RANK PROPERTIES IN FINITE INVERSE SEMIGROUPS

MARIA ISABEL MARQUES RIBEIRO

Departamento de Matemática, Universidade dos Açores, Rua da Mãe de Deus, 9500 Ponta Delgada (Açores), Portugal (isamr@uac.pt)

(Received 24 November 1998)

Abstract Two possible concepts of rank in inverse semigroup theory, the intermediate I-rank and the upper I-rank, are investigated for the finite aperiodic Brandt semigroup. The so-called large I-rank is found for an arbitrary finite Brandt semigroup, and the result is used to obtain the large rank of the inverse semigroup of all proper subpermutations of a finite set.

Keywords: inverse semigroup; Brandt semigroup; rank; intermediate I-rank; upper I-rank; large I-rank

AMS 1991 Mathematics subject classification: Primary 20M10

1. Introduction

In previous papers [3, 4], Howie and I investigated various concepts of rank applied to certain known semigroups. One of the semigroups involved was the finite aperiodic Brandt semigroup B_n , whose definition is recalled below. This is of course an *inverse* semigroup, and if we choose to regard it in this way the questions regarding rank change significantly. This is because the *inverse subsemigroup* generated by a subset A of an inverse semigroup S will usually be larger than the *subsemigroup* generated by A. To avoid confusion we shall denote the inverse subsemigroup by $\langle A \rangle$ and the subsemigroup by $\langle A \rangle$, and we shall say that a subset A of an inverse semigroup S is *I-independent* if, for all a in A,

$$a \notin \langle\!\langle A \setminus \{a\} \rangle\!\rangle.$$

Applying ideas due to Marczewski [5], we can consider the following rank functions on a finite inverse semigroup S:

- (i) $r_1^I(S) = \max\{k : \text{every subset } U \text{ of } S \text{ of cardinality } k \text{ is } I\text{-independent}\};$
- (ii) $r_2^I(S) = \min\{k : \text{there exists a subset } U \text{ of } S \text{ of cardinality } k \text{ such that } \langle \langle U \rangle \rangle = S\};$
- (iii) $r_3^I(S) = \max\{k : \text{there exists a subset } U \text{ of } S \text{ of cardinality } k \text{ that is } I\text{-independent and such that } \langle \langle U \rangle \rangle = S\};$
- (iv) $r_4^I(S) = \max\{k : \text{there exists a subset } U \text{ of } S \text{ of cardinality } k \text{ that is } I \text{-independent}\};$

(v) $r_5^I(S) = \min\{k : \text{every subset } U \text{ of } S \text{ of cardinality } k \text{ has the property that } \langle \langle U \rangle \rangle = S\}.$

As in the semigroup case we can easily show that

 $r_1^I(S)\leqslant r_2^I(S)\leqslant r_3^I(S)\leqslant r_4^I(S)\leqslant r_5^I(S),$

and for convenience we shall use the following terminology:

 $r_1^I(S)$: the small *I*-rank;

 $r_2^I(S)$: the lower *I*-rank;

 $r_3^I(S)$: the intermediate *I*-rank;

 $r_4^I(S)$: the upper *I*-rank; and

 $r_5^I(S)$: the large *I*-rank.

Of the five ranks the most interesting are r_2^I , r_3^I and r_4^I , all of which coincide with the dimension when S is a vector space. The least interesting is r_1^I : for an inverse semigroup S it is easy to see that $r_1^I(S) = 1$ unless S is a semi-lattice E, and $r_1^I(E) = 2$ unless E is a chain, and $r_1^I(E) = |E|$.

From [3,4] we know that the corresponding semigroup ranks r_1, \ldots, r_5 , when applied to B_n , give (for $n \ge 2$)

$$r_1(B_n) = 1,$$
 $r_2(B_n) = n,$ $r_3(B_n) = 2n - 2,$
 $r_4(B_n) = |n^2/4| + n,$ $r_5(B_n) = n^2 - n + 3.$

As remarked above, $r_1^I(B_n) = 1$, and, from [1], we have that $r_2^I(B_n) = n - 1$. In this note we investigate $r_3^I(B_n)$, $r_4^I(B_n)$ and $r_5^I(B_n)$.

For unexplained terms in semigroup theory see [2].

2. The intermediate *I*-rank

Recall that $B_n = (\{1, 2, ..., n\} \times \{1, 2, ..., n\}) \cup \{0\}$, and that

$$(i,j)(k,l) = \begin{cases} (i,l), & \text{if } j = k, \\ 0, & \text{otherwise}, \end{cases}$$

 $(i,j)0 = 0(i,j) = 00 = 0.$

Theorem 2.1. With the above definitions, and with $n \ge 2$,

$$r_3^I(B_n) = n - 1.$$

Proof. It is easy to see that $r_3^I(B_n) \ge n-1$, for the subset

 $A = \{(1,2), (1,3), \dots, (1,n)\}$

is *I*-independent. To see that $\langle\!\langle A \rangle\!\rangle = B_n$, notice first that $0 \in \langle\!\langle A \rangle\!\rangle$, that $(1,1) = (1,2)(1,2)^{-1} \in \langle\!\langle A \rangle\!\rangle$, and that $(i,1) = (1,i)^{-1} \in \langle\!\langle A \rangle\!\rangle$ for all $i \in \{1,2,\ldots,n\}$. Then, finally, $(i,j) = (i,1)(1,j) \in \langle\!\langle A \rangle\!\rangle$ for all $i,j \in \{1,2,\ldots,n\}$.

To show that no larger *I*-independent generating set can be found, we use a graphical technique. To each subset A of $B_n \setminus \{0\}$ we associate an (undirected) graph $\Gamma(A)$ whose vertices are labelled $1, 2, \ldots, n$, and where there is an edge, $i \leftrightarrow j$, between i and j if and only if $(i, j) \in A$.

Within a graph Γ we shall say that a sequence of vertices

$$(v_0, v_1, \ldots, v_{m-1}, v_m)$$

is a path between v_0 and v_m if $v_i \leftrightarrow v_{i+1}$ is an edge in Γ for $i = 0, 1, \ldots, m-1$. It is a proper path if $m \ge 2$ and if v_1, \ldots, v_{m-1} are all distinct from v_0 and v_m .

It is easy to see that $\langle\!\langle A \rangle\!\rangle = B_n$ if and only if the graph $\Gamma(A)$ is connected, that is, if and only if there is a path in $\Gamma(A)$ linking any two vertices. Also, A is *I*-independent if and only if the graph $\Gamma(A)$ is *I*-independent, in the sense that, for all i, j in $\{1, 2, ..., n\}$, there cannot exist both an edge and a proper path between i and j.

We therefore require to prove that, for any connected *I*-independent graph Γ with no repeated edges,

$$|V(\Gamma)| = n \implies |E(\Gamma)| \le n - 1.$$

We do this by induction on n, it being clear by direct verification that a graph with two vertices and at least two edges cannot be both *I*-independent and connected: if there are just two edges, the possibilities are

$$\{(1,1),(1,2)\}, \{(1,1),(2,2)\}, \{(1,2),(2,2)\},\$$

and of these the first and the third are not *I*-independent, and the second is not connected; if there are three edges the only possibility is

$$\{(1,1),(2,2),(1,2)\},\$$

and this set is not *I*-independent.

Let Γ be both connected and *I*-independent, and suppose that $|V(\Gamma)| = n$. Notice first that Γ cannot contain any loops $x \leftrightarrow x$, since there is an edge $x \leftrightarrow y$ for some $y \neq x$, and then we would have both an edge $x \leftrightarrow x$ and a proper path (x, y, x). Choose a vertex x at random, and suppose that there are edges $x \leftrightarrow y_j$ (j = 1, 2, ..., m). Notice that there cannot be any edges $y_j \leftrightarrow y_k$ $(j, k \in \{1, ..., m\})$, because any such edge would give rise to a proper path

$$(x, y_j, y_k)$$

We form a new graph Γ' whose set of vertices is $V(\Gamma) \setminus \{x\}$, and whose edges are those of Γ , except that all the edges $x \leftrightarrow y_j$ (j = 2, ..., m) are replaced by $y_1 \leftrightarrow y_j$. So,

for example, if n = 6 and Γ is

is nothing to prove. If the path

then, taking x = 3 and $y_1 = 2$, we see that Γ' is

5 - 4 (2.2) We show first that Γ' is connected. Certainly, any two vertices *i* and *j* of Γ' are linked by a path in Γ . If this path does not pass through *x*, then it is a path in Γ' , and there

 $(i,\ldots,z,x,t,\ldots,j)$

passes through x (and we may assume that the path is without loops, so that this happens only once) then $z, t \in \{y_1, \ldots, y_m\}$. If $z \neq y_1$ and $t \neq y_1$, then $(i, \ldots, z, y_1, t, \ldots, j)$ is a path in Γ' . If $z = y_1$, then $t \neq y_1$, and $(i, \ldots, y_1, t, \ldots, j)$ is a path in Γ' . If $t = y_1$, then $z \neq y_1$, and $(i, \ldots, z, y_1, \ldots, j)$ is a path in Γ' . Thus Γ' is connected.

To show that Γ' is *I*-independent, suppose that $i \leftrightarrow j$ is an edge in Γ' and that there is also a proper path $P: (i, \ldots, j)$ in Γ' . If *P* does not pass through y_1 , then it is in fact a proper path in Γ , and we have a contradiction. Suppose, therefore, that *P* passes through y_1 ,

 $(i,\ldots,u,y_1,v,\ldots,j),$

where at least one of the edges $u \leftrightarrow y_1, y_1 \leftrightarrow v$ is absent from Γ . From the construction of Γ' it follows that if $u \leftrightarrow y_1$ is absent, then $u \leftrightarrow x$ is an edge of Γ ; and, similarly, if $y_1 \leftrightarrow v$ is absent, then $x \leftrightarrow v$ is an edge in Γ . Hence, we have one of the following proper paths in Γ :

$$(i,\ldots,u,x,y_1,v,\ldots,j), \quad (i,\ldots,u,y_1,x,v,\ldots,j), \quad (i,\ldots,u,x,v,\ldots,j).$$

By induction we may assume that $|E(\Gamma')| \leq n-2$. Hence,

$$|E(\Gamma)| = |E(\Gamma')| + 1 \le n - 1.$$

This completes the proof.

3. The upper *I*-rank

In fact it is fairly easy to modify the proof of Theorem 2.1 to also deal with the upper *I*-rank $r_4^I(B_n)$.

562

Theorem 3.1. Let $n \ge 2$. Then $r_4^I(B_n) = n$.

Proof. It is easy to see that $r_4^I(B_n) \ge n$, for the subset

$$A = \{(1,1), (2,2), \dots, (n,n)\}$$

is *I*-independent.

To show that no larger I-independent set can be found, we use the same graphical technique, and now we need consider only the I-independent property of the graph.

We require to prove that, for any *I*-independent graph Γ with no repeated edges,

$$|V(\Gamma)| = n \implies |E(\Gamma)| \leqslant n.$$

We do this by induction on n, it being clear by direct verification that no graph with two vertices and three or more edges can be *I*-independent: there cannot in fact be more than three edges, and if there are just three edges the only possibility is

$$\{(1,1),(1,2),(2,2)\},\$$

which is certainly not *I*-independent.

Let Γ be *I*-independent, and suppose that $|V(\Gamma)| = n$. Choose a vertex x at random, and form a new graph Γ^* such that $V(\Gamma^*) = V(\Gamma) \setminus \{x\}$ and whose edges are all the edges of Γ except $x \longleftrightarrow x$ if the loop $x \longleftrightarrow x$ is present, all the edges of Γ if the loop $x \longleftrightarrow x$ is not present and if there does not exist y, with $y \neq x$, such that $x \longleftrightarrow y$ is an edge in Γ and, if there are edges $x \longleftrightarrow y_j$ (j = 1, 2, ..., m), Γ^* has the same set of edges of Γ except that all the edges $x \longleftrightarrow y_j$ (j = 2, ..., m) are replaced by $y_1 \longleftrightarrow y_j$. Suppose first that the loop $x \longleftrightarrow x$ is present. Then there can be no edges $x \longleftrightarrow y$ with $y \neq x$, for otherwise we have a proper path (x, y, x). In this case, $E(\Gamma^*)$ consists of all the edges of $E(\Gamma)$ except $x \longleftrightarrow x$, and Γ^* is certainly independent. By induction, since $|V(\Gamma^*)| = n - 1$, we must have $|E(\Gamma^*)| \leq n - 1$, and so it follows that

$$|E(\Gamma)| = |E(\Gamma^*)| + 1 \le n,$$

as required.

Suppose now that the loop $x \longleftrightarrow x$ is not present. If there does not exist y such that $x \longleftrightarrow y$ is an edge in Γ , then Γ^* is certainly independent, and $|E(\Gamma)| = |E(\Gamma^*)| \le n-1$ by the induction hypothesis. So suppose that there are edges $x \longleftrightarrow y_j$ (j = 1, 2, ..., m). Notice there cannot be any edges $y_j \longleftrightarrow y_k$ $(j, k \in \{1, ..., m\})$, because any such edge would give rise to a proper path

$$(x, y_j, y_k).$$

Now, let Γ^* have the same set of edges as Γ , except that all the edges $x \leftrightarrow y_j$ $(j = 2, \ldots, m)$ are replaced by $y_1 \leftrightarrow y_j$. The diagrams (2.1) and (2.2) are as relevant here as in the earlier proof. Indeed, the proof that Γ^* is *I*-independent is in effect identical to the proof in the last section that Γ' is *I*-independent, and is omitted.

By induction we may assume that $|E(\Gamma^*)| \leq n-1$. Hence,

$$|E(\Gamma)| = |E(\Gamma^*)| + 1 \le n.$$

This completes the proof.

4. The large *I*-rank

We now investigate $r_5^I(B_n)$. In fact, we consider something more general, and examine the finite Brandt semigroup B(G, n) for an arbitrary finite group G. Recall that

$$B(G,n) = (\{1, 2, \dots, n\} \times G \times \{1, 2, \dots, n\}) \cup \{0\},\$$

and that the multiplication is given by

$$(i, a, j)(k, b, l) = \begin{cases} (i, ab, l), & \text{if } j = k, \\ 0, & \text{otherwise}, \end{cases}$$
$$0(i, a, j) = (i, a, j)0 = 00 = 0.$$

By analogy with [4, Theorem 3], we have the following theorem.

Theorem 4.1. Let S be a finite inverse semigroup, and let V be the largest proper inverse subsemigroup of S. Then $r_5^I(S) = |V| + 1$.

We now have the following theorem.

Theorem 4.2. Let $n \ge 2$. Then $r_5^I B(G, n) = (n^2 - 2n + 2)|G| + 2$.

Proof. We begin by describing all of the inverse subsemigroups of S = B(G, n). Let V be an inverse subsemigroup of S. Denote $\{1, \ldots, n\}$ by [n].

Define a relation ρ_V on [n] by

$$(i,j) \in \rho_V \iff (\exists g \in G)(i,g,j) \in V.$$

It is easy to see that the relation ρ_V is symmetric and transitive, but, in general it is not reflexive. Let $M = \{i \in [n] : (i, i) \in \rho_V\}$.

In fact, $V \setminus 0 \subseteq M \times G \times M$. For suppose that $i \notin M$; then there cannot exist j such that $(i, j) \in \rho_V$, since then we would have $(j, i) \in \rho_V$ by symmetry and so $(i, i) \in \rho_V$ by transitivity. Now, the relation $\bar{\rho}_V = \rho_V \cap (M \times M)$ is an equivalence on M. Let $C \subseteq M$ be a $\bar{\rho}_V$ -class. For all $i, j \in C$, let $H_{i,j}$ be the (non-empty) subset of G defined by $H_{i,j} = \{g \in G : (i,g,j) \in V\}$. For all $i, j, k \in C$ we have $H_{i,j}H_{j,k} \subseteq H_{i,k}$, and, in particular, $H_{i,i}^2 \subseteq H_{i,i}$ for all $i \in C$.

Let $i, j, k, l \in C$ and let $p \in H_{i,k}$, $q \in H_{l,j}$. Then $p^{-1} \in H_{k,i}$, $q^{-1} \in H_{j,l}$ and $pH_{k,l}q \subseteq H_{i,j}$, $p^{-1}H_{i,j}q^{-1} \subseteq H_{k,l}$.

Hence,

$$|H_{k,l}| = |pH_{k,l}q| \leq |H_{i,j}| = |p^{-1}H_{i,j}q^{-1}| \leq |H_{k,l}|,$$

and, for all $i, j, k, l \in C$, we have $|H_{k,l}| = |H_{i,j}|$.

Now we choose and fix i in C and denote the group $H_{i,i}$ by H_V^C , and choose for each $j \in C$ an element p_j in $H_{i,j}$, arbitrarily.

Then, every $H_{j,k}$ with $j,k \in C$ is the double coset $p_j^{-1}H_V^C p_k$, and

$$V = \{0\} \cup \bigcup_{C \in M/\bar{\rho}_V} \bigcup_{j,k \in C} \{j\} \times p_j^{-1} H_V^C p_k \times \{k\}.$$

The choice of *i* and of the elements p_j is arbitrary, but $p_j^{-1}H_V^C p_k$ will always coincide with $H_{j,k}$.

Conversely, choose a subset M of [n], and let ρ be an equivalence on M. For each ρ -class C, choose and fix an element i in C and let H^C be a subgroup of G. For each j in C choose p_j in G arbitrarily. Then

$$V = \{0\} \cup \bigcup_{C \in \mathcal{M}/\rho} \bigcup_{j,k \in C} \{j\} \times p_j^{-1} H^C p_k \times \{k\}$$

$$(4.1)$$

is an inverse subsemigroup of S. To see this, consider two non-zero elements x, y of this set. Then xy = 0 unless $x = (j, p_j^{-1}ap_k, k), y = (k, p_k^{-1}bp_l, l)$ for some C in M/ρ , some $j, k, l \in C$ and some $a, b \in H^C$. In this case, $xy = (j, p_j^{-1}abp_l, l)$, and so $xy \in V$. Also,

$$x^{-1} = (k, p_k^{-1} a^{-1} p_j, j) \in V.$$

Thus, V is an inverse subsemigroup of S. We have described all the inverse subsemigroups of S.

Remark 4.3. If in (4.1) $M = \emptyset$, then $V = \{0\}$. If M = [n], $\rho = [n] \times [n]$ and $H^{[n]} = G$, then V = S.

From (4.1) we have

$$|V \setminus 0| = \sum_{C \in M/\rho} |C|^2 |H^C|.$$

Suppose that ρ has classes C_1, C_2, \ldots, C_r containing m_1, m_2, \ldots, m_r elements, respectively, and let us write H^{C_i} as H_i . Then

$$|V \setminus 0| = \sum_{i=1}^{r} m_i^2 |H_i|.$$
(4.2)

Lemma 4.4. Let $m = m_1 + m_2 + \cdots + m_r$, with $m_i \ge 1$ for all *i*. Then

- (1) if $r \ge 1$, then $m^2 \ge m_1^2 + \cdots + m_r^2$;
- (2) if $r \ge 2$, then $(m-1)^2 + 1 \ge m_1^2 + \dots + m_r^2$.

Proof. Part (1) is a standard inequality. As for part (2), notice that $1 \le m_r \le m-1$ and that

$$(m-m_r)^2 \ge m_1^2 + \dots + m_{r-1}^2.$$

Hence,

$$[(m-1)^{2}+1] - [m_{1}^{2}+\dots+m_{r}^{2}] \ge [(m-1)^{2}+1] - [(m-m_{r})^{2}+m_{r}^{2}]$$

= 2(m_{r}-1)[(m-1)-m_{r}] \ge 0,

as required. Looking at (4.2), suppose first that $|M| = m \leq n - 1$. Then

$$|V \setminus 0| = \sum_{i=1}^{r} m_i^2 |H_i| \le |G| \sum_{i=1}^{r} m_i^2 \le |G| m^2 \le |G| (n-1)^2.$$
(4.3)

Next, suppose that M = [n], and that $\rho = [n] \times [n]$, the universal relation. Then we have only one equivalence class and r = 1, $m_1 = n$ in (4.2). So $|V \setminus 0| = n^2 |H|$, where H is a subgroup of G. If H = G, then V = S. If H is a proper subgroup of G, then $|H| \leq \frac{1}{2}|G|$, and so

$$|V \setminus 0| \leq \frac{1}{2} |G| n^2. \tag{4.4}$$

Finally, suppose that M = [n] and that ρ has at least two classes. Suppose, in fact, that there are $r \rho$ -classes C_1, C_2, \ldots, C_r , where $|C_i| = m_i$ $(i = 1, \ldots, r)$ and $m_1 + m_2 + \cdots + m_r = n$, then

$$|V \setminus 0| = \sum_{i=1}^{r} m_i^2 |H_i| \leq |G| \sum_{i=1}^{r} m_i^2 \leq |G|[(m-1)^2 + 1]$$

= |G|[(n-1)^2 + 1] = |G|(n^2 - 2n + 2). (4.5)

From (4.3), (4.4) and (4.5) we see that if V is a proper inverse subsemigroup of S then

$$|V| \le (n^2 - 2n + 2)|G| + 1.$$

If we take M = [n], the equivalence ρ with two classes, $\{1, \ldots, n-1\}$ and $\{n\}$, and $H^{\{1,\ldots,n-1\}} = H^{\{n\}} = G$, we obtain an inverse subsemigroup

$$\{0\} \cup \{(i,g,j): i,j = 1, \dots, n-1, g \in G\} \cup \{(n,g,n): g \in G\}$$

of order $(n^2 - 2n + 2)|G| + 1$, and we now know that this is the best possible. We deduce that $r_5^I B(G, n) = (n^2 - 2n + 2)|G| + 2$.

Corollary 4.5. $r_5^I(B_n) = n^2 - 2n + 4.$

We end the paper by applying Theorem 4.2 to a standard inverse semigroup of permutations. First, however, we consider $r_5^I(\mathcal{I}_n)$, where \mathcal{I}_n is the symmetric inverse semigroup on $X = \{1, 2, ..., n\}$.

Theorem 4.6. For $n \ge 3$,

$$r_5^I(\mathcal{I}_n) = \sum_{r=0}^n {\binom{n}{r}}^2 r! - \frac{1}{2}n! + 1.$$

Proof. The inverse semigroup \mathcal{I}_n has n + 1 \mathcal{J} -classes, $\mathcal{J}_0, \mathcal{J}_1, \ldots, \mathcal{J}_n$, where $\mathcal{J}_r = \{\alpha \in \mathcal{I}_n : |\operatorname{dom} \alpha| = r(= |\operatorname{im} \alpha|)\}$. The \mathcal{J} -class \mathcal{J}_0 consists of the empty map usually denoted by $\{0\}$ and \mathcal{J}_n coincides with the symmetric group S_n .

Consider the proper inverse semigroup of \mathcal{I}_n , $V = \mathcal{J}_0 \cup \mathcal{J}_1 \cup \cdots \cup \mathcal{A}_n$, where A_n is the alternating group.

In fact, V is the largest proper inverse subsemigroup of \mathcal{I}_n . It is clear that it is the largest proper inverse subsemigroup whose intersection with S_n is a proper subgroup. So now consider U, a proper inverse subsemigroup of \mathcal{I}_n such that $S_n \subseteq U$.

Now, if $U \cap \mathcal{J}_{n-1} \neq \emptyset$, then $U = \mathcal{I}_n$ (see [2]).

So let $U \subseteq \mathcal{J}_0 \cup \mathcal{J}_1 \cup \cdots \cup \mathcal{J}_{n-2} \cup S_n$. Now

$$|U| \leq |\mathcal{I}_n| - |\mathcal{J}_{n-1}| = |\mathcal{I}_n| - n^2(n-1)! \leq |\mathcal{I}_n| - \frac{1}{2}n!$$
$$= \sum_{r=0}^n \binom{n}{r}^2 r! - \frac{1}{2}n! = |V|.$$

Consequently,

$$r_5^I(I_n) = \sum_{r=0}^n \binom{n}{r}^2 r! - \frac{1}{2}n! + 1,$$

as required.

Consider now $SP_n = \{\alpha \in \mathcal{I}_n : |\operatorname{dom} \alpha| < n\}$, the inverse semigroup of proper subpermutations of $X = \{1, 2, \ldots, n\}$, where $n \ge 3$. The inverse semigroup SP_n has n \mathcal{J} -classes. The top \mathcal{J} -class in SP_n is \mathcal{J}_{n-1} , and the associated principal factor $P_{n-1} = SP_n/(\mathcal{J}_0 \cup \mathcal{J}_1 \cdots \cup \mathcal{J}_{n-2})$ may be thought of in the usual way as $\mathcal{J}_{n-1} \cup \{0\}$, where the product in P_{n-1} of two elements of \mathcal{J}_{n-1} is the product in SP_n if it lies in \mathcal{J}_{n-1} and is 0 otherwise.

Since the principal factor P_{n-1} is a Brandt semigroup B(G, n), where $G = S_{n-1}$ (see [2,6]), the symmetric group on $\{1, \ldots, n-1\}$ and $I = \{1, 2, \ldots, n\}$, we have, as a consequence of Theorem 4.2, an inverse subsemigroup $S \cup \mathcal{J}_{n-2} \cup \cdots \cup \mathcal{J}_0$, where S is of order $(n-1)!(n^2-2n+2)$. This is certainly the largest proper inverse subsemigroup not containing J_{n-1} , and, indeed, is the largest proper inverse subsemigroup of SP_n , for it is well known that $\langle \langle J_{n-1} \rangle \rangle = SP_n$ (see [1]). Hence we obtain the following theorem.

Theorem 4.7. Let $SP_n = \{\alpha \in I_n : |\operatorname{dom} \alpha| < n\}$ be the inverse semigroup of proper subpermutations of $X = \{1, 2, \ldots, n\}$. Then, if $n \ge 3$,

$$r_5^I(SP_n) = \sum_{r=0}^{n-2} {\binom{n}{r}}^2 r! + (n-1)!(n^2 - 2n + 2) + 1.$$

Acknowledgements. The author acknowledges, with thanks, the support of the Fundação para a Ciência e a Tecnologia, the Fundação Calouste Gulbenkian and Projecto Praxix XXI. The author also acknowledges the assistance of Professor John M. Howie in preparing this material for publication.

References

- 1. G. M. S. GOMES AND J. M. HOWIE, On the ranks of certain finite semigroups of transformations, *Math. Proc. Camb. Phil. Soc.* **101** (1987), 395-403.
- 2. J. M. HOWIE, Fundamentals of semigroup theory (Oxford University Press, 1995).
- J. M. HOWIE AND M. I. MARQUES RIBEIRO, Rank properties in finite semigroups, Commun. Algebra 27 (1999), 5333-5347.
- J. M. HOWIE AND M. I. MARQUES RIBEIRO, Rank properties in finite semigroups, II, The small rank and the large rank, S. E. Asian Bull. Math. 24 (2000), 231-237.

- 5. E. MARCZEWSKI, Independence in abstract algebras: results and problems, Colloq. Math. 14 (1966), 169–188.
- 6. M. PETRICH, Inverse semigroups (Wiley, 1984).