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Abstract Designers routinely rank alternatives in a variety
of settings using a staple of comparison, the pairwise
comparison. In recent years questions have been raised
about the use of such comparisons as a means of calcu-
lating and aggregating meaningful preference or choice
data. Results on voting have been used to argue that the
positional procedure known as the Borda count is the best
pairwise voting procedure, or at least the only one that is
not subject to a number of demonstrable problems. We
show here that pairwise comparison charts (PCC) provide
results that are identical to those obtained by the Borda
count, and that the PCC is thus not subject to the argu-
ments used against non-Borda count methods. Arrow’s
impossibility theorem has also been invoked to cast doubt
upon any pairwise procedure, including the Borda count.
We discuss the relevance of the Arrow property that is lost
in the Borda count, the independence of irrelevant alter-
natives (IIA). While the theoretical consequences of IIA
are devastating, it is not clear that the same is true of its
practical consequences. Examples are presented to illus-
trate some primary objections to pairwise methods.
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1
Introduction
Designers routinely rank objectives, design attributes, and
designs. In each of these circumstances the designer is
charged with creating a set of alternatives – and for effi-
ciency’s sake the designer must at some point stop gen-
erating and start choosing among the alternatives. So, too,
the customer must at some point stop evaluating and start
buying among the available attributes and design choices.
Simon articulated the principle of bounded rationality,
which states that we cannot afford to make a decision and
to generate all of the options because we would then never
get beyond generating options (Simon 1996). Thus, any set
of options is, by definition, a subset or culling of a global
set of options.

In recent years, questions have been raised about the
means by which designers establish rankings of alterna-
tives, with a special focus on how pairwise comparisons
are performed as a means of assembling information on
which basis rankings can be obtained. In pairwise com-
parisons, the elements in a set (i.e. the objectives, design
attributes, or designs) are ranked on a pair-by-pair basis,
that is, two at a time, until all of the permutations have
been exhausted. In each comparison, points are awarded
to the winner.1 Then the points awarded to each element in
the set are summed and the rankings are obtained by
ordering the elements according to points accumulated.

This methodology has been criticized from two stand-
points. In the first, Hazelrigg (1996; G.H. Hazelrigg, personal
communication, 2001) argues that aggregating pairwise
comparisons violates Arrow’s impossibility theorem, which
can be characterized as a proof that a ‘‘perfect’’ or ‘‘fair’’
voting procedure cannot be developed whenever there are
more than two candidates or elements that are to be chosen.
Arrow’s theorem has been stated in many ways, as we note in
the footnotes that accompany our own statement (see Arrow
1951; Scott and Antonsson 1999). A voting procedure can be
characterized as fair if five axioms2 are obeyed:

1As both described and practiced, the number of points awarded in
pairwise comparisons is often nonuniform and subjectively or arbi-
trarily weighted. But it is quite important that the points awarded be
measured in fixed increments.
2The version of Arrow’s theorem presented here conforms to its
original presentation. Arrow (1951) subsequently showed that axioms
2 and 4 could be replaced by the ‘‘Pareto condition,’’ which states that
if everyone ranks A over B, the societal ranking has A ranked above B.
Arrow’s presentation also formally states that both individual and
group rankings must be weak orders, that is, transitive orderings that
include all alternatives and allow for indierence among alternatives.
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1. Unrestricted: All conceivable rankings registered by
individual voters are actually possible.

2. No imposed orders:3 There is no pair A, B for which it is
impossible for the group to select one over the other.

3. No dictator: The system does not allow one voter to
impose his/her ranking as the group’s aggregate ranking.

4. Positive response:4 If a set of orders ranks A before B,
and a second set of orders is identical to the first except
that individuals who ranked B over A are allowed to
switch, then A is still preferred to B in the second set of
orders.

5. Independence of irrelevant alternatives (IIA): If the
aggregate ranking would choose A over B when C is not
considered, then it will not choose B over A when C is
considered.

Arrow proved that at least one of these properties must
be violated for problems of reasonable size (at least three
voters expressing only ordinal preferences among more
than two alternatives). Hazelrigg states Arrow’s theorem
informally by saying that ‘‘in general, we cannot write a
utility function for a group’’ (Hazelrigg 1996). It is worth
noting that a consistent social choice (voting) procedure
can be achieved by violating any one of the five (or four)
conditions. Indeed, in this paper we address the questions:
Which axioms are violated by designers as they make
sensible choices? and, What are the consequences of these
‘‘violations’’? Dictatorship (axiom 3) and violations of the
Pareto condition (axioms 2 and 4) are intuitively offensive.
Further, Scott and Antonsson argue that engineering ap-
proaches that use quantified performance rankings do not
violate axiom 5, since comparison of two alternatives on
the basis of measurable criteria is independent of the
performance of other alternatives. However, these ap-
proaches often violate axiom 1 since many theoretically
possible orders are not admissible in practice, as many
engineering criteria must be of the less-is-better, more-
is-better, or nominal-is-best varieties (Scott and
Antonsson 1999).

Saari (1995; D.G. Saari, personal communication, 2001)
notes that some voting procedures based on pairwise
comparisons are faulty since they can produce ranking
results that offend our intuitive sense of a reasonable
outcome. He further claims that virtually any final ranking
can be arrived at by correct specification of the voting
procedure. Saari also suggests that among pairwise com-
parison procedures, the Borda count most ‘‘respects the
data’’ in that it avoids the counter-intuitive results that can
arise with other methods. Indeed, Saari notes (D.G. Saari,
personal communication, 2001) that the Borda count

never elects the candidate which loses all pairwise
elections . . . always ranks a candidate who wins all
pairwise comparisons above the candidate who loses all
such comparisons.

In the case of the Borda count, the fifth Arrow axiom,
the independence of irrelevant alternatives (IIA) is violat-

ed. What does this mean for design? In principle, and in
the conceptual design phase where these questions are
often most relevant, the possible space of design options is
infinite. Bounded rationality insists that the designer must
find a way to limit that set of design alternatives, to make it
a finite, relatively small set of options. As a process, then,
design involves generating the design alternatives and se-
lecting one (or more) of them. Options may be eliminated
because they do not meet some goals or criteria, or be-
cause they are otherwise seen as poor designs. Given these
two bases for selection, how important is IIA? Does it
matter if we violate IIA? Are we likely to erroneously re-
move promising designs early in the process? Is our design
process flawed because of these removed designs?

The violation of IIA leads to the possibility of rank
reversals, that is, changes in order among n alternatives
that may occur when one alternative is dropped from
a once-ranked set before a second ranking of the
remaining n–1 alternatives (Sect. 2). The elimination of
designs or candidates can change the tabulated rankings of
those designs or candidates that remain under consider-
ation. The determination of which design is ‘‘best’’ or
which candidate is ‘‘preferred most’’ may well be sensitive
to the set of designs considered.

It is thought that these rank reversals occur because of a
loss of information that occurs when an alternative is
dropped or removed from the once-ranked set (D.G. Saari,
personal communication, 2001). In addition, rank reversals
occur when there are Condorcet cycles in the voting patterns:
[ACBCC, BCCCA, CCACB]. When aggregated over all
voters and alternatives, these cycles cancel each other out
because each option has the same Borda count. When one of
the alternatives is removed, this cycle no longer cancels.
Thus, removing C from the above cycle unbalances the
Borda count between A and B, resulting in a unit gain for
A that is propagated to the final ranking results.

Paralleling the role of the Borda count in voting pro-
cedures, the PCC is the most consistent pairwise procedure
to apply when making design choices. Both implementa-
tions are better than ‘‘drop and revote,’’ whether viewed
from the standpoint of bounded rationality embedded in
Simon’s concept of ‘‘satisficing’’ (Simon 1996), or from
Saari’s analysis of voting procedures (Saari 1995): both say
we should consider all of the information we have. We may
not attain perfect rationality and complete knowledge, but
we should proceed with the best available knowledge.
Design iterates between generating options and selecting
among them, with the richness of information increasing
as the process proceeds. At each stage, design selection
tools must operate at an appropriate information level – as
more information is developed, more complex tools can be
applied: decision and information value theory, demand
modeling, etc. While these tools can overcome the IIA
violations inherent to the Borda count, they do so at a cost.
Selection actions could be delayed until design informa-
tion is rich enough to apply techniques that will not violate
IIA, but this would commit the designer to the added
expense of further developing poor designs. Rather than
‘‘drop and revote,’’ design is more akin to sequential
runoff elections in which the (design) candidates continue
to ‘‘debate’’ throughout the design selection process.

3Also called citizen’s sovereignty. Pareto is equivalent to citizen’s
sovereignty plus positive response.
4Positive response is an ordinal version of monotonicity.
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In the end, no selection method can overcome poor
design option generation. However, the act of selection
helps to clarify the design task. From a practical stand-
point, both designers and teachers of design have found
that pairwise comparisons appear to work well by focusing
their attention, and by bringing order to large numbers of
seemingly disparate objectives, attributes, or data points.
In addition, these rankings often produce good designs.

We are interested in enabling and contributing to a
positive discussion of improving methods of design deci-
sion making. In this spirit, we describe here a way to use
pairwise comparisons in a structured approach that pro-
duces results that are identical to the accepted vote-counting
standard, the Borda count. The method is a structured ex-
tension of pairwise comparisons to a pairwise comparison
chart (PCC) or matrix (Dym and Little 1999). We show that
the PCC produces consistent results quickly and efficiently,
and that these results are identical with results produced by
a Borda count. We illustrate this in two of the examples that
have been used to show the inconsistencies produced by
pairwise comparisons, and we provide a formal proof of the
equivalence of the PCC and the Borda count.

2
Example 1
We begin with an example to highlight some of the
problems of (non-Borda count) pairwise comparison
procedures, and to suggest the equivalence of the Borda
count with the PCC (the proof of equivalence is presented
in Sect. 3).

Twelve designers are asked to rank order three designs:
A, B, and C. In doing so, the 12 designers have, collectively,
produced the following sets of orderings (Saari 2001):

1 preferred A � B � C 4 preferred B � C � A

4 preferred A � C � B 3 preferred C � B � A
ð1Þ

Saari has shown that pairwise comparisons other than
the Borda count can lead to inconsistent results for this
case (Saari 2001). For example, in a widely used plurality
voting process called the best of the best, A gets 5 first-
place votes, while B and C each get 3 and 4, respectively.
Thus, A is a clear winner. On the other hand, in an ‘‘an-
tiplurality’’ procedure characterized as avoid the worst of
the worst, C gets only 1 last-place vote, while A and B get 8
and 4, respectively. Thus, under these rules, C could be
regarded as the winner. In an iterative process based on
the best of the best, if C were eliminated for coming in last,
then a comparison of the remaining pair A and B quickly
shows that B is the winner:

1 preferred A � B 4 preferred B � A

4 preferred A � B 3 preferred B � A
ð2Þ

On the other hand, a Borda count would produce a
clear result (Saari 2001). The Borda count procedure as-
signs numerical ratings separated by a constant to each
element in the list. Thus, sets such as (3,2,1), (2,1,0) and
(10,5,0) could be used to rank a three-element list. If we
use (2,1,0) for the rankings presented in Eq. (1), we find
total vote counts of (A: 2+8+0+0=10), (B: 1+0+8+3=12)

and (C: 0+4+4+6=14), which clearly shows that C is the
winner. Furthermore, if A is eliminated and C is compared
only to B in a second Borda count,

1 preferred B � C 4 preferred B � C

4 preferred C � B 3 preferred C � B
ð3Þ

then C remains the winner, as it also would here by a
simple vote count. It must be remarked that this consis-
tency cannot be guaranteed, as the Borda count violates
the IIA axiom.

We now make the same comparisons in a PCC matrix
(Table 1). As noted above, a point is awarded to the
winner in each pairwise comparison, and then the points
earned by each alternative are summed. In the PCC of
Table 1, points are awarded row by row, proceeding along
each row while comparing the row element to each column
alternative in an individual pairwise comparison. This
PCC result shows that the rank ordering of preferred
designs is entirely consistent with the Borda results just
obtained:

C � B � A ð4Þ

The PCC matrix exhibits a special kind of symmetry, as
does the ordering in the ‘‘Win’’ column (largest number of
points) and the ‘‘Lose’’ row (smallest number of points):
the sum of corresponding off-diagonal elements Xij+Xji is
a constant equal to the number of comparison sets.

We have noted that a principal complaint about some
pairwise comparisons is that they lead to rank reversals
when the field of candidate elements is reduced by removing
the lowest-ranked element between orderings. Strictly
speaking, rank reversal can occur when any alternative is
removed. In fact, and as we note further in Sect. 4, examples
can be constructed to achieve a specific rank reversal out-
come (Saari 2001). Such examples usually include a domi-
nated option that is not the worst. Also, rank reversals are
possible if new options are added.

Practical experience suggests that the PCC generally
preserves the original rankings if one alternative is
dropped. In example 1, if element A is removed and a
two-element runoff is conducted for B and C, we find the
results given in Table 2. Hence, once again we find

Table 1. Pairwise comparison chart (PCC) for example 1

Win/Lose A B C Sum/Win

A – 1+4+0+0 1+4+0+0 10
B 0+0+4+3 – 1+0+4+0 12
C 0+0+4+3 0+4+0+3 – 14
Sum/Lose 14 12 10 –

Table 2. Reduced pairwise comparison chart (PCC) for example 1
wherein the ‘‘loser’’ A in the first ranking is removed from
consideration

Win/Lose B C Sum/Win

B – 1+0+4+0 5
C 0+4+0+3 – 7
Sum/Lose 7 5 –
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C � B ð5Þ

The results in Eq. (5) clearly preserve the ordering of
Eq. (4), that is, no rank reversal is obtained as a result of
applying the PCC approach. In those instances where some
rank reversal does occur (see example 2, Sect. 4), it is of-
ten among lower-ranked elements where the information
is strongly influenced by the removed element (which we
will see and explain in example 2).

3
Proof of the PCC–Borda count equivalence
The PCC is an implementation of the Borda count. In both
procedures, the number of times that an element outranks
another in pairwise comparisons is tallied to determine a
final overall ranking. More formally, we prove here that
these methods are identical, always producing the same
rank order for a given collection of individual orderings.5

3.1
Preliminaries
Let us suppose that a set of n alternatives

A1;A2; . . . Anf g ð6Þ

is ranked individually m times. Each rank order Ri takes
the form

Ai1
� Ai2

� � � � � Ain
ð7Þ

where ACB indicates that A outranks or is ranked ahead
of B. Each rank order Ri can then be expressed as a per-
mutation ri of (1,2,...,n):

ri ¼ i1; i2; . . . ; inð Þ ð8Þ

Let rij be the jth entry of ri, so rij=ij. Let ri(k) be the index
of the entry with value k in ri (for k=1,2,...,n). Then:

ri rij

� �
¼ j ð9Þ

Then ri(k) is equal to the ordinal position that alternative
Ak holds in the rank order ri. To take an example with
n=3, if Ri expresses the ranking

A3 � A1 � A2 ð10Þ

that is, if ri=(3,1,2), then ri(1)=2, ri(2)=3, and ri(3)=1.

3.2
Borda count sums
In a Borda count, each alternative Ak is assigned a number
of points for each individual rank order Ri depending on
its place in that order, and then the numbers are summed.
Although there is an infinite number of equivalent num-
bering schemes, the canonical scheme, which may be used
without loss of generality, assigns (n–ri(k)) points to al-
ternative Ak from rank order Ri. For example, the rank
ordering in Eq. (10) assigns two points to alternative A3,
one point to A1, and no points to A2. The Borda sum for

the alternative Ak is obtained by summing over all indi-
vidual orders Ri

AB
k ¼

Xm

i¼1

n� ri kð Þð Þ ð11Þ

3.3
Pairwise comparison chart (PCC) sums
To generate the kth row of the PCC, for each j „ k we
count the number of permutations ri for which ri(k)<ri(j),
assigning one point for each such ri. Notice that ri(k)<
ri(j) if and only if Ak outranks Aj in Ri. For any ri, if
ri(k)<n, then one point will be added to the Ak row in each
of the columns Ari kð Þþ1; . . . ;An. If ri(k)=n, no points are
added to that row. Thus, the total points added to the Ak

row as a result of Ri is (n–ri(k)). The grand total for Ak in
the ‘‘sum/win’’ column is simply

APCC:W
k ¼

Xm

i¼1

n� ri kð Þð Þ ð12Þ

which is exactly equal to the Borda sum given in Eq. (11).
Therefore, the two methods are equivalent: the PCC is thus
either an alternate representation of or a simple method
for obtaining a Borda count (or vice versa).

Note that the sum for the ‘‘sum/lose’’ row in the PCC is
just

APCC:L
k ¼ mn�

Xm

i¼1

n� ri kð Þð Þ ð13Þ

Therefore, the information contained in the ‘‘sum/lose’’
row is immediately available if the Borda count is known.

4
Example 2
Rank reversals sometimes occur when alternatives are
dropped and the PCC procedure is repeated. We now show
how such an example can be constructed.

Thirty designers (or consumers) are asked to rank or-
der five designs A, B, C, D, and E as a result of which they
produce the following sets of orderings:

10 preferred A � B � C � D � E

10 preferred B � C � D � E � A

10 preferred C � D � E � A � B

ð14Þ

Here too, the procedure chosen to rank order these five
designs can decidedly influence or alter the results. For
example, all of the designers ranked C and D ahead of E in
the above tally. Nonetheless, if the following sequence of
pairwise comparisons is undertaken, an inconsistent result
obtains:

C vs D) C; C vs B) B; B vs A) A; A vs E) E

ð15Þ

If we construct a PCC matrix for this five-design example,
we find the results shown in Table 3, and they clearly
indicate the order of preferred designs to be

5An anonymous reviewer has suggested that a similar proof can be
found in a different context in Zangemeister (1970) with the proce-
dures identified under altogether different names.
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C � B � D � A � E ð16Þ

If the same data are subjected to a Borda count using
the weights (4,3,2,1,0) for the place rankings, we then find
the results displayed in Table 4. When we compare these
results to the PCC results shown in Table 3, we see that the
PCC has achieved the same Borda count results, albeit in a
slightly different fashion.

What happens if we drop the lowest-ranked design and
redo our assessment of alternatives? Here design E is least
preferred, and we find the results shown in Table 5 if it is
dropped. These results show a rank ordering of

C � B � A � D ð17Þ

Rank order is preserved here for the two top designs, C
and B, while the last two change places. Why does this
happen? Quite simply, because of the relative narrowness
of the gap between A and D when compared to the gap
between A and E, the two lowest ranked in the first ap-
plication of the PCC in this example.

It is also useful to ‘‘reverse engineer’’ this example.
Evidently it was constructed by taking a Condorcet cycle
[ACBCC, BCCCA, CCACB] and replacing C with an
ordered set (CCDCE) that introduces two dominated (by
C) options that are irrelevant by inspection. Removing
only E produced a minor rank reversal of the last two
alternatives, A and D. Removing only D, the third-best
option, produces the same result among A, B, and C as
removing E, although without creating a rank reversal.
Removing both D and E produces a tie among A, B, and C.

In a design context, assuming that designs D and E are
always inferior to design C, they would seem to be domi-
nated members of the same basic design family. Thus, in

order to avoid these (minor) rank reversals, it is important
to group designs into similar families, pick the best, and
then use PCC to rank the best across families. In other
words, we need to be sure that we are not evaluating in-
ferior alternatives from one class of design along with the
best options from that class and from other classes. This
suggests that PCC should be applied hierarchically to
avoid artificial spacing in the Borda count among design
alternatives. In early design, it is too costly to acquire
quantitative measures of performance that can indicate
how much better one alternative is than another. By
grouping alternatives into families, we can lessen the
chance that alternatives that are actually quite close to
each other in performance will appear far apart due to the
sheer number of alternatives deemed to fall in the middle.

It is also worth noting here that rank reversals of any
two alternatives can be ‘‘cooked’’ by adding enough ir-
relevant alternatives to a Borda count. This follows directly
from the fact that the Borda count depends upon the
number of alternatives between two alternatives, as does
its PCC equivalent. Consider the following example: there
are n+1 alternatives and m+1 voters. Alternative A is
ranked first (n points) and alternative B last (0 points) by
m voters, while the remaining voter casts B as second-
to-last (1 point) and A as last (0 points). Thus, A has m·n
points, and B has 1. It is clear that it does not really matter
what the absolute rankings are: A has gotten n more points
than B from m voters and B has gotten 1 more than A on
the last criterion – as far apart as the two alternatives can
be without having A dominate B. Suppose new alternatives
are added. Any new alternative that is either better than
both A and B or worse than both will not affect the ranking
of A and B. However, if a new alternative falls between A
and B, the relative ranking will change. Therefore, if we
find m·n new alternatives that are more or less preferred
than both A and B by the original m voters that favor A,
but that fall between B and A for the last voter, we can
change the aggregated scores to m·n for A and (m·n)+1
for B. Thus, again we have changed the aggregate scores by
(artificially) introducing a large number (m·n) of irrele-
vant ‘‘ringers.’’

Perhaps one of the main points of all of the above
discussion is that the tool that should be used to do

Table 4. Borda count for example 2 using the weight set (4,3,2,1,0)

Element Points

A 40+0+10=50
B 30+40+0=70
C 20+30+40=90
D 10+20+30=60
E 0+10+20=30

Table 5. Reduced pairwise
comparison chart (PCC) for ex-
ample 2 wherein the ‘‘loser’’ E in
the first ranking is removed from
consideration

Win/Lose A B C D Sum/Win

A – 10+0+10 10+0+0 10+0+0 40
B 0+10+0 – 10+10+0 10+10+0 50
C 0+10+10 0+0+10 – 10+10+10 60
D 0+10+10 0+0+10 0+0+0 – 30
Sum/Lose 50 40 30 60 –

Table 3. Pairwise comparison
chart (PCC) for example 2 Win/Lose A B C D E Sum/Win

A – 10+0+10 10+0+0 10+0+0 10+0+0 50
B 0+10+0 – 10+10+0 10+10+0 10+10+0 70
C 0+10+10 0+0+10 – 10+10+10 10+10+10 90
D 0+10+10 0+0+10 0+0+0 – 10+10+10 60
E 0+10+10 0+0+10 0+0+0 0+0+ – 30
Sum/Lose 70 50 30 60 90 –
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ranking or to calculate aggregate demand depends on how
much data is available, with what granularity, and on how
much the data-gatherers are prepared to spend. Pairwise
comparisons are cheap and require little detailed knowl-
edge, and are thus valuable in conceptual design. Focusing
on the best candidates or exemplars in a set introduces
a certain granularity in the data that can help avoid IIA-
induced rank reversals. Alternatives that fit an existing
group do not earn a separate, distinguishable space in the
PCC, and the spacing between different alternatives is less
likely to be ‘‘padded’’ by alternatives that are actually quite
close in performance.

5
Example 3
We now present an example that shows how pairwise
ranking that does not consider other alternatives can lead
to a result exactly opposite to a Borda count, which does
consider other alternatives. It also indicates that attempt-
ing to select a single best alternative may be the wrong
approach.

One hundred customers were ‘‘surveyed on their pref-
erences’’ with respect to five mutually exclusive design
alternatives A, B, C, D, and E (G.H. Hazelrigg, personal
communication, 2001). The survey reported that ‘‘45 cus-
tomers prefer A, 25 prefer B, 17 prefer C, 13 prefer D, and
no one prefers E.’’ These data seem to indicate that A is the
preferred choice, and that E is entirely ‘‘off the table.’’

However, as reported, these results assume either that
the customers are asked to list only one choice or, if asked
to rank order all five designs, that only their first choices
are abstracted from their rank orderings. Suppose that the
100 customers were asked for rankings and that those
rankings are ( G.H. Hazelrigg, personal communication,
2001)

45 preferred A � E � D � C � B

25 preferred B � E � D � C � A

17 preferred C � E � D � B � A

13 preferred D � E � C � B � A

ð18Þ

Again, the procedure used to choose among the rank
orderings of these five designs can decidedly influence or
alter the results. For example, if A and B are compared as
a (single) pair, B beats A by a margin of 55 to 45. And,
continuing a sequence of pairwise comparisons, we can
find that

A vs B) B; B vs C ) C; C vs D) D; D vs E) E

ð19Þ

Proposition (19) provides an entirely different outcome,
one that is not at all apparent from the vote count origi-
nally reported. How do we sort out this apparent conflict?

We resolve this dilemma by constructing a PCC matrix
for this five-product example (Table 6), whose results
clearly indicate the order of preferred designs to be

E � D � A � C � B ð20Þ

A Borda count of the same data of Eq. (18), using the
weights (4,3,2,1,0) for the place rankings, confirms the
PCC results, with the Borda count numbers being identical
to those in the ‘‘win’’ column of the PCC in Table 6, that is,

E 300ð Þ � D 226ð Þ � A 180ð Þ � C 164ð Þ � B 130ð Þ ð21Þ

In this case, removing B and revoting generates a relatively
unimportant rank reversal between A and C, thus dem-
onstrating the meaning of IIA and showing that dropping
information can have consequences.

This example is one where the ‘‘best option’’ as revealed
by the PCC/Borda count is not the most preferred by
anyone. Is the PCC lying to us? In a real market situation,
where all five options are available, none of the surveyed
customers would buy E. Two explanations for this survey
come to mind. First, this data could have been collected
across too broad a spectrum of customers in a segmented
market in which design E is something of a ‘‘common
denominator’’; the other four designs respond better to
four disparate market ‘‘niches.’’ Under this explanation,
there is really no ‘‘best design,’’ although E seems to be a
good starting point from which to search. Unfortunately,
there is also no identifiable ‘‘worst design,’’ although one
could also argue that E is the ‘‘worst.’’

A second explanation is that these designs are all
extremely close to each other in performance, so that small
variations in performance have translated into large dif-
ferences in the PCC. If this is the case, a designer might try
to generate new design options by better merging the
apparent desires of consumers. Methods such as the House
of Quality require that designs be ranked along several
significant (and possibly linguistic or nonquantifiable)
performance criteria (Pugh 1990; Ulrich and Eppinger
2000). The goal in such a process shifts from selecting the
‘‘best’’ design to identifying the characteristics of a com-
posite winning design. Of course, there is no guarantee
that such a winning composite design exists, but PCCs can
help the ranking process that might lead to its generation.

Both of the above explanations point to the need to
integrate the PCC into a hierarchy of design decision
methods. Deciding just when the PCC should give way to
more information-rich methods is perhaps the main
problem in this task. The PCC calculated for example 3

Table 6. Pairwise comparison
chart (PCC) for example 3 Win/Lose A B C D E Sum/Win

A – 45+0+0+0 45+0+0+0 45+0+0+0 45+0+0+0 180
B 0+25+17+13 – 0+25+0+0 0+25+0+0 0+25+0+0 130
C 0+25+17+13 45+0+17+13 – 0+0+17+0 0+0+17+0 164
D 0+25+17+13 45+0+17+13 45+25+0+13 – 0+0+0+13 226
E 0+25+17+13 45+0+17+13 45+25+0+13 45+25+17+0 – 300
Sum/Lose 220 270 236 174 100 –
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shows strong support for option E, yet we have argued that
more information should be developed before a design is
selected. Inconclusive results generated by the PCC are
generally easy to detect and can be corrected by moving to
a more detailed selection method. While such graceful
degradation of performance is typical of the PCC in
practice, the above example, unfortunately, is of a case in
which the PCC yields clear selection results at a point
where more detailed selection procedures might be more
appropriate.

6
Conclusions
This paper demonstrates that effective decision making is
possible in the practice of engineering design, notwith-
standing concerns raised about pairwise comparisons and
Arrow’s impossibility theorem. The identification of the
structured pairwise comparison chart (PCC) as an imple-
mentation of the well-known Borda count and its appli-
cation to oft-cited ‘‘pathological’’ examples suggests
several ideas. First, it is not the individual pairwise com-
parisons that lead to erroneous results. Rather, rank re-
versals and other infelicities result from serial aggregation
of pairwise comparisons when ‘‘losing’’ alternatives are
dropped from further consideration. Pairwise compari-
sons that are properly aggregated in a PCC produce results
that are identical to the Borda count, a ‘‘unique positional
procedure which should be trusted’’ (D.G. Saari, personal
communication, 2001). Indeed, our proof that the PCC is
identical to the Borda count confirms that it compensates
for and removes the same inherent cancellations.

It is important to recall that, in practice, the PCC and
similar methods are used very early in the design process,
where rough ordinal rankings are used to bound the scope
of further development work. The PCC is more of a dis-
cussion tool than a device intended to aggregate individual
orderings of design team members into a ‘‘group’’ deci-
sion. Indeed, design students are routinely cautioned
against over-interpreting or relying too heavily on small
numerical differences (Dym and Little 1999). In voting, we
usually end up with only one winner, and any winner must
be one of the entrants in the contest. In early design, it is
perfectly fine to keep two or more winners around, and the
ultimate winner often does not appear on the initial ballot.
Indeed, it is often suggested that designers look at all of
the design alternatives and try to incorporate the good
points of each to create an improved, composite design
(Dym and Little 1999; Pahl and Beitz 1996; Pugh 1990;
Ulrich and Eppinger 2000). In this framework, the PCC is

a useful aid for understanding the strengths and
weaknesses of individual design alternatives, holistically or
along more detailed performance criteria.

PCC can be used not only to rank designs but also to
order design criteria by importance. This information
helps to structure other design selection methods (e.g.
Pugh concept selection, Pugh 1990), showing the design
team where comparative differences among candidate
designs are most important. This emphasis on team is
significant. PCCs that implement the Borda count by
having individuals vote in the pairwise comparisons are
useful in the design process. However, they are most useful
for encouraging student design teams to work on designs
as a team. True collaboration takes place when team
members must reach consensus on each comparison. The
discussion necessary to reach this consensus helps to
foster the shared understanding that is so important for
good design. This collaborative approach might not be
relevant to a social choice framework. In design and design
education, however, where we are encouraged (and able)
to improve design alternatives midstream, fostering con-
structive discussion is a significant reason for using any
structured design approach. Thus, the matrix format of the
PCC is perhaps a more useful tool in design education and
design practice for conveying the same results obtained
with the Borda count implemented as a piece of formal
mathematics.
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