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1. Introduction

The rank of a geodesic in a Riemannian manifold is the dimension of the real
vector space of all parallel Jacobi vector fields along it. The rank of the manifold
is the minimum of the ranks of all its geodesics. A manifold issaid to have higher
rank if its rank is greater than one. Higher rank seems to be rather exceptional. For
instance, any locally irreducible, compact, Riemannian manifold with nonpositive sec-
tional curvature and higher rank is a locally symmetric space ([1], [3], [4]). The cur-
vature assumption is essential ([8]). It is an open problem whether the compactness
assumption can be weakened to completeness (Rank Rigidity Conjecture, [2]).

In the present paper we approach this problem via infinitesimal geometry. We give
examples of connected, simply connected, locally irreducible Riemannian manifolds
with nonpositive sectional curvature and higher rank but which are not locally sym-
metric. These examples are not complete, but they show that the local Rank Rigidity
Conjecture does not hold and that rank rigidity is a global phenomenon. We also study
Riemannian manifolds which are almost flat in some infinitesimal sense. Among them
are some irreducible, curvature-homogeneous, inhomogeneous, Hadamard manifolds. In
view of rank rigidity for homogeneous Hadamard manifolds [6] it is natural to investi-
gate the rank of these manifolds. We show that these manifolds have indeed rank one.

We now describe the contents of this paper in more detail. Theinfinitesimal rank
of a Riemannian manifold is the largest integer such that forevery ∈ and
∈ there exists a -dimensional subspace (infinitesimal -flat) of with
∈ and ( ) = 0 for all ∈ , where is the curvature tensor of
. The -dimensional Riemannian manifolds with infinitesimalrank are obviously

the flat Riemannian manifolds. In Section 2 we classify the -dimensional Rieman-
nian manifolds with infinitesimal rank − 1. Since the null space of the Jacobi op-
erator of these manifolds has codimension one these manifolds are good candidates
for having many parallel Jacobi vector fields. Among them arecertain cones and cer-
tain Hadamard manifolds which can be realized as twisted products. In Section 3 we
present some formulas for the curvature of twisted products. In Section 4 we show that
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certain cones over Riemannian manifolds with sectional curvature bounded from above
provide counterexamples to the local Rank Rigidity Conjecture. These cones have rank
two and are never complete. In Section 5 we prove that the rankof the above men-
tioned curvature-homogeneous manifolds is equal to one. More generally, we prove
that each locally irreducible Riemannian manifold whose curvature tensor is that of
the Riemannian product of a Euclidean space and a surface of constant curvature has
rank one. This result implies that rank rigidity holds for curvature-homogeneous semi-
symmetric spaces.

ACKNOWLEDGEMENT. The authors would like to thank EPSRC for the financial
support. The second author would like to thank the University of Hull for the hospi-
tality during the preparation of this paper.

2. Riemannian n-manifolds of infinitesimal rank n− 1

The infinitesimal rank of a Riemannian manifold is bigger or equal than its rank.
It is clear that an -dimensional Riemannian manifold has infinitesimal rank pre-
cisely if is flat. We now consider -dimensional Riemannian manifolds with in-
finitesimal rank equal to − 1.

Proposition 1. Let be an -dimensional Riemannian manifold. Then has
infinitesimal rank − 1 if and only if is nonflat and at each point ∈ its
Riemannian curvature tensor is that ofR −2 × 2(κ( )) for someκ( ) ∈ R, where

2(κ( )) is a surface of constant curvatureκ( ).

Proof. Let be an -dimensional Riemannian manifold with infinitesimal rank
−1. We fix some point ∈ . Let be some (−1)-dimensional infinitesimal flat

in and ∈ some unit vector which is perpendicular to . By assumption,
there exists an (− 1)-dimensional infinitesimal flat ′ in with ∈ ′. Let

1 . . . −2 be an orthonormal basis of∩ ′ and −1 be a unit vector in which
is perpendicular to ∩ ′. Then 1 . . . is an orthonormal basis of and, by
assumption, we have ( ( ) ) = 0 whenever at least three indices are in
{1 . . . −2 −1} or in {1 . . . −2 }. Therefore the only possible non-vanishing
expression of this form is ( ( −1 ) −1) modulo the algebraic curvature
identities. This shows that has the form of the curvature tensor of the Riemannian
product R −2 × 2(κ( )), where 2(κ( )) is a standard space of constant curvature
κ( ) ∈ R. We must haveκ( ) 6= 0 at some ∈ , because otherwise vanishes
everywhere and is flat and hence has infinitesimal rank , whichis a contradiction.
Therefore is nonflat.

Conversely, let be an -dimensional nonflat Riemannian manifold whose curva-
ture tensor at any point ∈ is that ofR −2× 2(κ( )) for someκ( ) ∈ R. Clearly
every ∈ is contained in a subspace =R −2 ⊕ span{ } ⊂ = R −2 ⊕
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2(κ( )) for a suitable ∈ 2(κ( )), and is an infinitesimal (− 1)-flat.

REMARK. Riemannian manifolds for which at each point the Riemannian curva-
ture tensor is that of some Riemannian symmetric space are known as semi-symmetric
spaces. The local classification of semi-symmetric spaces has been achieved by Szabó
[9]. From his classification we get the following list of Riemannian manifolds whose
curvature tensor at each point is that ofR −2 × 2(κ( )) for someκ( ) ∈ R:
1. Riemannian manifolds which are locally isometric to the Riemannian symmetric
spaceR −2 × 2(κ) for someκ ∈ R. These manifolds are locally symmetric and lo-
cally reducible.
2. Riemannian manifolds which are foliated by Euclidean leaves of codimension two.
This class of manifolds has been thoroughly studied in [5]. The value ofκ does de-
pend on the point in general, but when is connected and nonflatit is either negative
or positive everywhere. Forκ constant these are the so-called curvature-homogeneous
semi-symmetric spaces, for which a full classification can be found in Chapter 4 of
[5]. An interesting oberservation is that there exist connected, complete, irreducible,
curvature-homogeneous semi-symmetric spaces which are diffeomorphic to R and
modelled on the curvature tensor ofR −2 × 2(κ), κ < 0, ≥ 3. These manifolds
have obviously nonpositive curvature and hence provide counterexamples to the fol-
lowing infinitesimal version of the Rank Rigidity Conjecture: If is a connected,
complete, locally irreducible Riemannian manifold of nonpositive curvature and in-
finitesimal rank greater than one, then is locally symmetric. In Section 5 we will
investigate these spaces more thoroughly in relation with the Rank Rigidity Conjecture.
3. If = 3: Euclidean cones, elliptic cones and hyperbolic cones. These particu-
lar cones are cones over surfaces of constant curvature. There is an obvious higher-
dimensional generalization of these cones, which we shall discuss in Section 4 also in
relation with the Rank Rigidity Conjecture.
4. If = 2: any Riemannian manifold.

3. Twisted products

In Sections 4 and 5 we will focus on the manifolds which we encountered in the
classification of the -dimensional Riemannian manifolds with infinitesimal rank −1.
Many of them can be realized as twisted products. For this reason we summarize in
this section some basic material concerning twisted products.

Let ( 1 1) and ( 2 2) be two Riemannian manifolds and :1× 2→ R be
some smooth function with positive values. Thetwisted product 1× 2 of 1 and

2 is the smooth manifold := 1× 2 equipped with the Riemannian metric

( ) := 1( 1 1) + 2( 2 2)
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where 1 and 2 denote the component of which is tangent to1 and 2 at the
corresponding points, respectively. If is a function whichis defined only on 1 then

is a so-calledwarped product, and if is constant equal to one then is the
Riemannian product 1 × 2 of 1 and 2. If 1 is some open interval inR and
if ( ) = ( + )2 with 6= 0 then is acone over 2. We denote by∇, ∇× the
Levi Civita covariant derivative and by ,× the Riemannian curvature tensor of ,

1× 2, respectively.

Proposition 2. Let 1× 2 be a twisted product and := ln(
√

). Then

∇ = ∇× + ( ) 2 + ( ) 2− ( 2 2) grad

and

( ) = ×( )

+ ‖ grad ‖2[ ( 2 2) 2− ( 2 2) 2]

− [(hess )( ) 2− (hess )( ) 2]

− ( )[ ( ) 2− ( ) 2]

− [ ( 2 2)(Hess ) − ( 2 2)(Hess ) ]

− [ ( ) ( 2 2)− ( ) ( 2 2)] grad

wheregrad , Hess and hess are defined by

(grad ) = ( )

and

hess ( ) = ((Hess ) ) = ( ( ))( )− (∇ )

for all vector fields tangent to 1× 2.

Proof. The expression for∇ follows from the Koszul formula for the Levi Civita
covariant derivative by a lengthy but straightforward calculation. The expression for
follows from the one for∇ by an even lengthier, but still straightforward, calculation.

We next derive some formulas for the sectional curvature on twisted products. For
this we denote by , 1 and 2 the sectional curvature function of =1 × 2,

1 and 2, respectively. For each = (1 2) we identify and 1 1⊕ 2 2

in the usual way.

Proposition 3. Let = 1 × 2 be a twisted product, = ln(
√

), =
( 1 2) ∈ and σ some two-dimensional linear subspace of .
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(i) If σ ⊂ 1 1 then

(σ) = 1(σ)

(ii) If σ ⊂ 2 2 then

(σ) =
1
( ) 2(σ) + ‖ pr

σ⊥ grad ‖2 − tr (hess | σ)

wherepr
σ⊥ denotes the -orthogonal projection onto the -orthogonal complementσ⊥

of σ in and tr denotes the trace with respect to . If is a warped product
this expression reduces to

(σ) =
1
( 1) 2(σ)− ‖ grad 1

1
‖2

1

(iii) If σ ∩ 1 1 and σ ∩ 2 2 are both one-dimensional then there exists some or-
thonormal basis 1 2 of σ with 1 ∈ 1 1 and 2 ∈ 2 2, and we have

(σ) = −(hess )( 1 1)− ( 1)2

Proof. (i) follows from the fact that 1×{ 2} is totally geodesic in , (ii) and
(iii) are straightforward calculations using the explicitexpression for as in Proposi-
tion 2.

4. Counterexamples to the local Rank Rigidity Conjecture

We start with a result about totally geodesic submanifolds in warped products.

Proposition 4. Let 1× 2 be a warped product.
(i) If 2 is a totally geodesic submanifold of2 then 1× 2 is a totally geodesic
submanifold of 1× 2.
(ii) Let γ : → 1 × 2 be a geodesic in 1 × 2. Thenγ is contained in the
totally geodesic submanifold 1× 2 of 1× 2, where 2 is the totally geodesic
submanifold of 2 which is determined bẏγ( )2 for some ∈ . Note that 2 has
dimension less or equal than one, and the dimension of 2 is equal to zero if and
only if γ is a geodesic in 1× { 2} for some 2 ∈ 2.

Proof. The first statement follows easily from the expression for the Levi Civita
covariant derivative of 1× 2 according to Proposition 2. The second statement is
a consequence of (i).

We will now be interested in warped products of the form =× 2, partic-
ularly cones. Here, is some open interval inR and : → R is a smooth function
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with positive values. The Riemannian metric on is the one which is induced from
the canonical Riemannian metric onR. We denote by the parameter on .

Let ∈ R with 6= 0 and + > 0 for all ∈ . Then the warped prod-
uct = × 2 with ( ) = ( + )2 is a cone over 2. Note that, by construc-
tion, a cone is never complete as a metric space. Letγ : → be a geodesic in

and ∈ . If γ̇( )2 = 0, thenγ is a geodesic in × { }, where is deter-
mined byγ( ) = ( ). Let 2 be any one-dimensional totally geodesic submanifold
of 2 with ∈ 2. Then × 2 is a two-dimensional totally geodesic submanifold
of which containsγ. Now assume that ˙γ( ) 6= 0. Let 2 be the one-dimensional
totally geodesic submanifold of 2 which is determined by ˙γ( )2. As we have seen
in Proposition 4,γ is contained in the two-dimensional totally geodesic submanifold

:= × 2 of . We thus conclude that each geodesic in is contained in some
two-dimensional totally geodesic submanifold of of the form × 2, where 2 is
some one-dimensional totally geodesic submanifold of2.

Let = × 2 be such a totally geodesic submanifold, ( )∈ and σ =

( ) . Since is totally geodesic in , Proposition 3 (iii) tells us that the sectional
curvature of at ( ) is equal to

(σ) = − ′′( )− ′2( )

Since ( ) = ln( + ), a simple calculation yields (σ) = 0. We summarize this in
the following proposition.

Proposition 5. If is a cone over any Riemannian manifold, then each
geodesic in is contained in some two-dimensional totally geodesic flat submanifold
of . In particular, both the rank and the infinitesimal rank of are greater or equal
than two.

We now calculate the sectional curvature function of the cone . If 2 is one-
dimensional the above argument shows that is flat. We therefore assume dim 2 ≥
2. Let ( )∈ , = (∂/∂ )( ) ∈ , and σ ⊂ ( ) be a two-dimensional linear
subspace. Then there exist someα ∈ [0 π/2] and some orthonormal vectors2 2 ∈

2 such that

σ = span{cos(α) + sin(α) 2 2}

We denote byσ 2 and σ 2 2 the two-planes spanned by 2 and 2 2, respec-
tively. Then

(σ) = cos2(α) (σ 2) + sin2(α) (σ 2 2) + 2 sin(α) cos(α) ( ( 2) 2 2)

We already know that

(σ 2) = 0
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By means of Proposition 3 (ii) we get for (σ 2 2) the expression

(σ 2 2) =
1
( ) 2(σ 2 2)− ′2( ) =

1
( + )2

( 2(σ 2 2)− 2)

And from Proposition 2 we get

( ( 2) 2 2) = 0

Altogether we therefore have

(σ) =
sin2(α)

( + )2
( 2(σ 2 2)− 2)

We therefore conclude

Proposition 6. Let = ×( + )2 2 be a cone over some Riemannian manifold

2. Then has nonpositive sectional curvature if and only if2 ≤ 2.

Let 2 be some Riemannian manifold whose sectional curvature function 2 sat-
isfies 2 <

2. According to Proposition 6 the cone =×( + )2 2 has nonpositive
sectional curvature function . Moreover, we have (σ) = 0 if and only if α = 0,
which shows that is locally irreducible. We therefore conclude:

Theorem 1. The local Rank Rigidity Conjecture does not hold. More precisely,
let 2 be a connected, simply connected, irreducible, Riemannian manifold whose sec-
tional curvature function 2 satisfies 2 <

2 for some non-zero ∈ R. Let ∈ R
and = (−∞ − / ) or = (− / ∞). Then the cone ×( + )2 2 has nonpositive
sectional curvature, and any such cone is connected, simply connected, locally irre-
ducible and has rank equal to two.

We finish this section with a remark why it is natural in our context to study
cones within the class of warped products of the form =× 2. Suppose that

(σ) = 0 for all two-planesσ of the form σ = span{ 2} with some unit vector 2

tangent to 2. Then we get the differential equation′′ + ′2 = 0. Since we assume
and hence also to be smooth this implies that ( ) = ln( + ) for some ∈ R. If

= 0 then is the Riemannian product of and2 equipped with some Riemannian
metric which is homothetic to the orginial one. Otherwise isa cone.

5. Rank rigidity of curvature-homogeneous semi-symmetricspaces

We have seen in Proposition 1 that an -dimensional Riemannian manifold has
infinitesimal rank −1 if and only if is a nonflat Riemannian manifold whose cur-
vature tensor at each point is that ofR −2 × 2(κ( )) for someκ( ) 6= 0. Since
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such manifolds have, apart from flat spaces, the highest possible infinitesimal rank, it
is natural to investigate what their rank is. Since some of them are connected, simply
connected, complete, irreducible and have nonpositive curvature, one might view them
as excellent candidates for complete counterexamples to the Rank Rigidity Conjecture.
We will investigate this here for the case that the value ofκ does not vary from point
to point.

We first recall that each locally homogeneous semi-symmetric space is locally
symmetric (see e.g. [5, p. 69]). The locally inhomogeneous,curvature-homogeneous,
semi-symmetric and locally irreducible Riemannian manifolds have the curvature of
R −2 × 2(κ) for some fixedκ 6= 0 (see [5, p. 50]) and can be described as fol-
lows (see [5, p. 65], and [7]). There exists some dense open subset of such that
in a neighborhood of every point ∈ there exist local coordinates (1 . . . −1 )
around and an orthonormal coframe field of the form

ω0 = ( ) ω = + ( ( ) ) ( = 1 . . . − 1)

where is some smooth function with values in the Lie algebra of all skew-symmetric
real ( − 1)× ( − 1)-matrices and the function 6= 0 is given either by

( ) = ( ) 1 + ( ) − 1

or by

( ) = ( ) cos( 1) + ( ) sin( 1)

with some smooth functions and and some non-zero constant . Conversely, any
local metric of this form is curvature-homogeneous and its curvature tensor is that of
R −2 × 2(− 2) and R −2 × 2( 2), respectively. Generically these metrics are also
inhomogeneous and locally irreducible. By a suitable choice of the first type
defines a connected, simply connected, complete, irreducible, inhomogeneous Rieman-
nian manifold of non-positive curvature (see [7, p. 488], for details). The second type
never leads to complete metrics.

We will now investigate metrics of the above form. First of all, by a suitable co-
ordinate transformation we may rewrite the metric as

=
−1∑

=1

⊗ + ( ) ⊗

with

( ) := 2




−1∑

=1

( ) 2 . . . −1



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and some smooth functions ( ) (see [7, Proposition 11.2]). This is clearly the metric
of some twisted product and we hence may apply Proposition 2.

Before we continue we need a simple lemma from linear algebra.

Lemma 1. Let = ( 1 . . . −1) ∈ R −1 be some non-zero vector and the
( − 1)× ( − 1)-matrix defined by νµ = ν µ, that is, = . Then is positive
semidefinite and the kernel of is equal to the orthogonal complement of the one-
dimensional linear subspace ofR −1 which is spanned by .

Proof. For all ∈ R −1 we have

= ( ) = ( )( ) = ( · )2

where · is the usual dot product inR −1. From this the assertion follows easily.

Now let be a twisted product as described above.

Lemma 2. Let γ be some geodesic in and a Jacobi vector field alongγ

such that ( γ̇)γ̇ = 0. We suppose thatγ depends on the real parameter and write
γ( ) = (γ1( ) γ2( )) according to the factors of atγ( ). Furthermore, let be the
unit tangent vector field alongγ defined by

√
(γ( )) ( ) =

∂

∂
(γ( ))

for all . Define a vector field alongγ by

:= ( )γ̇ − (γ̇ )

Then ( ) is tangent to the first factor of atγ( ) and orthogonal to the vector
( 1 . . . −1)(γ2( )) for all .

Proof. Taking inner product of with shows immediately that () is tan-
gent to the first factor of atγ( ) for all . Next, the expression for the curvature
tensor of according to Proposition 2 implies

0 = ( ( γ̇)γ̇ ) = −(hess )( )− ( )2 = − − (hess )( )

and hence

0 = (hess )( )
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Recall the two possible choices for the function . In the firstcase we have

exp{ ( )} = ( ) exp
{ ∑

( )
}

+ ( ) exp
{
−
∑

( )
}

and in the second case it is

( ) = ( ) cos
( ∑

( )
)

+ ( ) sin
( ∑

( )
)

We denote by ( ) the (− 1)× ( − 1)-matrix whose entry in theν-th row andµ-th
column is ν(γ2( )) µ(γ2( )). A simple calculation shows that

(hess )( ) = 2 ◦γ

in the first case and

(hess )( ) =− 2 ◦γ

in the second case. Using Lemma 1, we now see that in both cases( ) is orthogonal
to ( 1 . . . −1)(γ2( )) for all . This concludes the proof of Lemma 2.

Lemma 3. Let γ be a geodesic in and a parallel vector field alongγ. Let
and be defined as inLemma 2. Then we have

0 = ( )γ′′ − (γ̇ ) ′ + (γ̇ ) ( )

where ′ denotes the standard covariant differentiation inR .

Proof. By means of Proposition 2,γ satisfies the differential equation

0 = γ′′ + 2 (γ̇) (γ̇ ) − (γ̇ )2(grad )◦ γ

Next, using again Proposition 2, the differential equationfor the parallel vector field
along γ is

0 = ′ + ( ) (γ̇ ) + (γ̇) ( ) − (γ̇ ) ( )(grad )◦ γ

We multiply the first equation with ( ), the second one with ( ˙γ ), and then
subtract the resulting equations from each other, which gives the result.

We will now prove that rank rigidity holds for curvature-homogeneous semi-
symmetric spaces.

Theorem 2. Let be an -dimensional locally irreducible Riemannian manifold
whose curvature tensor is that ofR −2× 2 at each point, where 2 is a surface of
nonzero constant curvature. Then the rank of is one.
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Proof. If is locally homogeneous then is locally symmetric as already
mentioned above. If is locally inhomogeneous, we may represent on some dense
open subset locally by twisted products of the form as described above. Letγ be a
geodesic in such a twisted product and a parallel Jacobi vector field alongγ. Since

is parallel we have in particular ( ˙γ)γ̇ = 0. Let and be as in Lemma 2.
According to Lemma 2, ( ) is tangent to the first factor of atγ( ) and orthogo-
nal to the vector (1 . . . −1)(γ2( )) for all .

On the other hand, a simple calculation shows that (grad )◦ γ( ) is a multiple
of

( 1(γ2( )) . . . −1(γ2( )) λ( ))

with some suitableλ( ) ∈ R. This implies that

( ) = 0

and from Lemma 3 we therefore see that satisfies the differential equation

(γ̇ ) ′ = ( )γ′′

Since the first factor is totally geodesic in everywhere we see that (γ̇ )( ) = 0
for some if and only if ( ˙γ )( ) = 0 for all . We now assume thatγ is a
geodesic which is not tangent to the first factor somewhere, and hence everywhere.
Then (γ̇ ) 6= 0 everywhere and we get

′ =
( )
(γ̇ )

γ′′

This is a first order equation and we easily see that all solutions are given by ( ) =
ργ′( ) for some constantρ ∈ R. This shows that the rank of the geodesicγ is one,
and we conclude that has rank one.

References

[1] W. Ballmann:Nonpositively curved manifolds of higher rank, Ann. Math.122 (1985), 597–609.
[2] W. Ballmann: Lectures on spaces of nonpositive curvature, Birkhäuser, Basel, 1995.
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