the last one used.

Combining the two lemmas above, tlie— 1 blocks con-

(where each box represents a single block, andenotes the The jumpin the p-th round is defined as (p) — c;(p — 1),
sequence of transition$!), . .., t(1=1)!=1)y. assuming the-th cell was the affected one. It is desirable,
when programming cells, to make the jumps as small as

; % > i ; § possible. We define thgump costof an n-RMGC as the
N Y T AP} I maximal jump during the transitions dictated by the code. It
n—1 n—1 n-2 n-2 n n is easy to see that the lowest possible jump cost in an optimal
L L n-1 n-1 ! ! RMGC is at least: + 1, for n > 3. That is because we must

It is now obvious thatC’ is not complete because it isfaise the lowest cell to the top charge level at leasimes.
missing exactly the(n — 1)! permutations containin@ as Such a jump must be at least of magnitudeWe cannot,
their last element. We build a block” containing these however, do these jumps consecutively, or else we return
permutations in the following way: we start by rotating théo the first permutation after just steps. It follows that there
list of transitionst(!), . .., t((*=1)!)) sych that its last transition Must be at least one other transitigni # n, and so the first
is t,_12. For convenience we denote the rotated sequence ihyto be used after it jumps by at least a magnitude: &f 1.
V), .., x=1! wheret(» 1! = ¢, ;. The first permuta- We call ann-RMGC with jump costr + 1 a balancedn-
tion in the block is[a1,as,...,a,_1,2], and the last one is RMGC We now show a construction that turns afy— 1)-
a2, ...,a,_1,a1,2]. In C’ we find a transition of the following RMGC into a balancedi-RMGC while retaining properties

b such as being cyclic or complete.
form: [az,...,an_l,Z,al] Bl [Z,az,...,an_l,al]. Such a gcy P

transition must surely exist sinc€’ is cyclic, it contains Theorem5. Given a cyclic and complet¢n — 1)-RMGC
permutations in whict2 is next to last and some in whichCy-1, defined by the transitions,, ..., t; . then the fol-
it is not, it does not contain permutations in whighs last, lowing transitions define an-RMGC, denoted by, that is
and so it follows that at some point i@, the elemen® is cyclic, complete andbalanced

next to last and is then pushed by_; to the front. At this P if k = 1(mod n)
transition we splitC’ and insertC” as follows: Forke {1,...,n!}, ty = n=ifm+1 -
tn , otherwise
as ay ap 2
= = = 2 Proof: Let us define the abstract transitiofy, 2 <
LN I U i < n, that_pushesto the bottomthe i-th elementfrom
a”z—l An—2 An—1 an—2 the bottom t; ([LZ1, e Oy A i 1, it 2, -+ -y ﬂnD =
An— a An—
a 21 21 all [al,...,an_i,an_i+2,...,an, an_,-_H].

o N . BecauseC, 1 is cyclic and complete, using, , ..., ¢
where it is easy to see all transitions are valid. Thus we have .) . (n—1)!
. starting with a permutation ofn — 1] produces a complete
createdC,, and to complete the recursion we have to make a .
. . : . cycle through all the permutations pf — 1], and using them
suret, appears at least twice, but that is obvious since the . .
1) (n—1)1-1) ; starting with a permutation ofn] creates a cycle through
sequence't), ...t "~%) contains at least one occurrence

— | i i i i
of t,, and is replicatedt — 1 times,n > 3. We therefore reach all the (n — 1)! permutations offn] with the respective first
: o element fixed, because they operate only on the #astl
the following conclusion:

elements. If the initial permutation [§, 2, ..., n], the element
Corollary 4. For everyn > 2 there exists a cyclic and completel is fixed as the first element of the resulting permutations.

n-RMGC. _)The (n_—) 1)! permutations of [n] produced by
The 3-RMGC shown in Example 1 is the result of thistiis -+~ fi,), @S0 have the property of being representatives
construction forn = 3. of the (n — 1)! distinct orbits of the permutations dfi]
under the operatiort,,. That means that there are no two
I1l. BALANCED n-RMGCs permutations which are cyclic shifts of each other, since
A. Definition and Construction t, represents a simple cyclic shift when operated on a

Permutation offn].

It is sometimes the case that due to precision constraint Ki tat 6 th ina the t ii
the charge placement mechanism, the actual possible char 'ga Ing a permutation dfi2), then using the ransi 'Onl—l”rl
ﬁce,z <i < n-—-1, E))IIowed by n — 1 times using

levels in flash memory cells are discrete. Thus, we define e val : o t the f
functionc; : N — N, wherec;(p) is the charge level of theth fn» 1S €guivalent to usingt; . Every transition of the form

cell after thep-th programming cycle. It follows that if we usefn—i+1:1 7& 1, MOVES US to a different orbit, while the— 1
transitiont in the p-th programming cycle and theth cell is, consecutive executions ¢f generate all the elements of the

at the time,j-th from the top, thew;(p) > maxg {ce(p — 1)} orbit. It follows that the resulting permutations are disti
) il 1 H . . .
and fork # i, cx(p) = cx(p — 1). In an optimal setting with Schematically, the construction 6f, based orC,_ is:

no overshootsg;(p) = max {cx(p— 1)} + 1. n—1times n—1times

| SARPRE S PN A S 1tn, oo tn.
2The transitiont,_; must be present somewhere in the sequence or else w' SR o

the last element would remain constant, thus contradictiegfisumption that i _
the sequence generates a cyclic and comylete 1)-RMGC. n tiw_l)!

(2341 to decide which transition generates the next permutatimm f
the current one. Atepis defined as a single query of the form
“what is thei-th highest charged cell?".

Suppose we were to use the recursive construction of
Theorem 5 to generate a cyclic, complete and balanced
RMGC with a starting permutatiofil,2,...,n]. A fraction
”n;l of the transitions are,;, and these occur whenever the
cell 1 is not the highest charged one. Of the cases whdse
highest charged, by recursion, a fractiﬁq% of the transitions
Figure 1. Balancedt-RMGC are determined by just one query, and so on. At the basis of
the recursion, permutations over two elements require zero
queries. Thus, the total number of queries}i$,i!. Since
im0 "”;,3” = 1, the asymptotic average number of steps
to generate the next permutation is jdst

@13 —@asd

Cell level

PESES
N ks
(RSP

PNk

(RN

[FENRPIN
[N
N Bl
YR
N s

B. Rank and Unrank Functions

PR

w s N
wa kN

We define here the two inverse functions that associate
each permutation with a number froth to n!. The rank
and unrank functions for the balanced-RMGC follow the
recursive construction. Using the representation of Examp
7, therank function can be computed by determining the row
and the cyclic offset from the first element encountered é th
current row. The row is determined by the recursive appboat
Figure2. Balancedt-RMGC growth of rank to the (n — 1)-RMGC, while the cyclic offset is
determined by the position df in the current permutation.

We change the first permutation frofi,2,...,n] to
n,1,3,...,4,2], wheren is first, and the odd numbers are
the transitiont, ;,; has a jump ofn — i + 1; the following written in incregsing_or_der from left to right, while the eve
i — 1 transitionst, have a jump ofz + 1, and the rest a jump numbers are vynttgn in increasing o_rder from Ught to letteT
of n. In addition, because€, ; is cyclic and complete, it rank function is given by the following recursive procedure:

AN Rw
NP W
rwan

(SN
BN w e

W AN

o s ow e
o we s

v s w

Programming cycle

(PR [N

Bwn e
ESERI (¥

The code(C, is balanced, because in every block mof
transitions starting with &, ;1,2 < i < n—1, we have:

follows thatC, is also cyclic and complete. [] _
We can use Theorem 5 to recursively construct all thé-unction Rank(n, [a1,...,a4])
supporting j-RMGCs, j€ {n —1,...,2}, with the basis of input = n€N,n > 2; permutationfay, ..., a,]
the recursion being the t2RMGC: [1’2}’ [21 ”_ output : Index of ([ay,...,a,]) in the recursive balanced

n-RMGC starting with[n,1,3,...,4,2]
Corollary 6. For anyn > 2, there exists a cyclic, complete and if =2 then

if th
balanced:-RMGC. 0 s then
A similar construction, but using a more involved second e'feretum)
order recursion, was later suggested by Etzion [5]. else

Find i such thats; = min {ay,...,a,}
return

Example 7. Figure 1 shows the transitions of a recursive
i—14n[Rank(n—1,[an,...,a;:1,8i_1,...,a41]) — 1]

balanced4-RMGC. The permutations are represented in an
n by (n — 1)! matrix. Each row is an orbit generated by
t,. Each column has the last element fixed. The transitions

between rows occur whet is the top (leftmost) element. The rank function can also be computed in a non-recursive
These transitions are defined recursively, by a balarfeedway, as follows. Letcount(i),1 < i < n be the number of
RMGC over the sef2,3,4} (where the top element is nowelements greater thanthat lie to the left ofi, if i is odd
the rightrrl)}st_(zne_)): [&3,ﬂ,[1i4,2],[3,2,4],[2,4,3],,.1342],[4,2,3]. (and to the right ofi if i is even). Letpos; = count(i) if
They arets, t;, t3, t3, ta, t3. This is the cycle from Exam- count(i) # 0, and pos; = n —i+ 1 if count(i) = 0 (this

ple 1, with relabeled cells, and starting with the third column.defines the position in row).

)) If 7=lay,..., a,], let 7" be the permutation defined by
Example 8. Figure 2 shows the cell levels of the recursivey, o subset(i, ..., n}, taken in cyclic order, beginning with

balanced-RMGC for each programming cycle. and reading to the left if is odd, and to the right if is even;

There is another asymptotic measure by which the constrier example[3,1,4,2]%* = [3,2,4], namely([3,2,4] is the
tion for the recursive balancedRMGCs is optimal. An im- permutation that generates the cyclic orbit representethdy
portant practical aspect is the average number of stepgeequrow of [3,1,4,2] in the recursive balancetRMGC.

We haverank(r) = posy + n - (rank(7*") — 1). Unfold-
ing the recursive expression, we gatnk(7) = 1+ (pos; —
1) + n(pos; — 1) + n(n — 1)(posz — 1) + ... + n(n —
1) ---3(posu1 —1) = 1+ 515" M5 (n =)] (posi —1).

The unrank function maps a number, 1 < k < n!, to a

permutation from the recursive balance€RMGC that starts . X o X
g is very important to maximize the number of times that data

with [#,1,3,...,4,2]. The functionunrank can be compute

represents the new data. The highest charge level increases
with each rewriting operation. When it reaches the maximum
possible charge level, the next rewriting leads to the bkrek

sure and reprogramming. Since block erasure/reprogragimin
is expensive — it not only is time/power consuming, but also
reduces the reliability and longevity of flash memories, — it

by a recursive procedure that first computes the position G1 P€ rewritten between two block erasure operationsgg], [

1 (namely, the cyclic offset in the row), and then recurses !
determine the position of the other elements. The positfdn o
is 1 (the first element from left, namely the permutation & t

last one traversed in its row) # = 0 mod #»; otherwise

it is (k mod n) + 1. The position of 2 is determined by

;50]. For rank modulation, the key is to minimize the number
of cells whose charge levels need to be pushed to the top

rduring the rewriting operation. We investigate schemes tha

achieve this objective.
In order to discuss rewriting, we first need to define a decod-

making k — [k/n], and counting its position from right to ing scheme_. It is often the case that th_e alphak_)et si_ze used by
left, while ignoring the position already occupied by 1. Théhe user to input data and read stored information diffevenfr

position of the other elements is determined recursivelgh@
same manner. Thenrank function is given by the following
procedure:

Function Unr ank(k, n)

input 1 kneN,1<k<<n!

output : The k-th permutation of the recursive balanced
n-RMGC starting with[n, 1,3, ...,4,2]

Initialize [ay,...,a,] < [0,...,0]

for i—1ton—1do
p«—Position(k,n—i+1)
if i is oddthen

m«— 0

for j«— 1topdo
me—m+1

while a,,, # 0 do
L me—m+1

else
me—mn-+1

for j«—1topdo
m«—m—1
while a,, # 0 do
L me—m-—1

A 1
L ke« [k/n]
Find the remaining for which a; = 0 and sets; < n
return [ay, ..., a,]

Function Posi tion(k, n)
input 1 kneN,1<k<n!
output : Position of element in the k-th permutation of the
recursive balanced-RMGC starting with
n,1,3,...,4,2]
if k=0 mod n then
| return 1
else
| retun (k mod n)+1

IV. REWRITING WITH RANK MODULATION CODES

the alphabet size used as internal representation. In @a; ca
data is stored internally in one eof different permutations. Let
us assume the user alphabeQis= {1,2,...,4}. A decoding
schemeis a functionD : S — Q mapping internal states to
symbols from the user alphabet.

Suppose the current internal statesise S and the user
inputs a new symbak € Q. A rewriting operation givenx is
now defined as moving from state € S to states, € S such
that D(s;) = a. It should be noted that iD(s;) = « thens,
may be equal taq, i.e., the rewriting operation is degenerate
and does nothing. Theost of the rewriting operation is the
minimal number of atomic transitions froff (i.e., the number
of “push-to-the-top” operations) required to move fromteta
s1 to states,.

It is now obvious that rewriting operations requiring a
large number of transitions are undesirable both becawse th
promote charge-level saturation, and because they takeiron
to perform. In the following section we first present a deogdi
scheme that strictly optimizes the rewriting performance f
the worst case. Then, we extend the construction to optimize
the average rewrite performance with constant approxanati
ratios.

A. Optimal Decoding Scheme for Rewriting

We start by presenting a lower bound on the cost of a single
rewriting operation. First, we define a few terms. Define the
transition graphG = (V, E) as a directed graph with = S,

i.e., withn! vertices representing the permutation$jn There
is a directed edge — v if v = t(u) for somet €T, i.e., we
can obtainv from u by a single “push-to-the-top” operation.
We can see thak is a regular digraph: every vertex has- 1
incoming edges and — 1 outgoing edges.

For two verticesu, v € V, we define the directed distance
d(u,v) as the number of edges in the shortest directed path
from u to v. Clearly,0 < d(u,v) < n—1foranyu,veV.

In this section, we study coding schemes for rewritin@iven a vertexu € V and an integer (here0 <r < n—1),
data in flash memories. When the data stored using a ram& define theball B,(u) asB,(u) = {veV | d(u,v) <r},
modulation code needs to be modified, the flash memory cand define thesphereS,(u) asS,(u) = {veV | d(u,v) =
increase some cells’ charge levels so that the updatedtatd| sr}. Clearly, B, (1) = U<, Sr(u).

Lemma9.ForanyucVand0 <r<n-—1, {1,2,...,q} with probability p; to get symbol € Q. We study
decoding schemes that optimize the average cost of regritin

|
|By(u)| = ﬁ Depending on the probabilitiely; }, the optimal code may be
' quite complex. The code design problem is closely related to
1 r=0 the facility-location problem, which is NP hard.
|87’<u) - n! n!
e~ Gimr) 1<r<n—1 In this paper, we present a prefix code that is optimal in

o _ _ ~ terms of its own design objective. The design objective s al
~ Proof: Avertexvis in B (u) if and only if we can obtain g hound for the optimal performance of all rankmodulation
it at mostr transitions. There are(n —1)---(n—r+1) codes. Furthermore, we will prove that at least wheq n!/2,

| .
ways to do so, hencéB,(u)| = (nf'r)!- Since B;(u) = the prefix code is a 3-approximation of any optimal solution,
Uo<i<r S, and the spheres are disjoint, the rest of the cothat is, the cost of the prefix code is at most three times the
clusion follows. B cost of any optimal rank modulation code. We will also show

Let p denote the smallest integer such thay(u)| > q. that wheng < n!/6, the prefix code is a 2-approximation of
Note thatp is independent ofi.. The following lemma presents an optimal solution.
a bound on the rewriting cost. The prefix code we propose consists pfcodewords of

Lemma 10. For any decoding scheme and any current Stai:ggriable lengths”, which represent tlyevalues of the stored

there existsx € Q such that the cost of a rewriting operatioﬁnpm' Each codeword is a prefix of.a permutation frém No
givena is at leasp. codeword is allowed to be the prefix of another codeword. Let

a = [ay,ay,...,a;] be a generic codeword that represents the
Proof: Fix a decoding schemP, and lets be the current value x € Q. For a states € S,,, if a is a prefix ofs then we

state. By our definition op we have|B,_1(s)| < q. Itfollows set D(s) = a. Due to the prefix-free property, the decoding

that we can choose € Q\ {D(s") | '€ B,_1(s)}. Clearly, function is well-defined.

a rewriting operation givenx requires at leasp transitions A prefix code can be represented by a tree. First, let us

since there is ne’ € B, 1(s) such thatD(s") = . B define afull permutation treeT as follows. The vertices in
Next, we present a code construction. It will be shown t0 are placed inn + 1 layers, where the root is in layer 0
be optimal. and the leaves are in layer The edges only exist between

Construction 11. Divide the n! statesS, into n”—’p), sets,

where two states are in the same set if and on y if their
top-charged cells are the same. Among the sets, chpests

and map them to the symbols ofQ arbitrarily. The other

adjacent layers. Foir = 0,1,...,n — 1, a vertex in layer
hasn — i children. The edges are labeled in such a way that
every leaf corresponds to a permutation frém which may

be constructed from the labels on the edges from the root

nl to the leaf. An example is given in Fig. 3(a). A prefix code

Ti—py — 4 Sets need not represent any symbol. corresponds to a subtrézof T (see Fig. 3(b) for an example).
Example 12.Letn = 3 andq = 3. Since we havéB3;(u)| = Every codeword is mapped to a leaf, and the codeword is the
3, it follows thatp = 1. We divide then! = 6 states same as the labels on the path from the root to the leaf.

into (Hﬁ—!p)! = 3 sets which induce the decoding function('a)
{[1,2,3],[1,3,2]} — 1, {[2,1,3],[2,3,1]} — 2, and
{[3,1,2],[3,2,1]} — 3. The two states in the set are decoded;
to the same symbol froi@. The cost of any rewrite operation o
is at mostl . O

Since the topp cells of a state uniquely determine theb
decoded symbol, any rewriting operation costs at most
transitions to replace the tgpcells. By Lemma 10, we obtain oy Gy ey @y ey 1\
the optimality of the scheme: @31 @32

Theorem 13. The decoding scheme presented in Construeyure3. Prefix rank modulation code for = 4 andg = 9. (a) The full

tion 11 guarantees a rewriting cost of at mpdransitions, and permutation treel’. (b) A prefix code represented by a subt@ef T. The
is therefore optimal leaves represent the codewords, which are the labels bémdeaves.

B. Optimizing the Average Cost of Rewriting For i€ Q, let ¢; denote the codeword representifjgand

The scheme presented in the previous section optimizes & |c;| denote its length. For example, the codewords in
worst-case performance. In practice, however, if the fidba Fig. 3(b) have minimum length of and maximum length
ties with which the input symbol takes values from its alpttabof 3. The average codeword length is definedz#g1 pilcil-
are known, it is also important to study schemes that opgmiDur objective is to design a code thainimizes the average
the average cost of rewriting. codeword length

Let us assume that for each rewrite (including writing the The optimal prefix code cannot be constructed with a
initial value), the input symbol is drawn i.i.d. fro@ = greedy algorithm like the Huffman code and its extensiofs [8

because the vertex degrees in the code @eare unknown times that of any rank modulation code, thus making &-a
initially. We present a dynamic programming algorithm aié approximation solution.

complexity O(ng*) to construct the optimal code. Note that The general idea of the proof is as follows. Let Q
without loss of generality, we can assume that a codewordienote the value of the stored data at a given moment.

length is at mosu — 1. Let s; €S, denote the cell state at that moment, and let
The algorithm computes a set of functiont;(/,m), s1,s5, -+ ,8i_1,Si41," " ,S5-1,5¢ denote they — 1 cell states
for i = 1,2,. -1, ¢ = 0,1,...,9, and m = whose distance from; in the transition graph d(s;,s;) for

0,1,.. mm{q,n'/(n —i)!}. We interpret the meaning of 1 < j < g andj # i, are the smallest onesl(sl,s]) is
opt; (¢, m) as follows. We take a subtree @f that contains the rewriting cost (i.e., the number of cell charge levelat th
the root. The subtree has exactly leaves in the layers need to be pushed to the top in the rewriting operation) for
i,i+1,...,n—1.ltalso has at most vertices in the layef. ~changing the cell state fros to s;. Without loss of generality,
We let thel leaves represent tiianput values fromQ with the |et’s assume here that; > p, > -+ > piq = piv1 =
lowest probabilitiey ;: the further the leaf is from the root, the. .. > p,_; > p,, and thatd(s;,s1) > d(s;,sp) > -+ >
lower the correspondmg probability is. Those leaves ae@l d(s;,s;_ 1) > d(51151+1) > e > d(Sz,Sq 1) = d(si,sq).
codewords, and we call their weighted average length (whefe minimize the expected rewriting cost, the ideal solution
the probabilitiesp; are weights) thevalue of the subtree. The is a code that decodes as j for j€ Q. Denote bya the
minimum value of such a subtree (among all such subtreepected rewriting cost of this ideal solution. Next, weiges
is defined to beopt;(¢,m). In other wordsopt;(£,m) is the a prefix codeB with this property:Vj€ Q, if j # i, its
minimum average codeword length when we assign a subsetrespondmg codeword lengtly,, is at most3d(s;,s;); if
of codewords to a subtree df (in a specific way). Clearly, j = i, then y; = 1. We will prove that such a prefix
the minimum average codeword lengtha prefix code equals code B exists. Next, letA be an optimal prefix code, and
opty(g,n). for j€Q, let x; denote the corresponding codeword length.
Without loss of generality, let us assume that< p» < Let 3 denote the expected rewriting cost df for the next
- < pg- Itis easily seen that the following recursion holdsiewrite. By definition, Yi<j<g PjXj < Yi<j<qPjyj- Since

Xi 2 1=y B < J1gjgqjtiPiXj S 21<j<qj#i PiYj S

m=1)St_ ;e i=n—1,m>0>0 Yi<j<qj#i 3P (si,sj) = 3a. So the expected rewriting cost
0 i1 0=0 of an optimal preflx code is at most three times that of an
. ' ideal solution.
MMNo<j<min{t,m} We skip the proof of Lemma 14 due to its simplicity.
opt;(¢,m) = ¢ {optiy1(£ —j,
min{gq, (m — j)- Lemmal4. Let aq,ay,...,a,_1 be non-negative integers.
(n—)})+ There exists a prefix code with codewords of length for
; ipe} ien—1tm>0 i=1,2,...,n—1(ie, thecodeha@leavesinlayeiofthe
2k=t—j+11Pk B treeC) lfand onlylle 1 m <1

The last recursion holds because a subtree Wittaves in)
layersi,i+1,...,n — 1 and at mostn vertices in layei can ~ Let us define the following sequence of integers
have0,1,..., min{/,m} leaves in layet. oo byt

The algorithm first computesopt,_;(¢,m), then
opt,,_»(¢,m), and so on until finally computingpt; (g, 1),
by using the above recursions. Given this value, it is Si/3(u)’ = (n_”i!m! - (n+1n—!z‘/3)! 2<ig<n-2
straightforward to determine in the optimal code, how many i=0 (mod 3)
codewords are in each layer, and therefore determine the=

1 i =

optimal code itself. It is easy to see that the algorithmrregu 0 2 Sisn—2
an optimal code in time(ng*). i#0 (mod 3)
We can use the prefix code for rewriting in the following -3 2 b; i=n—-1

way: to change the stored value t& Q, we raise at most

|c;| cells so that thdc;| top-ranked cells are the same as theemma 15.Whenq = n!/2, there exists a prefix code that has

codewordc;. Since the probability that the variable isafter b; codewords of length fori =1,2,...,n — 1.

every rewrite equalsp;, the average codeword length of the i i .

optimal prefix code is an upper bound for the average re\grltm Proof: We use an induction om and the conclusion

cost of all optimal rank modulation codes. in Lemma 14. Letf(n) denotey "} aTm—- Whenn =
We obviously havej < n!. Wheng = n!, the code design 2,3,4,5,6,7,8, f(n) = %, 3,3, &5, 75, 372, 185 respec-

becomes trivial. In practice, the scenario where< n!/2 tively. So f(n) < 1 whenn < 8. By Lemma 14, a prefix

is important, and the optimal code design can be complesade exists whem < 8. This serves as the base case.

We prove in the following that whenp < n!/2, the average We now show that whem > 8, f(n) monotonically

rewriting cost of the optimal prefix code is at most thredecreases im. By the definition ofbq, b,,...,b,,_1, we get:

e If n = 3m for some integerm > 1, then Let us say thatw; represents the valug; € Q, for j

_ 1 ~1 1 - D N

f(n) = T Y G DL G) + 1,2,...,q9. Sinces; =i = nl‘and ps, = qps3 > >

3m—2 1 I Ps;» We getps, = pn; for 1 < j < g. So Yj2Ps; |w]| =

= B3m—it 1) M (Bm—) 9 pn|lwi| <357 prd(u,v;). When codeB; is used,
elf n = 3m4 1 for some integerm > 1, Zhj_z P i fZ]_thn] (u,;) o !

then f(n) — L+ 1 the expected cost for the next rewrite is at m;_i%iz ps; |wjl.

Sl S=1 3me2—i) 35, (BmA1-)) So the conclusion holds. [

dm-—1 1 The following theorem shows that when < n!/2, the

Z': 1 — N om—1 N
i=mA Bm+2-1) 175 (Bmt1-) optimal prefix code (which is constructed by the algorithm

o If = 2 f i > 1, . . . : L .
therrllf(n) :3m T i ;Eﬂ some lnteglerm X in this section) is a3-approximation of the optimal rank
3m+2 =1 Bm+3—-i) 751, (Bm+2—)) modulation code.
3m 1
Yimm+1 (Bm+3—i) 137, (Bm+2—) Theorem 17.Whengq < n!/2, given the stored value at any

So when m > 2, we get f(3m + 3) moment (which can be anything in the alphaDgt for the next
1 1

f(3m + 2) - _ _ 4 rewrite, the expected cost (i.e., the number of cells chianges
" (3m+3,i)(3m+3,3,-),&%";fiff%%;ﬂg,i) (3m+3)(3m+2) that need to be pushed to the top during the rewriting opBTjti
2i=1 M7, (3m—j) < for an optimal prefix code is at most three times the expected
1 1 1
T~ Gre < 0, so f(3m +3) < cost for all rank modulation codes. Therefore, for any numbe

F(3m + 2). Similarly, we get f(3m +4) < f(3m +3) of rewrites, the average rewrite cost of an optimal prefixecisd
and f(3m +5) < f(3m+4) when m > 2. So f(n) at most three times that of any rank modulation code.

monotonically decreases whem > 8 increases. Since Proof: Let Copt denote an optimal prefix code (i.e.,
f(n) <1whenn <8, f(n) <1 forall n. So by Lemma 14, a prefix code that minimizes the weighted average code-
the conclusion holds. B word length). Let Q' be a new alphabet ofy =

Let ¢ = n!/2, and leti € Q be the stored value at thisn!/2 numbers, whose associated rewrite probabilities are
moment. LetB; denote a prefix code that has codewords p,p,,...,p;,0,0,...,0, respectively. LeC{,pt be an optimal
of length j, for j = 1,2,...,n — 1. Label theq = n!/2 prefix code for the new alphabe®’. Clearly, the weighted
codewords ofB; asws, wy, ..., wy based on their codeword average codeword length afop is less than or equal to
length; specifically, iff < k, thenw; is no longer thanu. The that of Cj,, because the cod€y, is more restricted. For
codewords oB; are mapped to the alphab@tin the following i = 1,2,...,4, Let B; be the same code as defined before,
way: wy represents the valug for any2 < j <k < g, if w; whose alphabet is alsQ’. Clearly, among the three weighted
representsi; € Q and wy representsy € Q, then Pa; 2 Pa- average codeword lengths Gfpr, Cgpt and B;, that of Copt is
Then, we have the following lemma. the smallest and that di; is the largest. Therefore, if we use

‘ ; i
Lemma 16. let i € Q denote the current value of the stored’ (respectlvely,yj)) 'to de.note the length of th'e codeword that
data. For the next rewrite, the expected cost (i.e., the wmﬁepres;ents the valu{]ee Q n codeCopt (respectively, cc;d@i),
of cell charge levels that need to be pushed to the top duiag fh_en Y j-1Pj¥%j < ¥j=1 Pjy;- By the definition ofB;, y; = 1.
rewriting operation) for the codB; is at most three times thatSincex; = 1, 3 1< <1, j#i PjXj < Y1<j<q,j#i pj]/j'-
of any rank modulation code. Let us say that the stored value at this momenti.is
The proof of Lemma 16 shows that for the next rewrite,
e&gqu,j;ei pjyl]- is at most three times the expected rewrite
cost of any rank modulation code. For the next rewrite, the
expected rewrite cost afopt is at MOSty 1< j<q,ji PjXj- The
rest of the theorem follows naturally.]

Proof: We first consider a generic rank modulation cod
The state of the: cells before the rewrite is a vertexin the
transition graphG = (V, E). (The definition of the transition
graph is shown in the previous subsection.) The= n!/2

vertices inG that are closest ta are the vertices in the ball : '
. We have shown that for an optimal prefix code, whose
B2 (u). Let us label those vertices ag, vy, . .., v,/ based Co Lo L
- i o . ; construction is presented in this paper, the rewrites asme
on their distance tar; specifically, if j < k, thend(u,v;) < o .

17 = the cells’ highest charge level at a rate that is at most three
d(u,vg). (Sovy = u.) Among them, the number of vertices. : : . :
; :) times the optimal rate, when< n!/2. With a similar analysis,

at distancej to u equals|S;(u)|, for j=0,1,...,n—2. : :
J : we can prove the following result:
Let m, m, ..., 7y be a permutation of the alphab@t such
thatu represents the value, = i, and the probabilitieg,, > Theorem 18.Whenn > 4 andq < n!/6, the average rewrite
pmy = -+ 2 pn,. Clearly, for any rank modulation code, thecost of an optimal prefix code is at most twice that of any rank

expected cost for the next rewrite must be greater than alegmodulation code.

q .
03 Py (1,)). Proof: See Appendix. [|
Let us use|w;| to denote the length of the codeword
w;. By the definition of by, by,...,bg, it is easy to ver- V. CONCLUSION
ify that |w;| < 3d(u,v;) for j = 2,3,...,q. Therefore, | this paper, we present a novel data storage scheamk,

2?22 Pr; |w/| <3 Z?ZZ Pnjd(u, Uj)- modulation for flash memories. We present several Gray code

constructions for rank modulation, as well as its data riwgi [7]

M. Grossi, M. Lanzoni, and B. Ricg “Program schemes for multilevel

schemes. The presented coding schemes are optimized |for cel 23(5)2 memories,Proceedings of the IEER/0l. 91, no. 4, pp. 594-601,

programming cost in several different aspects. 8]

APPENDIX [9]

In this appendix, we prove Theorem 18. The general
proach is similar to the way we have proved Theorem 17, so
we only specify some details that are relatively importareh [11]

We define a series of numbelvs, by,...,b,_1 as follows. [12]
by =1.Fori=2,3,. 2, if i is a multiple of 2 therb-
equals the size of a sphere of radiy@, which is i) 1/2) 113]

n!

m by Lemma 9; otherwiseh; equals 0b, 1 = % —

P 2 b;. We now prove the existence of a specific prefix cod&?

Lemma 19. Whenn > 4 andq = n!/6, there exists a prefix
code that has; codewords of length fori =1,2,...,n— 1.

Proof: We use an induction om and the conclusion

in Lemma 14. Letf(n) denotezl_1 m When

=4,56,7,8, f(n) = 3,35, 35, 3£, 372, respectively. So
f(n) <1 whenn < 8. By Lemma 14, the prefix code exists
whenn < 8. This serves as the base case.

We now show that whem > 8, f(n) monotonically
decreases asincreases. By the definition of, by, ..., b, 1,
we get:

o If n = 2m for some integerm > 4, then
_ 1
foy =+ N G haey T
2m—3 1
= Qm—i1) 75 (2m—)
elf n = 2m+ 1 for some integerm > 4,
_ 1 m 1
then f(Tl) - 2m+1 + Zl:l (2m+2—i)I_Ijzz li1(2m+l 7 +
y2m=2 1 _
i=mAl (2m2—i) [(2m 1))
So whenm > 4, we getf(2m +1) — f(2m) = m -
1 n (2m+1—i)(2m+1-2i)— (2m+2—i) (2m—i) N
2m(2m+1) zi:l ﬂ?’:ilz(mej)
e — ol < 0, so fem+1) < f(2m).

(m+2)-m! 2m(2m+1)

Similarly, we get f(2m +2) < f(2m +1). So f(n)

monotonically decreases whem > 8 increases. Since

f(n) <1whenn <8, f(n) <1 forall n. So by Lemma 14,

the conclusion holds. []
We skip the rest of the proof because it is very similar to

the 3-approximation case.

REFERENCES

[1] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Programgranalog
computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” iProceedings of the IEEE International
Symposium on Circuits and Systerf805, pp. 2148-2151.

[2] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding fayanmetric
multi-level memory,” inProc. IEEE ISIT 2007.

[3] P. Cappelletti and A. Modelli, “Flash memory reliabilityin Flash
Memories P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds.
Kluwer, 1999, pp. 399-441.

[4] B. Eitan and A. Roy, “Binary and multilevel flash cells,” iRlash
Memories P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds.
Kluwer, 1999, pp. 91-152.

[5] T. Etzion, “Personal communication,” Oct. 2007.

[6] F.Gray, “Pulse code communication,” U.S. Patent 26320&8ch 1953.

F. K. Hwang, “Generalized huffman treesS1IAM Journal Appl. Math.
vol. 37, no. 1, pp. 124-127, 1979.

A. Jiang, “On the generalization of error-correcting \MCcodes,” in
Proc. IEEE ISIT 2007.

A. Jiang, V. Bohossian, and J. Bruck, “Floating codesj@int informa-
tion storage in write asymmetric memories,”fmoc. IEEE ISIT 2007.
A. Jiang, M. Schwartz, and J. Bruck, “Error-correctingdes for rank
modulation,” 2008, in preparation.

H. Nobukata et al., “A 144-Mb, eight-level NAND flash mermgor
with optimized pulsewidth programminglEEE J. Solid-State Circuits
vol. 35, no. 5, pp. 682-690, 2000.

C. D. Savage, “A survey of combinatorial Gray codeSJAM Rev.
vol. 39, no. 4, pp. 605-629, 1997.

R. Sedgewick, “Permutation generation method&jmputing Surveys
vol. 9, no. 2, pp. 137-164, 1977.

