
Rank Modulation for Flash Memories
Anxiao (Andrew) Jiang∗ Robert Mateescu† Moshe Schwartz‡ Jehoshua Bruck†

∗Department of Computer Science †California Institute of Technology ‡Electrical and Computer Engineering
Texas A&M University 1200 E California Blvd., Mail Code 136-93 Ben-Gurion University

College Station, TX 77843, U.S.A. Pasadena, CA 91125, U.S.A. BeerSheva 84105, Israel
ajiang@cs.tamu.edu {mateescu,bruck}@paradise.caltech.edu schwartz@ee.bgu.ac.il

Abstract—We explore a novel data representation scheme for
multi-level flash memory cells, in which a set ofn cells stores
information in the permutation induced by the different charge
levels of the individual cells. The only allowed charge-placement
mechanism is a “push-to-the-top” operation which takes a single
cell of the set and makes it the top-charged cell. The resulting
scheme eliminates the need for discrete cell levels, as well as
overshoot errors, when programming cells.

We present unrestricted Gray codes spanning all possiblen-cell
states and using only “push-to-the-top” operations, and also con-
struct balanced Gray codes. We also investigate optimal rewriting
schemes for translating arbitrary input alphabet into n-cell states
which minimize the number of programming operations.

I. I NTRODUCTION

Flash memoryis a non-volatile memory technology that
is both electrically programmable and electrically erasable.
Its reliability, high storage density, and relatively low cost
have made flash memory a dominant non-volatile memory
technology and a prominent candidate to replace the well-
established magnetic recording technology in the near future.

The most conspicuous property of flash storage is its inher-
ent asymmetry between cell programming (charge placement)
and cell erasing (charge removal). While adding charge to a
single cell is a fast and simple operation, removing charge
from a single cell is very difficult. In fact, today, most (if
not all) flash memory technologies do not allow a single cell
to be erased but rather only a large block of cells. Thus, a
single-cell erase operation requires the cumbersome process
of copying an entire block to a temporary location, erasing it,
and then programming all the cells except for the single cell
to be erased.

To keep up with the ever-growing demand for denser
storage, themulti-level flash cellconcept is used to increase
the number of stored bits in a cell [4]. Instead of the usual
single-bit flash memories, where each cell is in one of two
states (erased/programmed), each multi-level flash cell stores
one ofq levels and can be regarded as a symbol over a discrete
alphabet of sizeq. This is done by designing an appropriate
set of threshold levelswhich are used to quantize the charge
level readings to symbols from the discrete alphabet.

Fast and accurate programming schemes for multi-level
flash memories are a topic of significant research and design
efforts [12], [7], [1]. All these and other works share the
attempt to iteratively program a cell to an exact prescribed

This work was supported in part by the Caltech Lee Center for Advanced
Networking.

charge level in a minimal number of programming cycles. As
mentioned above, flash memory technology does not support
charge removal from individual cells. As a result, the program-
ming cycle sequence is designed to cautiously approach the
target charge level from below so as to avoid undesired global
erases in case of overshoots. Consequently, these attemptsstill
require many programming cycles, and they work only up to
a moderate number of levels per cell.

In addition to the need for accurate programming, the
move to multi-level flash cells also aggravates reliability. The
same reliability aspects that have been successfully handled
in single-level flash memories may become more pronounced
and translate into higher error rates in stored data. One such
relevant example is errors that originate from lowmemory
endurance[3], by which a drift of threshold levels in aging
devices may cause programming and read errors.

We therefore propose therank modulationscheme, whose
aim is to eliminate both the problem of overshooting while
programming cells, and the problem of memory endurance in
aging devices. In this scheme, an ordered set ofn multi-level
cells stores the information in the permutation induced by the
charge levels of the cells. In this way, no discrete levels are
needed (i.e., no need for threshold levels) and only a basic
charge-comparing operation (which is easy to implement) is
required to read the permutation. If we further assume that
the only programming operation allowed is raising the charge
level of one of the cells above the current highest one (push-
to-the-top), then the overshoot problem is no longer relevant.
Additionally, the technology may allow in the near future the
decrease of all the charge levels in a block of cells by a
constant amount smaller than the lowest charge level (block
deflation), which would maintain their relative values, and
thus leave the information unchanged. This can eliminate a
designated erase step, by deflating the entire block whenever
the memory is not in use.

Once a new data representation is defined, several tools are
required to make it useful. In this paper we present Gray
codes that bring to bear the full representational power of
rank modulation, and data rewriting schemes. Error-correcting
codes for rank modulation are the subject of a companion
paper [11]. The Gray code [6] is an ordered list of distinct
length n binary vectors such that every two adjacent words
(in the list) differ by exactly one bit flip. They have since
been generalized in countless ways and may now be defined
as an ordered set of distinct states for which every statesi is

followed by a statesi+1 such thatsi+1 = t(si), wheret∈ T
is a transition functionfrom a predetermined setT defining
the Gray code. In the original code,T is the set of all possible
single bit flips. Usually, the setT consists of transitions which
are minimal with respect to some cost function, thus creating
a traversal of the state space which is minimal in total cost.
For a comprehensive survey of combinatorial Gray codes, the
reader is referred to [13].

Some of the Gray code constructions we describe induce
a simple algorithm for generating the list of permutations.
Efficient generation of permutations has been the subject of
much research as described in the general survey [13], and
the more specific [14] (and references therein). In [14] the
transitions we use in this paper are called “nested cycling”
and the algorithms cited there produce lists which are not Gray
codes since some of the permutations repeat, which makes the
algorithms inefficient.

We also investigate rewriting schemes for rank modulation.
Since erasing/reprogramming cells is expensive, it is very
important to maximize the number of times data can be
rewritten between two erasure operations [2], [9], [10]. For
rank modulation, the key is to minimize the highest charge
level of cells. We present two rewriting schemes that are,
respectively, optimized for the worst-case and average-case
performance.

The paper is organized as follows: Section II describes a
Gray code that is cyclic and complete (i.e., it spans the entire
symmetric group of permutations); Section III introduces a
Gray code that is cyclic, complete and balanced, optimizing
the transition step and also making it suitable for block defla-
tion; Section IV presents a rewriting scheme that is optimal
for the worst-case performance, and a dynamic programming
algorithm to find the optimal prefix code for the average cost
of rewriting; Section V concludes this paper.

II. D EFINITIONS AND BASIC CONSTRUCTION

Let S be a state space, and let T be a set oftransition
functions, where everyt∈ T is a functiont : S→ S. A Gray
codeis an ordered lists1, s2, . . . , sm of distinct elements from
S such that for every1 6 i 6 m− 1, si+1 = t(si) for some
t∈ T. If s1 = t(sm) for somet∈ T, then the code iscyclic.
If the code spans the entire spaceS we call it complete.

Let [n] denote the set of integers{1, 2, . . . , n}. An ordered
set ofn flash memory cells named1, 2, . . . , n, each containing
a distinct charge level, induces a permutation of[n] by writing
the cell names in descending charge level[a1, a2, . . . , an], i.e.,
the cella1 has the highest charge level whilean has the lowest.
The state space for the rank modulation scheme is therefore
the set of all permutations over[n], denoted bySn.

As described in the previous section, the basic minimal-cost
operation on a given state is a “push-to-the-top” operationby
which a single cell has its charge level increased so as to be
the highest of the set. Thus, for our basic construction, the
set T of minimal-cost transitions between states consists of
n− 1 functions pushing thei-th element of the permutation,

2 6 i 6 n, to the front:

ti([a1 , . . . , ai−1 , ai , ai+1 , . . . , an]) = [ai , a1 , . . . , ai−1 , ai+1 , . . . , an].

Throughout this work, our state spaceS will be the set of
permutations over[n], and our set of transition functions will
be the setT of “push-to-the-top” functions. We call such codes
length n Rank Modulation Gray Codes(n-RMGC).

Example 1.An example of a3-RMGC is the following:

1 2 3 1 3 2

2 1 2 3 1 3

3 3 1 2 2 1

where the permutations are the columns being read from left to
right. The sequence of operations creating this cyclic codeis:
t2, t3, t3, t2, t3, t3. This sequence will obviously create a Gray
code regardless of the choice of first column.

We will now show a basic recursive construction forn-
RMGCs. The resulting codes arecyclic and complete, in the
sense that they span the entire state space. Our recursion basis
is the simple2-RMGC: [1, 2], [2, 1].

Now let us assume we have a cyclic and complete(n −
1)-RMGC, which we callCn−1, defined by the sequence of
transitionst(1), t(2), . . . , t((n−1)!) and wheret((n−1)!) = t2,
i.e., a “push-to-the-top” operation on the second element in the
permutation1. We further assume that the transitiont2 appears
at least twice. We will now show how to constructCn, a cyclic
and completen-RMGC with the same property.

We set the first permutation of the code to be[1, 2, . . . , n],
and then use the transitionst(1), t(2), . . . , t((n−1)!−1) to get
a list of (n− 1)! permutations we call the firstblock of the
construction. By our assumption, the permutations in this list
are all distinct, and they all share the property that their last
element isn (since all the transitions use just the firstn− 1

elements). Furthermore, sincet((n−1)!) = t2, we know that
the last permutation generated so far is[2, 1, 3, . . . , n− 1, n].

We now use tn to create the first permutation of
the second block of the construction, and then use
t(1), t(2), . . . , t((n−1)!−1) again to create the entire second
block. We repeat this processn − 1 times, i.e., use the
sequence of transitionst(1), t(2), . . . , t((n−1)!−1), tn a total of
n− 1 times to constructn− 1 blocks, each containing(n− 1)!

permutations.
The following two simple lemmas are given without proof.

Lemma 2.In any block, the last element of all the permutations
is constant. The list of last elements in the blocks constructed is
n, n− 1, . . . , 3, 1. The element2 is never a last element.

Lemma 3.The second element in the first permutation in every
block is 2. The first element in the last permutation in every
block is also2.

Combining the two lemmas above, then− 1 blocks con-
structed so far form a cyclic but not completen-RMGC, that
we call C′, which may be schematically described as follows

1This last requirement merely restricts us to havet2 usedsomewheresince
we can always rotate the set of transitions to maket2 be the last one used.

(where each box represents a single block, and; denotes the
sequence of transitionst(1), . . . , t((n−1)!−1)):

1 2

2 1

.

.

. ;

.

.

.
n− 1 n− 1

n n

tn
−→

n 2

2 n

.

.

. ;

.

.

.
n− 2 n− 2

n− 1 n− 1

tn
−→ · · · tn

−→

3 2

2 3

.

.

. ;

.

.

.
n n
1 1

It is now obvious thatC′ is not complete because it is
missing exactly the(n − 1)! permutations containing2 as
their last element. We build a blockC′′ containing these
permutations in the following way: we start by rotating the
list of transitionst(1), . . . , t((n−1)!) such that its last transition
is tn−1

2. For convenience we denote the rotated sequence by
τ (1), . . . , τ (n−1)!, whereτ (n−1)! = tn−1. The first permuta-
tion in the block is[a1, a2, . . . , an−1, 2], and the last one is
[a2, . . . , an−1, a1, 2]. In C′ we find a transition of the following

form: [a2, . . . , an−1, 2, a1]
tn−1
−−→ [2, a2, . . . , an−1, a1]. Such a

transition must surely exist sinceC′ is cyclic, it contains
permutations in which2 is next to last and some in which
it is not, it does not contain permutations in which2 is last,
and so it follows that at some point inC′, the element2 is
next to last and is then pushed bytn−1 to the front. At this
transition we splitC′ and insertC′′ as follows:

a2

a3

...
an−1

2

a1

tn
−→

a1 a2

a2 a3

... ;

...
an−2 an−1

an−1 a1

2 2

tn
−→

2

a2

...
an−2

an−1

a1

where it is easy to see all transitions are valid. Thus we have
createdCn and to complete the recursion we have to make
sure t2 appears at least twice, but that is obvious since the
sequencet(1), . . . , t((n−1)!−1) contains at least one occurrence
of t2, and is replicatedn− 1 times,n > 3. We therefore reach
the following conclusion:

Corollary 4. For everyn > 2 there exists a cyclic and complete
n-RMGC.

The 3-RMGC shown in Example 1 is the result of this
construction forn = 3.

III. B ALANCED n-RMGCS

A. Definition and Construction

It is sometimes the case that due to precision constraints in
the charge placement mechanism, the actual possible charge
levels in flash memory cells are discrete. Thus, we define the
functionci : N→ N, whereci(p) is the charge level of thei-th
cell after thep-th programming cycle. It follows that if we use
transitiont j in the p-th programming cycle and thei-th cell is,
at the time,j-th from the top, thenci(p) > maxk {ck(p− 1)},
and for k 6= i, ck(p) = ck(p− 1). In an optimal setting with
no overshoots,ci(p) = maxk {ck(p− 1)}+ 1.

2The transitiontn−1 must be present somewhere in the sequence or else
the last element would remain constant, thus contradicting the assumption that
the sequence generates a cyclic and complete(n− 1)-RMGC.

The jump in the p-th round is defined asci(p)− ci(p− 1),
assuming thei-th cell was the affected one. It is desirable,
when programming cells, to make the jumps as small as
possible. We define thejump cost of an n-RMGC as the
maximal jump during the transitions dictated by the code. It
is easy to see that the lowest possible jump cost in an optimal
RMGC is at leastn + 1, for n > 3. That is because we must
raise the lowest cell to the top charge level at leastn times.
Such a jump must be at least of magnituden. We cannot,
however, do thesen jumps consecutively, or else we return
to the first permutation after justn steps. It follows that there
must be at least one other transitionti, i 6= n, and so the first
tn to be used after it jumps by at least a magnitude ofn + 1.

We call ann-RMGC with jump costn + 1 a balancedn-
RMGC. We now show a construction that turns any(n− 1)-
RMGC into a balancedn-RMGC while retaining properties
such as being cyclic or complete.

Theorem 5. Given a cyclic and complete(n − 1)-RMGC
Cn−1, defined by the transitionsti1 , . . . , ti(n−1)!

, then the fol-
lowing transitions define ann-RMGC, denoted byCn, that is
cyclic, complete andbalanced:

For k∈ {1, . . . , n!} , tk =

{

tn−idk/ne+1 , if k ≡ 1(mod n)

tn , otherwise.

Proof: Let us define the abstract transition
−→
ti , 2 6

i 6 n, that pushesto the bottomthe i-th element from
the bottom:

−→
ti ([a1, . . . , an−i , an−i+1, an−i+2, . . . , an]) =

[a1, . . . , an−i , an−i+2, . . . , an, an−i+1].
BecauseCn−1 is cyclic and complete, using

−→
ti1 , . . . ,

−−−→
ti(n−1)!

starting with a permutation of[n − 1] produces a complete
cycle through all the permutations of[n− 1], and using them
starting with a permutation of[n] creates a cycle through
all the (n− 1)! permutations of[n] with the respective first
element fixed, because they operate only on the lastn − 1

elements. If the initial permutation is[1, 2, . . . , n], the element
1 is fixed as the first element of the resulting permutations.

The (n − 1)! permutations of [n] produced by
−→
ti1 , . . . ,

−−−→
ti(n−1)!

, also have the property of being representatives
of the (n − 1)! distinct orbits of the permutations of[n]
under the operationtn. That means that there are no two
permutations which are cyclic shifts of each other, since
tn represents a simple cyclic shift when operated on a
permutation of[n].

Taking a permutation of[n], then using the transitiontn−i+1

once, 2 6 i 6 n − 1, followed by n − 1 times using
tn, is equivalent to using

−→
ti . Every transition of the form

tn−i+1, i 6= n, moves us to a different orbit, while then− 1

consecutive executions oftn generate all the elements of the
orbit. It follows that the resulting permutations are distinct.
Schematically, the construction ofCn based onCn−1 is:

tn−i1+1,

n− 1 times
︷ ︸︸ ︷

tn, . . . , tn
︸ ︷︷ ︸

−→
ti1

, . . . , tn−i(n−1)!+1,

n− 1 times
︷ ︸︸ ︷

tn, . . . , tn
︸ ︷︷ ︸

−−−−→
ti(n−1)!

.

1 2 3 4 4 1 2 3 3 4 1 2 2 3 4 1

2 1 3 4 4 2 1 3 1 3 4 2 3 4 2 1

1 3 2 4 2 4 1 3 4 1 3 2 3 2 4 1

3 1 2 4 1 2 4 3 4 3 1 2 2 4 3 1

3 2 1 4 2 1 4 3 1 4 3 2 4 3 2 1

2 3 1 4 1 4 2 3 3 1 4 2 4 2 3 1

Figure 1. Balanced4-RMGC

28 1
27 2 2
26 3 3 3
25 4 4 4 4
24 1 1 1 1
23 4 4
22 2 2 2 2 2
21 3 3 3 3 3
20 1 1 1 1
19 4 4 4 4
18 3 3 3
17 2 2 2 2 2
16 1 1 1 1
15 2 2
14 4 4 4 4 4
13 3 3 3 3 3
12 1 1 1 1
11 3 3
10 2 2 2 2 2
9 4 4 4 4 4
8 1 1 1 1
7 3 3 3 3
6 4 4 4
5 2 2 2 2 2
4 1 1 1 1
3 2
2 3 3 3
1 4 4

Cell level

Programming cycle

Figure 2. Balanced4-RMGC growth

The codeCn is balanced, because in every block ofn
transitions starting with atn−i+1, 2 6 i 6 n − 1, we have:
the transitiontn−i+1 has a jump ofn− i + 1; the following
i− 1 transitionstn have a jump ofn + 1, and the rest a jump
of n. In addition, becauseCn−1 is cyclic and complete, it
follows that Cn is also cyclic and complete.

We can use Theorem 5 to recursively construct all the
supporting j-RMGCs, j∈ {n− 1, . . . , 2}, with the basis of
the recursion being the the2-RMGC: [1, 2], [2, 1].

Corollary 6. For anyn > 2, there exists a cyclic, complete and
balancedn-RMGC.

A similar construction, but using a more involved second
order recursion, was later suggested by Etzion [5].

Example 7. Figure 1 shows the transitions of a recursive,
balanced4-RMGC. The permutations are represented in an
n by (n − 1)! matrix. Each row is an orbit generated by
tn. Each column has the last element fixed. The transitions
between rows occur when1 is the top (leftmost) element.
These transitions are defined recursively, by a balanced3-
RMGC over the set{2, 3, 4} (where the top element is now
the rightmost one): [2,3,4],[3,4,2],[3,2,4],[2,4,3],[4,3,2],[4,2,3].
They are

−→
t3 ,
−→
t2 ,
−→
t3 ,
−→
t3 ,
−→
t2 ,
−→
t3 . This is the cycle from Exam-

ple 1, with relabeled cells, and starting with the third column.

Example 8. Figure 2 shows the cell levels of the recursive
balanced4-RMGC for each programming cycle.

There is another asymptotic measure by which the construc-
tion for the recursive balancedn-RMGCs is optimal. An im-
portant practical aspect is the average number of steps required

to decide which transition generates the next permutation from
the current one. Astepis defined as a single query of the form
“what is thei-th highest charged cell?”.

Suppose we were to use the recursive construction of
Theorem 5 to generate a cyclic, complete and balancedn-
RMGC with a starting permutation[1, 2, . . . , n]. A fraction
n−1

n of the transitions aretn, and these occur whenever the
cell 1 is not the highest charged one. Of the cases where1 is
highest charged, by recursion, a fractionn−2

n−1
of the transitions

are determined by just one query, and so on. At the basis of
the recursion, permutations over two elements require zero
queries. Thus, the total number of queries is∑n

i=3 i!. Since

limn→∞

∑n
i=3

i!
n!

= 1, the asymptotic average number of steps
to generate the next permutation is just1.

B. Rank and Unrank Functions

We define here the two inverse functions that associate
each permutation with a number from1 to n!. The rank
and unrank functions for the balancedn-RMGC follow the
recursive construction. Using the representation of Example
7, therank function can be computed by determining the row
and the cyclic offset from the first element encountered in the
current row. The row is determined by the recursive application
of rank to the (n − 1)-RMGC, while the cyclic offset is
determined by the position of1 in the current permutation.

We change the first permutation from[1, 2, . . . , n] to
[n, 1, 3, . . . , 4, 2], wheren is first, and the odd numbers are
written in increasing order from left to right, while the even
numbers are written in increasing order from right to left. The
rank function is given by the following recursive procedure:

Function Rank(n, [a1, . . . , an])
input : n∈N, n > 2; permutation[a1 , . . . , an]
output : Index of ([a1 , . . . , an]) in the recursive balanced

n-RMGC starting with[n, 1, 3, . . . , 4, 2]
if n = 2 then

if a1 > a2 then
return 1

else
return 2

else
Find i such thatai = min {a1 , . . . , an}
return
i− 1 + n [Rank(n− 1, [an , . . . , ai+1 , ai−1 , . . . , a1])− 1]

The rank function can also be computed in a non-recursive
way, as follows. Letcount(i), 1 6 i 6 n be the number of
elements greater thani that lie to the left ofi, if i is odd
(and to the right ofi if i is even). Letposi = count(i) if
count(i) 6= 0, and posi = n − i + 1 if count(i) = 0 (this
defines the position in row).

If π = [a1, . . . , an], let π i:n be the permutation defined by
the subset{i, . . . , n}, taken in cyclic order, beginning withi
and reading to the left ifi is odd, and to the right ifi is even;
For example[3, 1, 4, 2]2:4 = [3, 2, 4], namely [3, 2, 4] is the
permutation that generates the cyclic orbit represented bythe
row of [3, 1, 4, 2] in the recursive balanced4-RMGC.

We haverank(π) = pos1 + n · (rank(π2:n)− 1). Unfold-
ing the recursive expression, we get:rank(π) = 1 + (pos1 −
1) + n(pos2 − 1) + n(n − 1)(pos3 − 1) + . . . + n(n −

1) · · · 3(posn−1 − 1) = 1 + ∑n−1
i=1

[

∏i−2
j=0

(n− j)
]

(posi − 1).

The unrank function maps a numberk, 1 6 k 6 n!, to a
permutation from the recursive balancedn-RMGC that starts
with [n, 1, 3, . . . , 4, 2]. The functionunrank can be computed
by a recursive procedure that first computes the position of
1 (namely, the cyclic offset in the row), and then recurses to
determine the position of the other elements. The position of 1
is 1 (the first element from left, namely the permutation is the
last one traversed in its row) ifk ≡ 0 mod n; otherwise
it is (k mod n) + 1. The position of 2 is determined by
making k ← dk/ne, and counting its position from right to
left, while ignoring the position already occupied by 1. The
position of the other elements is determined recursively inthe
same manner. Theunrank function is given by the following
procedure:

Function Unrank(k, n)
input : k, n∈N, 1 6 k 6 n!

output : The k-th permutation of the recursive balanced
n-RMGC starting with[n, 1, 3, . . . , 4, 2]

Initialize [a1 , . . . , an]← [0, . . . , 0]
for i← 1 to n− 1 do

p← Position(k, n− i + 1)
if i is odd then

m← 0

for j← 1 to p do
m← m + 1

while am 6= 0 do
m← m + 1

else
m← n + 1

for j← 1 to p do
m← m− 1

while am 6= 0 do
m← m− 1

am ← i
k← dk/ne

Find the remainingi for which ai = 0 and setai ← n
return [a1 , . . . , an]

Function Position(k, n)
input : k, n∈N, 1 6 k 6 n!

output : Position of element1 in the k-th permutation of the
recursive balancedn-RMGC starting with
[n, 1, 3, . . . , 4, 2]

if k ≡ 0 mod n then
return 1

else
return (k mod n) + 1

IV. REWRITING WITH RANK MODULATION CODES

In this section, we study coding schemes for rewriting
data in flash memories. When the data stored using a rank
modulation code needs to be modified, the flash memory can
increase some cells’ charge levels so that the updated cell state

represents the new data. The highest charge level increases
with each rewriting operation. When it reaches the maximum
possible charge level, the next rewriting leads to the blockera-
sure and reprogramming. Since block erasure/reprogramming
is expensive – it not only is time/power consuming, but also
reduces the reliability and longevity of flash memories, – it
is very important to maximize the number of times that data
can be rewritten between two block erasure operations [2], [9],
[10]. For rank modulation, the key is to minimize the number
of cells whose charge levels need to be pushed to the top
during the rewriting operation. We investigate schemes that
achieve this objective.

In order to discuss rewriting, we first need to define a decod-
ing scheme. It is often the case that the alphabet size used by
the user to input data and read stored information differs from
the alphabet size used as internal representation. In our case,
data is stored internally in one ofn! different permutations. Let
us assume the user alphabet isQ = {1, 2, . . . , q}. A decoding
schemeis a functionD : S → Q mapping internal states to
symbols from the user alphabet.

Suppose the current internal state iss1 ∈ S and the user
inputs a new symbolα ∈Q. A rewriting operation givenα is
now defined as moving from states1 ∈ S to states2 ∈ S such
that D(s2) = α. It should be noted that ifD(s1) = α thens2

may be equal tos1, i.e., the rewriting operation is degenerate
and does nothing. Thecost of the rewriting operation is the
minimal number of atomic transitions fromT (i.e., the number
of “push-to-the-top” operations) required to move from state
s1 to states2.

It is now obvious that rewriting operations requiring a
large number of transitions are undesirable both because they
promote charge-level saturation, and because they take longer
to perform. In the following section we first present a decoding
scheme that strictly optimizes the rewriting performance for
the worst case. Then, we extend the construction to optimize
the average rewrite performance with constant approximation
ratios.

A. Optimal Decoding Scheme for Rewriting

We start by presenting a lower bound on the cost of a single
rewriting operation. First, we define a few terms. Define the
transition graphG = (V, E) as a directed graph withV = Sn,
i.e., withn! vertices representing the permutations inSn. There
is a directed edgeu→ v if v = t(u) for somet∈ T, i.e., we
can obtainv from u by a single “push-to-the-top” operation.
We can see thatG is a regular digraph: every vertex hasn− 1

incoming edges andn− 1 outgoing edges.
For two verticesu, v∈V, we define the directed distance

d(u, v) as the number of edges in the shortest directed path
from u to v. Clearly, 0 6 d(u, v) 6 n− 1 for any u, v∈V.
Given a vertexu∈V and an integerr (here0 6 r 6 n− 1),
we define theball Br(u) asBr(u) = {v∈V | d(u, v) 6 r},
and define thesphereSr(u) asSr(u) = {v∈V | d(u, v) =
r}. Clearly,Br(u) =

⋃

06i6r Sr(u).

Lemma 9.For anyu∈V and0 6 r 6 n− 1,

|Br(u)| =
n!

(n− r)!

|Sr(u)| =

{

1 r = 0
n!

(n−r)!
− n!

(n−r+1)!
1 6 r 6 n− 1.

Proof: A vertexv is in Br(u) if and only if we can obtain
it at most r transitions. There aren(n − 1) · · · (n − r + 1)
ways to do so, hence|Br(u)| = n!

(n−r)!
. Since Br(u) =

⋃

06i6r Sr
u and the spheres are disjoint, the rest of the con-

clusion follows.
Let ρ denote the smallest integer such that|Bρ(u)| > q.

Note thatρ is independent ofu. The following lemma presents
a bound on the rewriting cost.

Lemma 10. For any decoding scheme and any current state,
there existsα ∈Q such that the cost of a rewriting operation
givenα is at leastρ.

Proof: Fix a decoding schemeD, and lets be the current
state. By our definition ofρ we have|Bρ−1(s)| < q. It follows
that we can chooseα ∈Q \ {D(s′) | s′ ∈Bρ−1(s)}. Clearly,
a rewriting operation givenα requires at leastρ transitions
since there is nos′ ∈Bρ−1(s) such thatD(s′) = α.

Next, we present a code construction. It will be shown to
be optimal.

Construction 11. Divide the n! statesSn into n!
(n−ρ)!

sets,
where two states are in the same set if and only if theirρ

top-charged cells are the same. Among the sets, chooseq sets
and map them to theq symbols ofQ arbitrarily. The other

n!
(n−ρ)!

− q sets need not represent any symbol.

Example 12.Let n = 3 andq = 3. Since we have|B1(u)| =
3, it follows that ρ = 1. We divide then! = 6 states
into n!

(n−ρ)!
= 3 sets which induce the decoding function:

{[1, 2, 3], [1, 3, 2]} 7→ 1, {[2, 1, 3], [2, 3, 1]} 7→ 2, and
{[3, 1, 2], [3, 2, 1]} 7→ 3. The two states in the set are decoded
to the same symbol fromQ. The cost of any rewrite operation
is at most1.

Since the topρ cells of a state uniquely determine the
decoded symbol, any rewriting operation costs at mostρ

transitions to replace the topρ cells. By Lemma 10, we obtain
the optimality of the scheme:

Theorem 13. The decoding scheme presented in Construc-
tion 11guarantees a rewriting cost of at mostρ transitions, and
is therefore optimal.

B. Optimizing the Average Cost of Rewriting

The scheme presented in the previous section optimizes the
worst-case performance. In practice, however, if the probabili-
ties with which the input symbol takes values from its alphabet
are known, it is also important to study schemes that optimize
the average cost of rewriting.

Let us assume that for each rewrite (including writing the
initial value), the input symbol is drawn i.i.d. fromQ =

{1, 2, . . . , q} with probabilitypi to get symboli∈Q. We study
decoding schemes that optimize the average cost of rewriting.
Depending on the probabilities{pi}, the optimal code may be
quite complex. The code design problem is closely related to
the facility-location problem, which is NP hard.

In this paper, we present a prefix code that is optimal in
terms of its own design objective. The design objective is also
a bound for the optimal performance of all rankmodulation
codes. Furthermore, we will prove that at least whenq 6 n!/2,
the prefix code is a 3-approximation of any optimal solution,
that is, the cost of the prefix code is at most three times the
cost of any optimal rank modulation code. We will also show
that whenq 6 n!/6, the prefix code is a 2-approximation of
an optimal solution.

The prefix code we propose consists ofq codewords of
“variable lengths”, which represent theq values of the stored
input. Each codeword is a prefix of a permutation fromSn. No
codeword is allowed to be the prefix of another codeword. Let
a = [a1, a2, . . . , ai] be a generic codeword that represents the
valueα ∈Q. For a states∈ Sn, if a is a prefix ofs then we
set D(s) = α. Due to the prefix-free property, the decoding
function is well-defined.

A prefix code can be represented by a tree. First, let us
define afull permutation treeT as follows. The vertices in
T are placed inn + 1 layers, where the root is in layer 0
and the leaves are in layern. The edges only exist between
adjacent layers. Fori = 0, 1, . . . , n − 1, a vertex in layeri
hasn− i children. The edges are labeled in such a way that
every leaf corresponds to a permutation fromSn which may
be constructed from the labels on the edges from the root
to the leaf. An example is given in Fig. 3(a). A prefix code
corresponds to a subtreeC of T (see Fig. 3(b) for an example).
Every codeword is mapped to a leaf, and the codeword is the
same as the labels on the path from the root to the leaf.

422434

4

1321414

3

3

3

132312421314

2

32

4
32

1

1

3443344

2142143

2

21

4
32

1(b)

(a)

4

(4,3,2)(4,3,1)

(4,2)(4,1)(3,4)(3,2)(3,1)

(2)(1)

1 2

321

3 4 1 12

2132112

Figure 3. Prefix rank modulation code forn = 4 and q = 9. (a) The full
permutation treeT. (b) A prefix code represented by a subtreeC of T. The
leaves represent the codewords, which are the labels besidethe leaves.

For i∈Q, let ci denote the codeword representingi, and
let |ci| denote its length. For example, the codewords in
Fig. 3(b) have minimum length of1 and maximum length
of 3. The average codeword length is defined as∑q

i=1
pi |ci|.

Our objective is to design a code thatminimizes the average
codeword length.

The optimal prefix code cannot be constructed with a
greedy algorithm like the Huffman code and its extensions [8],

because the vertex degrees in the code treeC are unknown
initially. We present a dynamic programming algorithm of time
complexity O(nq4) to construct the optimal code. Note that
without loss of generality, we can assume that a codeword’s
length is at mostn− 1.

The algorithm computes a set of functionsopti(`, m),
for i = 1, 2, . . . , n − 1, ` = 0, 1, . . . , q, and m =
0, 1, . . . , min{q, n!/(n − i)!}. We interpret the meaning of
opti(`, m) as follows. We take a subtree ofT that contains
the root. The subtree has exactlỳ leaves in the layers
i, i + 1, . . . , n− 1. It also has at mostm vertices in the layeri.
We let thè leaves represent thèinput values fromQ with the
lowest probabilitiesp j: the further the leaf is from the root, the
lower the corresponding probability is. Those leaves are also`
codewords, and we call their weighted average length (where
the probabilitiesp j are weights) thevalueof the subtree. The
minimum value of such a subtree (among all such subtrees)
is defined to beopti(`, m). In other words,opti(`, m) is the
minimum average codeword length when we assign a subset
of codewords to a subtree ofT (in a specific way). Clearly,
theminimum average codeword lengthof a prefix code equals
opt1(q, n).

Without loss of generality, let us assume thatp1 6 p2 6

· · · 6 pq. It is easily seen that the following recursion holds:

opti(`, m) =







(n− 1) ∑`
k=1 pk i = n− 1, m > ` > 0

0 i > 1, ` = 0

min06 j6min{`,m}

{opti+1(`− j,

min{q, (m− j)·

(n− i)})+

∑`
k=`− j+1 ipk} i < n− 1, `, m > 0

The last recursion holds because a subtree with` leaves in
layersi, i + 1, . . . , n− 1 and at mostm vertices in layeri can
have0, 1, . . . , min{`, m} leaves in layeri.

The algorithm first computes optn−1(`, m), then
optn−2(`, m), and so on until finally computingopt1(q, n),
by using the above recursions. Given this value, it is
straightforward to determine in the optimal code, how many
codewords are in each layer, and therefore determine the
optimal code itself. It is easy to see that the algorithm returns
an optimal code in timeO(nq4).

We can use the prefix code for rewriting in the following
way: to change the stored value toi∈Q, we raise at most
|ci| cells so that the|ci| top-ranked cells are the same as the
codewordci. Since the probability that the variable isi after
every rewrite equalspi, the average codeword length of the
optimal prefix code is an upper bound for the average rewriting
cost of all optimal rank modulation codes.

We obviously haveq 6 n!. Whenq = n!, the code design
becomes trivial. In practice, the scenario whereq 6 n!/2

is important, and the optimal code design can be complex.
We prove in the following that whenq 6 n!/2, the average
rewriting cost of the optimal prefix code is at most three

times that of any rank modulation code, thus making it a3-
approximation solution.

The general idea of the proof is as follows. Leti∈Q
denote the value of the stored data at a given moment.
Let si ∈ Sn denote the cell state at that moment, and let
s1, s2, · · · , si−1, si+1, · · · , sq−1, sq denote theq− 1 cell states
whose distance fromsi in the transition graph, d(si , s j) for
1 6 j 6 q and j 6= i, are the smallest ones.d(si , s j) is
the rewriting cost (i.e., the number of cell charge levels that
need to be pushed to the top in the rewriting operation) for
changing the cell state fromsi to s j. Without loss of generality,
let’s assume here thatp1 > p2 > · · · > pi−1 > pi+1 >

· · · > pq−1 > pq, and thatd(si , s1) > d(si , s2) > · · · >

d(si , si−1) > d(si , si+1) > · · · > d(si , sq−1) > d(si , sq).
To minimize the expected rewriting cost, the ideal solution
is a code that decodess j as j for j∈Q. Denote byα the
expected rewriting cost of this ideal solution. Next, we design
a prefix codeB with this property:∀ j∈Q, if j 6= i, its
corresponding codeword length,y j, is at most3d(si , s j); if
j = i, then y j = 1. We will prove that such a prefix
code B exists. Next, letA be an optimal prefix code, and
for j∈Q, let x j denote the corresponding codeword length.
Let β denote the expected rewriting cost ofA for the next
rewrite. By definition, ∑16 j6q p jx j 6 ∑16 j6q p j y j. Since
xi > 1 = yi, β 6 ∑16 j6q, j 6=i p jx j 6 ∑16 j6q, j 6=i p j y j 6

∑16 j6q, j 6=i 3p jd(si , s j) = 3α. So the expected rewriting cost
of an optimal prefix code is at most three times that of an
ideal solution.

We skip the proof of Lemma 14 due to its simplicity.

Lemma 14. Let a1, a2, . . . , an−1 be non-negative integers.
There exists a prefix code withai codewords of lengthi for
i = 1, 2, . . . , n− 1 (i.e., the code hasai leaves in layeri of the
treeC) if and only if ∑n−1

i=1
ai

n!/(n−i)!
6 1.

Let us define the following sequence of integers
b1, . . . , bn−1:

bi =







1 i = 1
∣
∣
∣Si/3(u)

∣
∣
∣ = n!

(n−i/3)!
− n!

(n+1−i/3)!
2 6 i 6 n− 2

i ≡ 0 (mod 3)

0 2 6 i 6 n− 2

i 6≡ 0 (mod 3)
n!
2
− ∑n−2

i=1
bi i = n− 1

Lemma 15.Whenq = n!/2, there exists a prefix code that has
bi codewords of lengthi, for i = 1, 2, . . . , n− 1.

Proof: We use an induction onn and the conclusion
in Lemma 14. Let f (n) denote∑n−1

i=1
bi

n!/(n−i)!
. When n =

2, 3, 4, 5, 6, 7, 8, f (n) = 1
2

, 2
3

, 17
24

, 87
120

, 7
10

, 3377
5040

, 163
252

, respec-
tively. So f (n) 6 1 when n 6 8. By Lemma 14, a prefix
code exists whenn 6 8. This serves as the base case.

We now show that whenn > 8, f (n) monotonically
decreases inn. By the definition ofb1, b2, . . . , bn−1, we get:

• If n = 3m for some integer m > 1, then
f (n) = 1

3m + ∑m−1
i=1

1

(3m−i+1) ∏3i−1
j=i+1

(3m− j)
+

∑3m−2
i=m

1

(3m−i+1) ∏3m−2
j=i+1

(3m− j)
.

• If n = 3m + 1 for some integer m > 1,
then f (n) = 1

3m+1
+ ∑m

i=1
1

(3m+2−i) ∏3i−1
j=i+1

(3m+1− j)
+

∑3m−1
i=m+1

1

(3m+2−i) ∏3m−1
j=i+1

(3m+1− j)
.

• If n = 3m + 2 for some integer m > 1,
then f (n) = 1

3m+2
+ ∑m

i=1
1

(3m+3−i) ∏3i−1
j=i+1

(3m+2− j)
+

∑3m
i=m+1

1

(3m+3−i) ∏3m
j=i+1

(3m+2− j)
.

So when m > 2, we get f (3m + 3) −
f (3m + 2) = 1

(2m+3)·(2m+1)!
− 1

(3m+3)(3m+2)
+

∑m
i=1

(3m+3−i)(3m+3−3i)−(3m+4−i)(3m+2−i)

∏3i−3
j=i−4

(3m− j)
<

1
(2m+3)·(2m+1)!

− 1
(3m+3)(3m+2)

< 0, so f (3m + 3) <

f (3m + 2). Similarly, we get f (3m + 4) < f (3m + 3)
and f (3m + 5) < f (3m + 4) when m > 2. So f (n)
monotonically decreases whenn > 8 increases. Since
f (n) 6 1 whenn 6 8, f (n) 6 1 for all n. So by Lemma 14,
the conclusion holds.

Let q = n!/2, and let i∈Q be the stored value at this
moment. LetBi denote a prefix code that hasb j codewords
of length j, for j = 1, 2, . . . , n − 1. Label the q = n!/2

codewords ofBi as w1, w2, . . . , wq based on their codeword
length; specifically, ifj < k, thenw j is no longer thanwk. The
codewords ofBi are mapped to the alphabetQ in the following
way: w1 represents the valuei; for any 2 6 j < k 6 q, if w j

representsa j ∈Q and wk representsak ∈Q, then pa j
> pak

.
Then, we have the following lemma.

Lemma 16. let i∈Q denote the current value of the stored
data. For the next rewrite, the expected cost (i.e., the number
of cell charge levels that need to be pushed to the top during the
rewriting operation) for the codeBi is at most three times that
of any rank modulation code.

Proof: We first consider a generic rank modulation code.
The state of then cells before the rewrite is a vertexu in the
transition graphG = (V, E). (The definition of the transition
graph is shown in the previous subsection.) Theq = n!/2

vertices inG that are closest tou are the vertices in the ball
Bn−2(u). Let us label those vertices asv1, v2, . . . , vn!/2 based
on their distance tou; specifically, if j < k, then d(u, v j) 6

d(u, vk). (So v1 = u.) Among them, the number of vertices
at distancej to u equals

∣
∣S j(u)

∣
∣, for j = 0, 1, . . . , n− 2.

Let π1, π2, . . . , πq be a permutation of the alphabetQ, such
thatu represents the valueπ1 = i, and the probabilitiespπ2

>

pπ3
> · · · > pπq . Clearly, for any rank modulation code, the

expected cost for the next rewrite must be greater than or equal
to ∑q

j=2
pπ j

d(u, v j).

Let us use
∣
∣w j

∣
∣ to denote the length of the codeword

w j. By the definition of b1, b2, . . . , bq, it is easy to ver-
ify that

∣
∣w j

∣
∣ 6 3d(u, v j) for j = 2, 3, . . . , q. Therefore,

∑q
j=2

pπ j

∣
∣w j

∣
∣ 6 3 ∑q

j=2
pπ j

d(u, v j).

Let us say thatw j represents the values j ∈Q, for j =
1, 2, . . . , q. Since s1 = i = π1 and ps2

> ps3
> · · · >

psq , we get ps j
= pπ j

for 1 6 j 6 q. So ∑q
j=2

ps j

∣
∣w j

∣
∣ =

∑q
j=2

pπ j

∣
∣w j

∣
∣ 6 3 ∑q

j=2
pπ j

d(u, v j). When codeBi is used,

the expected cost for the next rewrite is at most∑q
j=2

ps j

∣
∣w j

∣
∣.

So the conclusion holds.
The following theorem shows that whenq 6 n!/2, the

optimal prefix code (which is constructed by the algorithm
in this section) is a3-approximation of the optimal rank
modulation code.

Theorem 17.When q 6 n!/2, given the stored value at any
moment (which can be anything in the alphabetQ), for the next
rewrite, the expected cost (i.e., the number of cells chargelevels
that need to be pushed to the top during the rewriting operation)
for an optimal prefix code is at most three times the expected
cost for all rank modulation codes. Therefore, for any number
of rewrites, the average rewrite cost of an optimal prefix code is
at most three times that of any rank modulation code.

Proof: Let Copt denote an optimal prefix code (i.e.,
a prefix code that minimizes the weighted average code-
word length). Let Q′ be a new alphabet ofq′ =
n!/2 numbers, whose associated rewrite probabilities are
p1, p2, . . . , pl , 0, 0, . . . , 0, respectively. LetC′opt be an optimal
prefix code for the new alphabetQ′. Clearly, the weighted
average codeword length ofCopt is less than or equal to
that of C′opt, because the codeC′opt is more restricted. For
i = 1, 2, . . . , q, Let Bi be the same code as defined before,
whose alphabet is alsoQ′. Clearly, among the three weighted
average codeword lengths ofCopt, C′opt and Bi, that of Copt is
the smallest and that ofBi is the largest. Therefore, if we use
x j (respectively,yi

j)) to denote the length of the codeword that
represents the valuej∈Q in codeCopt (respectively, codeBi),
then∑q

j=1
p jx j 6 ∑q

j=1
p j y

i
j. By the definition ofBi, yi

i = 1.

Sincexi > 1, ∑16 j6l, j 6=i p jx j 6 ∑16 j6q, j 6=i p j y
i
j.

Let us say that the stored value at this moment isi.
The proof of Lemma 16 shows that for the next rewrite,
∑16 j6q, j 6=i p j y

i
j is at most three times the expected rewrite

cost of any rank modulation code. For the next rewrite, the
expected rewrite cost ofCopt is at most∑16 j6q, j 6=i p jx j. The
rest of the theorem follows naturally.

We have shown that for an optimal prefix code, whose
construction is presented in this paper, the rewrites increase
the cells’ highest charge level at a rate that is at most three
times the optimal rate, whenq 6 n!/2. With a similar analysis,
we can prove the following result:

Theorem 18.Whenn > 4 andq 6 n!/6, the average rewrite
cost of an optimal prefix code is at most twice that of any rank
modulation code.

Proof: See Appendix.

V. CONCLUSION

In this paper, we present a novel data storage scheme,rank
modulation, for flash memories. We present several Gray code

constructions for rank modulation, as well as its data rewriting
schemes. The presented coding schemes are optimized for cell
programming cost in several different aspects.

APPENDIX

In this appendix, we prove Theorem 18. The general ap-
proach is similar to the way we have proved Theorem 17, so
we only specify some details that are relatively important here.

We define a series of numbersb1, b2, . . . , bn−1 as follows.
b1 = 1. For i = 2, 3, . . . , n− 2, if i is a multiple of 2, thenbi

equals the size of a sphere of radiusi/2, which is n!
(n−i/2)!

−
n!

(n+1−i/2)!
by Lemma 9; otherwise,bi equals 0.bn−1 = n!

6
−

∑n−2
i=1

bi. We now prove the existence of a specific prefix code.

Lemma 19.Whenn > 4 andq = n!/6, there exists a prefix
code that hasbi codewords of lengthi, for i = 1, 2, . . . , n− 1.

Proof: We use an induction onn and the conclusion
in Lemma 14. Letf (n) denote∑n−1

i=1
bi

n(n−1)···(n−i+1)
. When

n = 4, 5, 6, 7, 8, f (n) = 1
2

, 21
40

, 21
40

, 17
35

, 142
315

, respectively. So
f (n) 6 1 when n 6 8. By Lemma 14, the prefix code exists
when n 6 8. This serves as the base case.

We now show that whenn > 8, f (n) monotonically
decreases asn increases. By the definition ofb1, b2, . . . , bn−1,
we get:

• If n = 2m for some integer m > 4, then
f (n) = 1

2m + ∑m−1
i=1

1

(2m−i+1) ∏2i−1
j=i+1

(2m− j)
+

∑2m−3
i=m

1

(2m−i+1) ∏2m−2
j=i+1

(2m− j)
.

• If n = 2m + 1 for some integer m > 4,
then f (n) = 1

2m+1
+ ∑m

i=1
1

(2m+2−i) ∏2i−1
j=i+1

(2m+1− j)
+

∑2m−2
i=m+1

1

(2m+2−i) ∏2m−1
j=i+1

(2m+1− j)
.

So whenm > 4, we get f (2m + 1)− f (2m) = 1
(m+2)·m!

−

1
2m(2m+1)

+ ∑m
i=1

(2m+1−i)(2m+1−2i)−(2m+2−i)(2m−i)

∏2i−1
j=i−2

(2m− j)
<

1
(m+2)·m!

− 1
2m(2m+1)

< 0, so f (2m + 1) < f (2m).
Similarly, we get f (2m + 2) < f (2m + 1). So f (n)
monotonically decreases whenn > 8 increases. Since
f (n) 6 1 whenn 6 8, f (n) 6 1 for all n. So by Lemma 14,
the conclusion holds.

We skip the rest of the proof because it is very similar to
the 3-approximation case.

REFERENCES

[1] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” inProceedings of the IEEE International
Symposium on Circuits and Systems, 2005, pp. 2148–2151.

[2] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asymmetric
multi-level memory,” inProc. IEEE ISIT, 2007.

[3] P. Cappelletti and A. Modelli, “Flash memory reliability,” in Flash
Memories, P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds.
Kluwer, 1999, pp. 399–441.

[4] B. Eitan and A. Roy, “Binary and multilevel flash cells,” inFlash
Memories, P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Eds.
Kluwer, 1999, pp. 91–152.

[5] T. Etzion, “Personal communication,” Oct. 2007.
[6] F. Gray, “Pulse code communication,” U.S. Patent 2632058,March 1953.

[7] M. Grossi, M. Lanzoni, and B. Ricc̀o, “Program schemes for multilevel
flash memories,”Proceedings of the IEEE, vol. 91, no. 4, pp. 594–601,
2003.

[8] F. K. Hwang, “Generalized huffman trees,”SIAM Journal Appl. Math.,
vol. 37, no. 1, pp. 124–127, 1979.

[9] A. Jiang, “On the generalization of error-correcting WOM codes,” in
Proc. IEEE ISIT, 2007.

[10] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint informa-
tion storage in write asymmetric memories,” inProc. IEEE ISIT, 2007.

[11] A. Jiang, M. Schwartz, and J. Bruck, “Error-correctingcodes for rank
modulation,” 2008, in preparation.

[12] H. Nobukata et al., “A 144-Mb, eight-level NAND flash memory
with optimized pulsewidth programming,”IEEE J. Solid-State Circuits,
vol. 35, no. 5, pp. 682–690, 2000.

[13] C. D. Savage, “A survey of combinatorial Gray codes,”SIAM Rev.,
vol. 39, no. 4, pp. 605–629, 1997.

[14] R. Sedgewick, “Permutation generation methods,”Computing Surveys,
vol. 9, no. 2, pp. 137–164, 1977.

