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1. Introduction

The rank of a geodesic in a Riemannian manifold is the dinoensif the real
vector space of all parallel Jacobi vector fields along ite Thank of the manifold
is the minimum of the ranks of all its geodesics. A manifoldsad to have higher
rank if its rank is greater than one. Higher rank seems to Heeraexceptional. For
instance, any locally irreducible, compact, Riemanniamifo&d with nonpositive sec-
tional curvature and higher rank is a locally symmetric gpfd], [3], [4]). The cur-
vature assumption is essential ([8]). It is an open problehether the compactness
assumption can be weakened to completenBssiK Rigidity Conjecture[2]).

In the present paper we approach this problem via infinitasgeometry. We give
examples of connected, simply connected, locally irrdoleciRiemannian manifolds
with nonpositive sectional curvature and higher rank bufctvlare not locally sym-
metric. These examples are not complete, but they show Hligatotal Rank Rigidity
Conjecture does not hold and that rank rigidity is a globam@menon. We also study
Riemannian manifolds which are almost flat in some infinitedisense. Among them
are some irreducible, curvature-homogeneous, inhomagsnéladamard manifolds. In
view of rank rigidity for homogeneous Hadamard manifoldsifds natural to investi-
gate the rank of these manifolds. We show that these masifwdde indeed rank one.

We now describe the contents of this paper in more detail. ilfigitesimal rank
of a Riemannian manifold/ is the largest integer such thatef@ry p € M and
v € T,M there exists & -dimensional subspakte infirfitesimal k -flaj of 7,M with
veEFandRX,YYZ =0 forallX,Y,Z € F, where R is the curvature tensor of
M. The n-dimensional Riemannian manifolds with infinitesinnahk » are obviously
the flat Riemannian manifolds. In Section 2 we classify theimeshsional Rieman-
nian manifolds with infinitesimal rank — 1. Since the null space of the Jacobi op-
erator of these manifolds has codimension one these mdsifale good candidates
for having many parallel Jacobi vector fields. Among them @dain cones and cer-
tain Hadamard manifolds which can be realized as twistediynts. In Section 3 we
present some formulas for the curvature of twisted produotSection 4 we show that
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certain cones over Riemannian manifolds with sectionavature bounded from above
provide counterexamples to the local Rank Rigidity Conjext These cones have rank
two and are never complete. In Section 5 we prove that the odrtke above men-
tioned curvature-homogeneous manifolds is equal to one.eMyamerally, we prove
that each locally irreducible Riemannian manifold whosevature tensor is that of
the Riemannian product of a Euclidean space and a surfacenstant curvature has
rank one. This result implies that rank rigidity holds fomeature-homogeneous semi-
symmetric spaces.

AcKNOWLEDGEMENT.  The authors would like to thank EPSRC for the financial
support. The second author would like to thank the Uniwersit Hull for the hospi-
tality during the preparation of this paper.

2. Riemannian n-manifolds of infinitesimal rank n — 1

The infinitesimal rank of a Riemannian manifold is bigger qua than its rank.
It is clear that am -dimensional Riemannian manifsfd  hasitgsimal ranks pre-
cisely if M is flat. We now consider -dimensional Riemanniannifidds with in-
finitesimal rank equal ta — 1.

Proposition 1. Let M be ann -dimensional Riemannian manifold. Thin has
infinitesimal rankn — 1 if and only if M is nonflat and at each point € M its
Riemannian curvature tensor is that B8'—2 x M?(x(p)) for somex(p) € R, where
M?(k(p)) is a surface of constant curvature(p).

Proof. LetM be am -dimensional Riemannian manifold with iitdisimal rank
n — 1. We fix some pointp € M. Let F be somen — 1)-dimensional infinitesimal flat
in T,M and X,, € T,M some unit vector which is perpendicular 6 . By assumption,
there exists ann(— 1)-dimensional infinitesimal flaF’ in T,M with X, € F’. Let
X1, ..., X,_o be an orthonormal basis dfnF’ and X,,_; be a unit vector inF  which
is perpendicular ta" N F’. Then X, ..., X, is an orthonormal basis df,M and, by
assumption, we have, R( X¢, X; X), X; ) =0 whenever at least three indicesna
{1,....,n—2,n—1} orin {1,...,n—2,n}. Therefore the only possible non-vanishing
expression of this form ig, K, X,—1, X,)X., X,—1) modulo the algebraic curvature
identities. This shows thak, has the form of the curvaturedemnf the Riemannian
product R"—2 x M?(x(p)), where M?(x(p)) is a standard space of constant curvature
k(p) € R. We must havex(p) # 0O at somep € M, because otherwis® vanishes
everywhere and/ is flat and hence has infinitesimal rank , wisich contradiction.
ThereforeM is nonflat.

Conversely, letM be an -dimensional nonflat Riemannian rokhivhose curva-
ture tensor at any poing € M is that of R"~2 x M?(x(p)) for somex(p) € R. Clearly
everyv € T,M is contained in a subspade R*2@spafw} C T,M =R" 2
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T,M?(x(p)) for a suitablew € T,M?(x(p)), and F is an infinitesimaln{— 1)-flat.
]

Remark. Riemannian manifolds for which at each point the Riemamrdarva-
ture tensor is that of some Riemannian symmetric space aerkas semi-symmetric
spaces. The local classification of semi-symmetric spaassbleen achieved by Szab
[9]. From his classification we get the following list of Rianmian manifolds whose
curvature tensor at each poipt is thatRf—2 x M?(k(p)) for somex(p) € R:

1. Riemannian manifolds which are locally isometric to therRannian symmetric
spaceR" 2 x M?(x) for somex € R. These manifolds are locally symmetric and lo-
cally reducible.

2. Riemannian manifolds which are foliated by Euclidearvésaof codimension two.
This class of manifolds has been thoroughly studied in [3je Value ofx does de-
pend on the point in general, but whe#i  is connected and nahfaeither negative
or positive everywhere. Fot constant these are the so-called curvature-homogeneous
semi-symmetric spaces, for which a full classification canfound in Chapter 4 of
[5]. An interesting oberservation is that there exist cate@, complete, irreducible,
curvature-homogeneous semi-symmetric spaces which dieomiorphic to R” and
modelled on the curvature tensor BFf 2 x M?(k), = < 0, n > 3. These manifolds
have obviously nonpositive curvature and hence providenwaxamples to the fol-
lowing infinitesimal version of the Rank Rigidity Conjecturlf M is a connected,
complete, locally irreducible Riemannian manifold of nosjpve curvature and in-
finitesimal rank greater than one, thé# is locally symmetiric Section 5 we will
investigate these spaces more thoroughly in relation wighRank Rigidity Conjecture.
3. If n = 3: Euclidean cones, elliptic cones and hyperbolic eonThese particu-
lar cones are cones over surfaces of constant curvaturee Tikean obvious higher-
dimensional generalization of these cones, which we shsdluds in Section 4 also in
relation with the Rank Rigidity Conjecture.

4. If n=2: any Riemannian manifold.

3. Twisted products

In Sections 4 and 5 we will focus on the manifolds which we emtered in the
classification of the: -dimensional Riemannian manifoldthvimfinitesimal rankn — 1.
Many of them can be realized as twisted products. For thisoreage summarize in
this section some basic material concerning twisted prisduc

Let (Mq, g1) and (M>, g») be two Riemannian manifolds anfl M; x M, — R be
some smooth function with positive values. Ttwdsted productM; x ; M, of M; and
M, is the smooth manifold M3 x M, equipped with the Riemannian metric

g(X,Y) = g1u(Xq, Y1) + fgoX2, Y2)
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where X; and X, denote the component of  which is tangentig and M, at the
corresponding points, respectively. ff is a function whistdefined only onM; then

M is a so-calledwarped product and if f is constant equal to one theu is the
Riemannian producdf; x M, of M; and M,. If M; is some open interval ifR and
if f(2) = (at+ b)? with a # 0 then M is acone over M,. We denote byV, V* the
Levi Civita covariant derivative and b® R* the Riemannian curvature tensor &f
My x M, respectively.

Proposition 2. Let M1 x; M> be a twisted product and := In(,/f). Then
VxY = V;Y +dF(X)Y, +dF(Y)X, — g(Xo, Yo)grad F
and

R(X,Y)Z = R*(X, Y)Z
+ || gradf F||2[g(Y2, Z2)X2 — g(X2, Z2)Y2]
—[(hes$ F )Y, Z X2 — (hes$ F )X, Z 2]
— AF(Z)[dF(Y)Xs — dF(X)Ys]
— [g(Y2, Z2)(Hes$ F X — g(X2, Zo)(HesS F Y ]
—[dF(X)8(Y2, Z2) — dF(Y)g(X2, Zo)]gradf F

wheregrad F, Hes$ F and hes$ F are defined by
glgrad F, X )=dF (X)
and

hes§ F &, Y ) =g ((HessF X,Y )@ dF ¥ )X ) dF(VxY)

for all vector fieldsX,Y tangent td/y x ; M.

Proof. The expression fov follows from the Koszul formula for the Levi Civita
covariant derivative by a lengthy but straightforward c#dtion. The expression foR
follows from the one forV by an even lengthier, but still straightforward, calcudati

U

We next derive some formulas for the sectional curvaturewasted products. For
this we denote byk K; and K, the sectional curvature function @f M1 x y Mo,
M; and M, respectively. For eaclp  9(, p2) we identify T,M andT, M, ® T,,M>
in the usual way.

Proposition 3. Let M = M; x; M, be a twisted productF = In(\/f), p =
(p1, p2) € M and o some two-dimensional linear subspaceTgiVf
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(i) If o C Ty M, then
K (o) = K1(o) .

(iiy If o C T,,M, then

1 ,
K(o) = ng(a) +||pré . grad F||Z — trg(hes§ F | o)

wherepré | denotes the -orthogonal projection onto the -orthogonahptements -
of o in T,M and tr, denotes the trace with respect to .M is a warped product
this expression reduces to

1
K(0) = ——Ka(0) — | grad F|?, .
7 i Fle

(iiiy If o N Ty, My and o N T,,M> are both one-dimensional then there exists some or-
thonormal basisXy, Y, of o with X; € T,,, M1 and Y> € T,,M>, and we have

K(0) = —(hes§ F )K1, X1) — d, F(X1)* .

Proof. (i) follows from the fact that; x {p,} is totally geodesic inM , (ii) and
(iii) are straightforward calculations using the explieitpression forR as in Proposi-
tion 2. [

4. Counterexamples to the local Rank Rigidity Conjecture

We start with a result about totally geodesic submanifoidsvarped products.

Proposition 4. Let My x ; M, be a warped product.
(i) If Ny is a totally geodesic submanifold af> then My x s N, is a totally geodesic
submanifold ofMy x ; M.
(i) Lety:J — My x; M> be a geodesic il x; M,. Then~ is contained in the
totally geodesic submanifoldif; x ; N, of My x ; M, where N» is the totally geodesic
submanifold ofM, which is determined byy(z,), for somer, € J. Note thatN, has
dimension less or equal than gnand the dimension oiV, is equal to zero if and
only if v is a geodesic iy x s {p,} for somep, € Mj.

Proof. The first statement follows easily from the exprasdir the Levi Civita
covariant derivative of\; x ; M according to Proposition 2. The second statement is
a consequence of (i). ]

We will now be interested in warped products of the foMh I =, M,, partic-
ularly cones. Here/ is some open intervalRnand f :/ — R is a smooth function



388 J. BERNDT AND E. Samiou

with positive values. The Riemannian metric @n  is the onectvhis induced from
the canonical Riemannian metric & We denote by the parameter @n

Leta,b € R with @ # 0 andar +b > 0 for all r € 1. Then the warped prod-
uct M =1 x; My with f(r) = (at +b)? is a cone overM,. Note that, by construc-
tion, a cone is never complete as a metric space.\Lef — M be a geodesic in
M ands, € J. If A(s,)2 = 0, then~ is a geodesic i/ x; {p}, wherep is deter-
mined by~(s,) = (¢, p). Let N, be any one-dimensional totally geodesic submanifold
of M, with p € N». ThenT x, N, is a two-dimensional totally geodesic submanifold
of M which containsy. Now assume that(s,) # 0. Let N, be the one-dimensional
totally geodesic submanifold a#f, which is determined byy(s,).. As we have seen
in Proposition 4,y is contained in the two-dimensional totally geodesic sufifo#d
N =1 x; N> of M. We thus conclude that each geodesicMn  is contained iresom
two-dimensional totally geodesic submanifold &f  of thenfof x ; N», where N, is
some one-dimensional totally geodesic submanifoldviaf

Let N =1 x; N> be such a totally geodesic submanifold,,§ )N ando =
Ty,.N. SinceN is totally geodesic i/ , Proposition 3 (iii) tells umat the sectional
curvature of N atf,q ) is equal to

K(o)=—F"(t,) — F"(1,) .

Since F ¢) = Ingr +b ), a simple calculation yield§ o)(= 0. We summarize this in
the following proposition.

Proposition 5. If M is a cone over any Riemannian manifold, then each
geodesic inM is contained in some two-dimensional totallydgsic flat submanifold
of M. In particular, both the rank and the infinitesimal rank &f are greater or equal
than two.

We now calculate the sectional curvature functién  of theeckh If M> is one-
dimensional the above argument shows that is flat. We therefssume dimv/, >
2. Let ¢,q)e M, T = (0/01)(t) € T;1, ando C T, ;)M be a two-dimensional linear
subspace. Then there exist somes [0, 7/2] and some orthonormal vectoss,, Y, €
T, M, such that

o =sparfcos@)T + sin() Xz, Y2} .

We denote byory, and oy, y, the two-planes spanned li, Y» and X5, Y, respec-
tively. Then

K(0) = c0$(a)K (o7.1,) + SIF(a) K (0x,.v,) + 2 Sin() CoSQ)g(R(T. Y2)Y2, X2) .
We already know that

K(O’T’yz) =0.
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By means of Proposition 3 (ii) we get f& o, y,) the expression

K(O0xprs) = =~ Kaloxyr,) — F' () = (Ko(0x,r,) — a?) .

1
@) (at +b)?

And from Proposition 2 we get
g(R(T, Y2)Y2, X2) =0 .
Altogether we therefore have

sirt(a)

KOV = Gy

(K2(ox,.v,) — @) .
We therefore conclude

Proposition 6. Let M =1 X+, M2 be a cone over some Riemannian manifold
M. ThenM has nonpositive sectional curvature if and onlkif < a2.

Let M, be some Riemannian manifold whose sectional curvaturetibmda, sat-
isfies K, < a®. According to Proposition 6 the cond  I=x (ar+by? M2 has nonpositive
sectional curvature functio . Moreover, we hakes) € O if and only if & = 0,
which shows thatM is locally irreducible. We therefore caoild:

Theorem 1. The local Rank Rigidity Conjecture does not hold. More el
let M, be a connectedsimply connectedrreducible Riemannian manifold whose sec-
tional curvature functionk, satisfiesk, < a2 for some non-zera € R. Letbh € R
and I = (—oo, —b/a) or I = (—=b/a, o0). Then the cond x .,z M2 has nonpositive
sectional curvatureand any such cone is connectesimply connected, locally irre-
ducible and has rank equal to two.

We finish this section with a remark why it is natural in our @t to study
cones within the class of warped products of the faifn I = M,. Suppose that
K (o) = 0 for all two-planess of the form o = spar 7, Y,} with some unit vectory,
tangent toM,. Then we get the differential equatic1¥r‘Y’+F’2 = 0. Since we assumg
and hence als@& to be smooth this implies that () zadnp + ) foresanb € R. If
a =0 thenM is the Riemannian product bf amf}y equipped with some Riemannian
metric which is homothetic to the orginial one. Otherwige aisone.

5. Rank rigidity of curvature-homogeneous semi-symmetricspaces

We have seen in Proposition 1 that an -dimensional Riemammianifold M has
infinitesimal rankn — 1 if and only if M is a nonflat Riemannian manifold whose cur-
vature tensor at each poipt is that Bf —2 x M?(x(p)) for somex(p) # 0. Since
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such manifolds have, apart from flat spaces, the highestilp@ssfinitesimal rank, it

is natural to investigate what their rank is. Since some efritare connected, simply
connected, complete, irreducible and have nonpositivgature, one might view them
as excellent candidates for complete counterexamplesetdréink Rigidity Conjecture.
We will investigate this here for the case that the values afoes not vary from point
to point.

We first recall that each locally homogeneous semi-symmedpace is locally
symmetric (see e.g. [5, p. 69]). The locally inhomogeneausyature-homogeneous,
semi-symmetric and locally irreducible Riemannian mddgohave the curvature of
R*2 x M?(x) for some fixeds # O (see [5, p. 50]) and can be described as fol-
lows (see [5, p. 65], and [7]). There exists some dense opksesl of M such that
in a neighborhood of every point € U there exist local coordinatesy( ..., x,_1,t)
aroundp and an orthonormal coframe field of the form

wo=h(x,0)dt , wi=dx;+(A@E)xN)dr (=1,...,n—1),

where A is some smooth function with values in the Lie algelfralloskew-symmetric
real @ — 1) x (n — 1)-matrices and the functioh # 0 is given either by

h(x,t) = a(t)e""1 + b([)e_kxl
or by
h(x, 1) = a(r) cosxy) + b(r) sinexs)

with some smooth functions ankl and some non-zero constanbnveGsely, any
local metric of this form is curvature-homogeneous and itsvature tensor is that of
R"=2 x M?(—k?) and R"~2 x M?(k?), respectively. Generically these metrics are also
inhomogeneous and locally irreducible. By a suitable ahad€ A, a, b the first type
defines a connected, simply connected, complete, irredithomogeneous Rieman-
nian manifold of non-positive curvature (see [7, p. 488}, details). The second type
never leads to complete metrics.

We will now investigate metrics of the above form. First of, &y a suitable co-
ordinate transformation we may rewrite the metric as

n—1
g= de,- ®Qdx; + f(x, 1)dt @ dt
i=1

with

n—1

ft) =Y bi()x), X, Xyt

J=1
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and some smooth functiorig ¢ () (see [7, Proposition 11.2])s ©clearly the metric
of some twisted product and we hence may apply Proposition 2.
Before we continue we need a simple lemma from linear algebra

Lemma 1. Letbh = (b, ...,b,_1) € R"! be some non-zero vector arl  the
(n — 1) x (n — 1)-matrix defined by, = b,b,, that is B =b"b. ThenB is positive
semidefinite and the kernel & is equal to the orthogonal ¢ement of the one-
dimensional linear subspace &'~ which is spanned by

Proof. For allw € R"~! we have
wBw! = w®b)w! = wb?)pw?) = W - b)?,

wherew - b is the usual dot product ifR"~1. From this the assertion follows easily.
]

Now let M be a twisted product as described above.

Lemma 2. Let~ be some geodesic i@ and a Jacobi vector field along
such thatR(V, v)y = 0. We suppose that depends on the real parameter and write
v(s) = (71(s), 72(s)) according to the factors oM af(s). Furthermore let T be the
unit tangent vector field along defined by

VIGEITE) = 2 (1(5)

for all 5. Define a vector field¥V along by

Wi=g(V. Ty —g(r.T)V .

Then W(s) is tangent to the first factor oM  a¥(s) and orthogonal to the vector
(b1, ..., by_1)(72(s)) for all s.

Proof. Taking inner product oW  witll’ shows immediately th&ts) i tan-
gent to the first factor of at/(s) for all s. Next, the expression for the curvature
tensorR of M according to Proposition 2 implies

0=g(R(V,%)Y,V)=—(hes§ F )W, W »dF(W)?>= —e F(hes§ e Y, W)
and hence

0 = (hes&e” YW, W ).
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Recall the two possible choices for the functibn . In the faate we have
exp{F(x, 1)} = a(t) exp{kij(t)xj} +b(t) exp{—kZb,-(z)xj}
and in the second case it is
FED = 4 () cos(k 3 bj(t)xj) +b(t) sin (k 3 bj(t)xj) .

We denote byB ) then(— 1) x (n — 1)-matrix whose entry in the-th row andu-th
column isb, (v2(s))b.(72(s)). A simple calculation shows that

(hes§ ef YW, W ) 2™ "WTBW
in the first case and
(hes§ el YW, W ) =—k% "W BW

in the second case. Using Lemma 1, we now see that in both #a6gsis orthogonal
to (b1, ..., by_1)(y2(s)) for all s. This concludes the proof of Lemma 2. O

Lemma 3. Let~y be a geodesic il and a parallel vector field alongLet
T and W be defined as ihemma 2 Then we have

0=g(V.TH' —g(. T)V' +g(3, T)dF(W)T ,
where/ denotes the standard covariant differentiation .
Proof. By means of Proposition 2, satisfies the differential equation
0=9"+2dF ()g(y. )T — g(3, T)*(gradf F)o .

Next, using again Proposition 2, the differential equation the parallel vector field
V along~ is

0=V'+dF(V)g(y, T)T +dF()g(V, T)T — g(7. T)g(V. T)(gradf F )oy .

We multiply the first equation withg W, T ), the second one wjhy, T), and then
subtract the resulting equations from each other, whicleggihe result. [

We will now prove that rank rigidity holds for curvature-hogeneous semi-
symmetric spaces.

Theorem 2. Let M be ann -dimensional locally irreducible Riemannian nialal
whose curvature tensor is that &2 x M? at each pointwhere M? is a surface of
nonzero constant curvature. Then the rankdf is one.



RANK RiGIDITY, CONES, AND HADAMARD MANIFOLDS 393

Proof. If M is locally homogeneous them is locally symmetrig @ready
mentioned above. IM is locally inhomogeneous, we may reprie® on some dense
open subset locally by twisted products of the form as deedriabove. Lety be a
geodesic in such a twisted product alid a parallel Jacoborvdield along~. Since
V is parallel we have in particulaR V(~)y = 0. Let W andT be as in Lemma 2.
According to Lemma 2W s( ) is tangent to the first factor Mf  ~dt) and orthogo-
nal to the vectork;, ..., b,—1)(y2(s)) for all s.

On the other hand, a simple calculation shows that (gFac ~(}) is a multiple
of

(b1(72(5)), - - - ba—1(72(5)), A(s))

with some suitable\(s) € R. This implies that
dF(W)=0,
and from Lemma 3 we therefore see that  satisfies the diffatesquation

g, TV =g(V,T)" .

Since the first factor is totally geodesic M  everywhere we 8®&tg ¢, T')(s) = 0
for somes if and only ifg §,T)(s) = O for all s. We now assume that is a
geodesic which is not tangent to the first factor somewhene, l@ence everywhere.
Theng ¢, T) # 0 everywhere and we get

V! = gV, 1) ,
8y, T)
This is a first order equation and we easily see that all soigtiare given by ¢( ) =

pv'(¢) for some constanp € R. This shows that the rank of the geodesids one,
and we conclude tha  has rank one. ]
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