# Rank two globally generated vector bundles with $c_{1} \leq 5$ 

Ludovica Chiodera and Philippe Ellia


#### Abstract

We classify globally generated rank two vector bundles on $\mathbb{P}^{n}, n \geq 3$, with $c_{1} \leq 5$. The classification is complete but for one case $\left(n=3, c_{1}=5, c_{2}=12\right)$.


Keywords: Vector bundles, rank two, globally generated, projective space MS Classification 2010: 14F05, 14M15

## 1. Introduction.

Vector bundles generated by global sections are basic objects in projective algebraic geometry. Globally generated line bundles correspond to morphisms to a projective space, more generally higher rank bundles correspond to morphism to (higher) Grassmann varieties. For this last point of view (that won't be touched in this paper) see [10, 12, 13]. Also globally generated vector bundles appear in a variety of problems ([7] just to make a single, recent example).

In this paper we classify globally generated rank two vector bundles on $\mathbb{P}^{n}$ (projective space over $k, \bar{k}=k, \operatorname{ch}(k)=0$ ), $n \geq 3$, with $c_{1} \leq 5$. The result is:

Theorem 1.1. Let $E$ be a rank two vector bundle on $\mathbb{P}^{n}, n \geq 3$, generated by global sections with Chern classes $c_{1}, c_{2}, c_{1} \leq 5$.

1. If $n \geq 4$, then $E$ is the direct sum of two line bundles
2. If $n=3$ and $E$ is indecomposable, then

$$
\left(c_{1}, c_{2}\right) \in S=\{((2,2),(4,5),(4,6),(4,7),(4,8),(5,8),(5,10),(5,12)\}
$$

If $E$ exists there is an exact sequence:

$$
0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{C}\left(c_{1}\right) \rightarrow 0(*)
$$

where $C \subset \mathbb{P}^{3}$ is a smooth curve of degree $c_{2}$ with $\omega_{C}\left(4-c_{1}\right) \simeq \mathcal{O}_{C}$. The curve $C$ is irreducible, except maybe if $\left(c_{1}, c_{2}\right)=(4,8)$ : in this case $C$ can be either irreducible or the disjoint union of two smooth conics.
3. For every $\left(c_{1}, c_{2}\right) \in S,\left(c_{1}, c_{2}\right) \neq(5,12)$, there exists a rank two vector bundle on $\mathbb{P}^{3}$ with Chern classes $\left(c_{1}, c_{2}\right)$ which is globally generated (and with an exact sequence as in 2.).

The classification is complete, but for one case: we are unable to say if there exist or not globally generated rank two vector bundles with Chern classes $c_{1}=5, c_{2}=12$ on $\mathbb{P}^{3}$.

## 2. Rank two vector bundles on $\mathbb{P}^{3}$.

### 2.1. General facts.

For completeness let's recall the following well known results:
Lemma 2.1. Let $E$ be a rank $r$ vector bundle on $\mathbb{P}^{n}, n \geq 3$. Assume $E$ is generated by global sections.

1. If $c_{1}(E)=0$, then $E \simeq r . \mathcal{O}$
2. If $c_{1}(E)=1$, then $E \simeq \mathcal{O}(1) \oplus(r-1) \cdot \mathcal{O}$ or $E \simeq T(-1) \oplus(r-n) \cdot \mathcal{O}$.

Proof. If $L \subset \mathbb{P}^{n}$ is a line then $E \mid L \simeq \bigoplus_{i=1}^{r} \mathcal{O}_{L}\left(a_{i}\right)$ by a well known theorem and $a_{i} \geq 0, \forall i$ since $E$ is globally generated. It turns out that in both cases: $E \mid L \simeq \mathcal{O}_{L}\left(c_{1}\right) \oplus(r-1) \cdot \mathcal{O}_{L}$ for every line $L$, i.e. $E$ is uniform. Then 1 . follows from a result of Van de Ven ([14]), while 2. follows from IV. Prop. 2.2 of [4].

Lemma 2.2. Let $E$ be a rank two vector bundle on $\mathbb{P}^{n}$, $n \geq 3$. If $E$ has a nowhere vanishing section then $E$ splits. If $E$ is generated by global sections and doesn't split then $h^{0}(E) \geq 3$ and a general section of $E$ vanishes along a smooth curve, $C$, of degree $c_{2}(E)$ such that $\omega_{C}\left(4-c_{1}\right) \simeq \mathcal{O}_{C}$. Moreover $\mathcal{I}_{C}\left(c_{1}\right)$ is generated by global sections.

Lemma 2.3. Let $E$ be a non split rank two vector bundle on $\mathbb{P}^{3}$ with $c_{1}=2$. If $E$ is generated by global sections then $E$ is a null-correlation bundle.

Proof. We have an exact sequence: $0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{C}(2) \rightarrow 0$, where $C$ is a smooth curve with $\omega_{C}(2) \simeq \mathcal{O}_{C}$. It follows that $C$ is a disjoint union of lines. Since $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 2, d(C) \leq 2$. Finally $d(C)=2$ because $E$ doesn't split.

This settles the classification of rank two globally generated vector bundles with $c_{1}(E) \leq 2$ on $\mathbb{P}^{3}$.

### 2.2. Globally generated rank two vector bundles with $c_{1}=3$.

The following result has been proved in [10] (with a different and longer proof).

Proposition 2.4. Let $E$ be a rank two globally generated vector bundle on $\mathbb{P}^{3}$. If $c_{1}(E)=3$ then $E$ splits.

Proof. Assume a general section vanishes in codimension two, then it vanishes along a smooth curve $C$ such that $\omega_{C} \simeq \mathcal{O}_{C}(-1)$. Moreover $\mathcal{I}_{C}(3)$ is generated by global sections. We have $C=\cup_{i=1}^{r} C_{i}$ (disjoint union) where each $C_{i}$ is smooth irreducible with $\omega_{C_{i}} \simeq \mathcal{O}_{C_{i}}(-1)$. It follows that each $C_{i}$ is a smooth conic. If $r \geq 2$ let $L=\left\langle C_{1}\right\rangle \cap\left\langle C_{2}\right\rangle\left(\left\langle C_{i}\right\rangle\right.$ is the plane spanned by $\left.C_{i}\right)$. Every cubic containing $C$ contains $L$ (because it contains the four points $C_{1} \cap L$, $\left.C_{2} \cap L\right)$. This contradicts the fact that $\mathcal{I}_{C}(3)$ is globally generated. Hence $r=1$ and $E=\mathcal{O}(1) \oplus \mathcal{O}(2)$.

### 2.3. Globally generated rank two vector bundles with $c_{1}=4$.

Let's start with a general result:
Lemma 2.5. Let $E$ be a non split rank two vector bundle on $\mathbb{P}^{3}$ with Chern classes $c_{1}, c_{2}$. If $E$ is globally generated and if $c_{1} \geq 4$ then:

$$
c_{2} \leq \frac{2 c_{1}^{3}-4 c_{1}^{2}+2}{3 c_{1}-4}
$$

Proof. By our assumptions a general section of $E$ vanishes along a smooth curve, $C$, such that $\mathcal{I}_{C}\left(c_{1}\right)$ is generated by global sections. Let $U$ be the complete intersections of two general surfaces containing $C$. Then $U$ links $C$ to a smooth curve, $Y$. We have $Y \neq \varnothing$ since $E$ doesn't split. The exact sequence of liaison: $0 \rightarrow \mathcal{I}_{U}\left(c_{1}\right) \rightarrow \mathcal{I}_{C}\left(c_{1}\right) \rightarrow \omega_{Y}\left(4-c_{1}\right) \rightarrow 0$ shows that $\omega_{Y}\left(4-c_{1}\right)$ is generated by global sections. Hence $\operatorname{deg}\left(\omega_{Y}\left(4-c_{1}\right)\right) \geq 0$. We have $\operatorname{deg}\left(\omega_{Y}\left(4-c_{1}\right)\right)=2 g^{\prime}-2+d^{\prime}\left(4-c_{1}\right)\left(g^{\prime}=p_{a}(Y), d^{\prime}=\operatorname{deg}(Y)\right)$. So $g^{\prime} \geq \frac{d^{\prime}\left(c_{1}-4\right)+2}{2} \geq 0$ (because $\left.c_{1} \geq 4\right)$. On the other hand, always by liaison, we have: $g^{\prime}-g=\frac{1}{2}\left(d^{\prime}-d\right)\left(2 c_{1}-4\right)\left(g=p_{a}(C), d=\operatorname{deg}(C)\right)$. Since $d^{\prime}=c_{1}^{2}-d$ and $g=\frac{d\left(c_{1}-4\right)}{2}+1$ (because $\omega_{C}\left(4-c_{1}\right) \simeq \mathcal{O}_{C}$ ), we get: $g^{\prime}=1+\frac{d\left(c_{1}-4\right)}{2}+$ $\frac{1}{2}\left(c_{1}^{2}-2 d\right)\left(2 c_{1}-4\right) \geq 0$ and the result follows.

## Now we have:

Proposition 2.6. Let $E$ be a rank two globally generated vector bundle on $\mathbb{P}^{3}$. If $c_{1}(E)=4$ and if $E$ doesn't split, then $5 \leq c_{2} \leq 8$ and there is an exact sequence: $0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{C}(4) \rightarrow 0$, where $C$ is a smooth irreducible elliptic curve of degree $c_{2}$ or, if $c_{2}=8, C$ is the disjoint union of two smooth elliptic quartic curves.

Proof. A general section of $E$ vanishes along $C$ where $C$ is a smooth curve with $\omega_{C}=\mathcal{O}_{C}$ and where $\mathcal{I}_{C}(4)$ is generated by global sections. Let $C=C_{1} \cup \ldots \cup C_{r}$ be the decomposition into irreducible components: the union is disjoint, each $C_{i}$ is a smooth elliptic curve hence has degree at least three.
By Lemma $2.5 d=\operatorname{deg}(C) \leq 8$. If $d \leq 4$ then $C$ is irreducible and is a complete intersection which is impossible since $E$ doesn't split. If $d=5, C$ is smooth irreducible.
Claim: If $8 \geq d \geq 6, C$ cannot contain a plane cubic curve.
Assume $C=P \cup X$ where $P$ is a plane cubic and where $X$ is a smooth elliptic curve of degree $d-3$. If $d=6, X$ is also a plane cubic and every quartic containing $C$ contains the line $\langle P\rangle \cap\langle X\rangle$. If $\operatorname{deg}(X) \geq 4$ then every quartic, $F$, containing $C$ contains the plane $\langle P\rangle$. Indeed $F \mid H$ vanishes on $P$ and on the $\operatorname{deg}(X) \geq 4$ points of $X \cap\langle P\rangle$, but these points are not on a line so $F \mid H=0$. In both cases we get a contradiction with the fact that $\mathcal{I}_{C}(4)$ is generated by global sections. The claim is proved.
It follows that, if $8 \geq d \geq 6$, then $C$ is irreducible except if $C=X \cup Y$ is the disjoint union of two elliptic quartic curves.

Now let's show that all possibilities of Proposition 2.6 do actually occur. For this we have to show the existence of a smooth irreducible elliptic curve of degree $d, 5 \leq d \leq 8$ with $\mathcal{I}_{C}(4)$ generated by global sections (and also that the disjoint union of two elliptic quartic curves is cut off by quartics).

Lemma 2.7. There exist rank two vector bundles with $c_{1}=4, c_{2}=5$ which are globally generated. More precisely any such bundle is of the form $\mathcal{N}(2)$, where $\mathcal{N}$ is a null-correlation bundle (a stable bundle with $c_{1}=0, c_{2}=1$ ).

Proof. The existence is clear (if $\mathcal{N}$ is a null-correlation bundle then it is well known that $\mathcal{N}(k)$ is globally generated if $k \geq 1)$. Conversely if $E$ has $c_{1}=$ $4, c_{2}=5$ and is globally generated, then $E$ has a section vanishing along a smooth, irreducible quintic elliptic curve (cf 2.6). Since $h^{0}\left(\mathcal{I}_{C}(2)\right)=0, E$ is stable, hence $E=\mathcal{N}(2)$.

Lemma 2.8. There exist smooth, irreducible elliptic curves, $C$, of degree 6 with $\mathcal{I}_{C}(4)$ generated by global sections.

Proof. Let $X$ be the union of three skew lines. The curve $X$ lies on a smooth quadric surface, $Q$, and has $\mathcal{I}_{X}(3)$ globally generated (indeed the exact sequence $0 \rightarrow \mathcal{I}_{Q} \rightarrow \mathcal{I}_{X} \rightarrow \mathcal{I}_{X, Q} \rightarrow 0$ twisted by $\mathcal{O}(3)$ reads like: $0 \rightarrow \mathcal{O}(1) \rightarrow \mathcal{I}_{C}(3) \rightarrow$ $\left.\mathcal{O}_{Q}(3,0) \rightarrow 0\right)$. The complete intersection, $U$, of two general cubics containing $X$ links $X$ to a smooth curve, $C$, of degree 6 and arithmetic genus 1. Since, by liaison, $h^{1}\left(\mathcal{I}_{C}\right)=h^{1}\left(\mathcal{I}_{X}(-2)\right)=0, C$ is irreducible. The exact sequence of liaison: $0 \rightarrow \mathcal{I}_{U}(4) \rightarrow \mathcal{I}_{C}(4) \rightarrow \omega_{X}(2) \rightarrow 0$ shows that $\mathcal{I}_{C}(4)$ is globally generated.

In order to prove the existence of smooth, irreducible elliptic curves, $C$, of degree $d=7,8$, with $\mathcal{I}_{C}(4)$ globally generated, we have to recall some results due to Mori ([11]).

According to [11] Remark 4, Prop. 6, there exists a smooth quartic surface $S \subset \mathbb{P}^{3}$ such that $\operatorname{Pic}(S)=\mathbb{Z} H \oplus \mathbb{Z} X$ where $X$ is a smooth elliptic curve of degree $d(7 \leq d \leq 8)$. The intersection pairing is given by: $H^{2}=4, X^{2}=0$, $H \cdot X=d$. Such a surface doesn't contain any smooth rational curve ([11, p. 130]). In particular: (*) every integral curve, $Z$, on $S$ has degree $\geq 4$ with equality if and only if $Z$ is a planar quartic curve or an elliptic quartic curve.
Lemma 2.9. With notations as above, $h^{0}\left(\mathcal{I}_{X}(3)\right)=0$.
Proof. A curve $Z \in|3 H-X|$ has invariants $\left(d_{Z}, g_{Z}\right)=(5,-2)$ (if $d=7$ ) or $(4,-5)$ (if $d=8$ ), so $Z$ is not integral. It follows that $Z$ must contain an integral curve of degree $<4$, but this is impossible.
Lemma 2.10. With notations as above $|4 H-X|$ is base point free, hence there exist smooth, irreducible elliptic curves, $X$, of degree $d, 7 \leq d \leq 8$, such that $\mathcal{I}_{X}(4)$ is globally generated.

Proof. Let's first prove the following: Claim: Every curve in $|4 H-X|$ is integral.

If $Y \in|4 H-X|$ is not integral then $Y=Y_{1}+Y_{2}$ where $Y_{1}$ is integral with $\operatorname{deg}\left(Y_{1}\right)=4$ (observe that $\operatorname{deg}(Y)=9$ or 8 ).

If $Y_{1}$ is planar then $Y_{1} \sim H$, so $4 H-X \sim H+Y_{2}$ and it follows that $3 H \sim X+Y_{2}$, in contradiction with $h^{0}\left(\mathcal{I}_{X}(3)\right)=0($ cf 2.9).

So we may assume that $Y_{1}$ is a quartic elliptic curve, i.e. (i) $Y_{1}^{2}=0$ and (ii) $Y_{1} \cdot H=4$. Setting $Y_{1}=a H+b X$, we get from (i): $2 a(2 a+b d)=0$. Hence ( $\alpha$ ) $a=0$, or $(\beta) 2 a+b d=0$.
$(\alpha)$ In this case $Y_{1}=b X$, hence (for degree reasons and since $S$ doesn't contain curves of degree $<4$ ), $Y_{2}=\varnothing$ and $Y=X$, which is integral.
$(\beta)$ Since $Y_{1} \cdot H=4$, we get $2 a+(2 a+b d)=2 a=4$, hence $a=2$ and $b d=-4$ which is impossible $(d=7$ or 8 and $b \in \mathbb{Z})$.

This concludes the proof of the claim.
Since $(4 H-X)^{2} \geq 0$, the claim implies that $4 H-X$ is numerically effective. Now we conclude by a result of Saint-Donat (cf. [11, Theorem 5]) that $|4 H-X|$
is base point free, i.e. $\mathcal{I}_{X, S}(4)$ is globally generated. By the exact sequence: $0 \rightarrow \mathcal{O} \rightarrow \mathcal{I}_{X}(4) \rightarrow \mathcal{I}_{X, S}(4) \rightarrow 0$ we get that $\mathcal{I}_{X}(4)$ is globally generated.

Remark 2.11. If $d=8$, a general element $Y \in|4 H-X|$ is a smooth elliptic curve of degree 8. By the way $Y \neq X$ (see [1]). The exact sequence of liaison: $0 \rightarrow \mathcal{I}_{U}(4) \rightarrow \mathcal{I}_{X}(4) \rightarrow \omega_{Y} \rightarrow 0$ shows that $h^{0}\left(\mathcal{I}_{X}(4)\right)=3$ (i.e. $X$ is of maximal rank). In case $d=8$ Lemma 2.10 is stated in [2], however the proof there is incomplete, indeed in order to apply the enumerative formula of [8] one has to know that $X$ is a connected component of $\bigcap_{i=1}^{3} F_{i}$; this amounts to say that the base locus of $|4 H-X|$ on $F_{1}$ has dimension $\leq 0$.

To conclude we have:
Lemma 2.12. Let $X$ be the disjoint union of two smooth, irreducible quartic elliptic cuvres, then $\mathcal{I}_{X}(4)$ is generated by global sections.
Proof. Let $X=C_{1} \sqcup C_{2}$. We have: $0 \rightarrow \mathcal{O}(-4) \rightarrow 2 . \mathcal{O}(-2) \rightarrow \mathcal{I}_{C_{1}} \rightarrow 0$, twisting by $\mathcal{I}_{C_{2}}$, since $C_{1} \cap C_{2}=\varnothing$, we get: $0 \rightarrow \mathcal{I}_{C_{2}}(-4) \rightarrow 2 . \mathcal{I}_{C_{2}}(-2) \rightarrow \mathcal{I}_{X} \rightarrow 0$ and the result follows.

Summarizing:
Proposition 2.13. There exists an indecomposable rank two vector bundle, $E$, on $\mathbb{P}^{3}$, generated by global sections and with $c_{1}(E)=4$ if and only if $5 \leq$ $c_{2}(E) \leq 8$ and in these cases there is an exact sequence:

$$
0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{C}(4) \rightarrow 0
$$

where $C$ is a smooth irreducible elliptic curve of degree $c_{2}(E)$ or, if $c_{2}(E)=8$, the disjoint union of two smooth elliptic quartic curves.

### 2.4. Globally generated rank two vector bundles with $c_{1}=5$.

We start by listing the possible cases:
Proposition 2.14. If $E$ is an indecomposable, globally generated, rank two vector bundle on $\mathbb{P}^{3}$ with $c_{1}(E)=5$, then $c_{2}(E) \in\{8,10,12\}$ and there is an exact sequence:

$$
0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{C}(5) \rightarrow 0
$$

where $C$ is a smooth, irreducible curve of degree $d=c_{2}(E)$, with $\omega_{C} \simeq \mathcal{O}_{C}(1)$.
In any case $E$ is stable.

Proof. A general section of $E$ vanishes along a smooth curve, $C$, of degree $d=c_{2}(E)$ with $\omega_{C} \simeq \mathcal{O}_{C}(1)$. Hence every irreducible component, $Y$, of $C$ is a smooth, irreducible curve with $\omega_{Y} \simeq \mathcal{O}_{Y}(1)$. In particular $\operatorname{deg}(Y)=2 g(Y)-2$ is even and $\operatorname{deg}(Y) \geq 4$.

1. If $d=4$, then $C$ is a planar curve and $E$ splits.
2. If $d=6, C$ is necessarily irreducible (of genus 4). It is well known that any such curve is a complete intersection (2,3), hence $E$ splits.
3. If $d=8$ and $C$ is not irreducible, then $C=P_{1} \sqcup P_{2}$, the disjoint union of two planar quartic curves. If $L=\left\langle P_{1}\right\rangle \cap\left\langle P_{2}\right\rangle$, then every quintic containing $C$ contains $L$ in contradiction with the fact that $\mathcal{I}_{C}(5)$ is generated by global sections. Hence $C$ is irreducible.
4. If $d=10$ and $C$ is not irreducible, then $C=P \sqcup X$, where $P$ is a planar curve of degree 4 and where $X$ is a degree 6 curve ( $X$ is a complete intersection $(2,3)$ ). Every quintic containing $C$ vanishes on $P$ and on the 8 points of $X \cap\langle P\rangle$, since these 8 points are not on a line, the quintic vanishes on the plane $\langle P\rangle$. This contradicts the fact that $\mathcal{I}_{C}(5)$ is globally generated.
5. If $d=12$ and $C$ is not irreducible we have three possibilities:
(a) $C=P_{1} \sqcup P_{2} \sqcup P_{3}, P_{i}$ planar quartic curves
(b) $C=X_{1} \sqcup X_{2}, X_{i}$ complete intersection curves of types $(2,3)$
(c) $C=Y \sqcup P, Y$ a canonical curve of degree $8, P$ a planar curve of degree 4.
(a) This case is impossible (consider the line $\left\langle P_{1}\right\rangle \cap\left\langle P_{2}\right\rangle$ ).
(b) We have $X_{i}=Q_{i} \cap F_{i}$. Let $Z$ be the quartic curve $Q_{1} \cap Q_{2}$. Then $X_{i} \cap Z=F_{i} \cap Z$, i.e. $X_{i}$ meets $Z$ in 12 points. It follows that every quintic containing $C$ meets $Z$ in 24 points, hence such a quintic contains $Z$. Again this contradicts the fact that $\mathcal{I}_{C}(5)$ is globally generated.
(c) This case too is impossible: every quintic containing $C$ vanishes on $P$ and on the points $\langle P\rangle \cap Y$, hence on $\langle P\rangle$.
We conclude that if $d=12, C$ is irreducible.
The normalized bundle is $E(-3)$, since in any case $h^{0}\left(\mathcal{I}_{C}(2)\right)=0$ (every smooth irreducible subcanonical curve on a quadric surface is a complete intersection), $E$ is stable.

Now we turn to the existence part.
Lemma 2.15. There exist indecomposable rank two vector bundles on $\mathbb{P}^{3}$ with Chern classes $c_{1}=5$ and $c_{2} \in\{8,10\}$ which are globally generated.

Proof. Let $R=\sqcup_{i=1}^{s} L_{i}$ be the union of $s$ disjoint lines, $2 \leq s \leq 3$. We may perform a liaison $(s, 3)$ and link $R$ to $K=\sqcup_{i=1}^{s} K_{i}$, the union of $s$ disjoint conics. The exact sequence of liaison: $0 \rightarrow \mathcal{I}_{U}(4) \rightarrow \mathcal{I}_{K}(4) \rightarrow \omega_{R}(5-s) \rightarrow 0$ shows that $\mathcal{I}_{K}(4)$ is globally generated (n.b. $5-s \geq 2$ ).
Since $\omega_{K}(1) \simeq \mathcal{O}_{K}$ we have an exact sequence: $0 \rightarrow \mathcal{O} \rightarrow \mathcal{E}(2) \rightarrow \mathcal{I}_{K}(3) \rightarrow 0$, where $\mathcal{E}$ is a rank two vector bundle with Chern classes $c_{1}=-1, c_{2}=2 s-2$. Twisting by $\mathcal{O}(1)$ we get: $0 \rightarrow \mathcal{O}(1) \rightarrow \mathcal{E}(3) \rightarrow \mathcal{I}_{K}(4) \rightarrow 0(*)$. The Chern classes of $\mathcal{E}(3)$ are $c_{1}=5, c_{2}=2 s+4$ (i.e. $c_{2}=8,10$ ). Since $\mathcal{I}_{K}(4)$ is globally generated, it follows from $(*)$ that $\mathcal{E}(3)$ too, is generated by global sections.

## Remark 2.16.

1. If $\mathcal{E}$ is as in the proof of Lemma 2.15 a general section of $\mathcal{E}(3)$ vanishes along a smooth, irreducible (because $h^{1}(\mathcal{E}(-2))=0$ ) canonical curve, $C$, of genus $1+c_{2} / 2(g=5,6)$ such that $\mathcal{I}_{C}(5)$ is globally generated. By construction these curves are not of maximal rank $\left(h^{0}\left(\mathcal{I}_{C}(3)\right)=1\right.$ if $g=5, h^{0}\left(\mathcal{I}_{C}(4)\right)=2$ if $\left.g=6\right)$. As explained in [9] 4 this is a general fact: no canonical curve of genus $g, 5 \leq g \leq 6$ in $\mathbb{P}^{3}$ is of maximal rank. We don't know if this is still true for $g=7$.
2. According to [9] the general canonical curve of genus 6 lies on a unique quartic surface.
3. The proof of 2.15 breaks down with four conics: $\mathcal{I}_{K}(4)$ is no longer globally generated, every quartic containing $K$ vanishes along the lines $L_{i}$ $(5-s=1)$. Observe also that four disjoint lines always have a quadrisecant and hence are an exception to the normal generation conjecture(the omogeneous ideal is not generated in degree three as it should be).

Remark 2.17. The case $\left(c_{1}, c_{2}\right)=(5,12)$ remains open. It can be shown that if $E$ exists, a general section of $E$ is linked, by a complete intersections of two quintics, to a smooth, irreducible curve, $X$, of degree 13, genus 10 having $\omega_{X}(-1)$ as a base point free $g_{5}^{1}$. One can prove the existence of curves $X \subset \mathbb{P}^{3}$, smooth, irreducible, of degree 13, genus 10 , with $\omega_{X}(-1)$ a base point free pencil and lying on one quintic surface. But we are unable to show the existence of such a curve with $h^{0}\left(\mathcal{I}_{X}(5)\right) \geq 3$ (or even with $h^{0}\left(\mathcal{I}_{X}(5)\right) \geq 2$ ). We believe that such bundles do not exist.

## 3. Globally generated rank two vector bundles on $\mathbb{P}^{n}$, $n \geq 4$.

For $n \geq 4$ and $c_{1} \leq 5$ there is no surprise:
Proposition 3.1. Let $E$ be a globally generated rank two vector bundle on $\mathbb{P}^{n}$, $n \geq 4$. If $c_{1}(E) \leq 5$, then $E$ splits.

## RANK TWO GLOBALLY GENERATED BUNDLES WITH $C_{1} \leq 5$

Proof. It is enough to treat the case $n=4$. A general section of $E$ vanishes along a smooth (irreducible) subcanonical surface, $S: 0 \rightarrow \mathcal{O} \rightarrow E \rightarrow \mathcal{I}_{S}\left(c_{1}\right) \rightarrow$ 0 . By [5], if $c_{1} \leq 4$, then $S$ is a complete intersection and $E$ splits. Assume now $c_{1}=5$. Consider the restriction of $E$ to a general hyperplane $H$. If $E$ doesn't split, by 2.14 we get that the normalized Chern classes of $E$ are: $c_{1}=-1$, $c_{2} \in\{2,4,6\}$. By Schwarzenberger condition: $c_{2}\left(c_{2}+2\right) \equiv 0(\bmod 12)$. The only possibilities are $c_{2}=4$ or $c_{2}=6$. If $c_{2}=4$, since $E$ is stable (because $E \mid H$ is, see 2.14), we have ([3]) that $E$ is a Horrocks-Mumford bundle. But the Horrocks-Mumford bundle (with $c_{1}=5$ ) is not globally generated.

The case $c_{2}=6$ is impossible: such a bundle would yield a smooth surface $S \subset \mathbb{P}^{4}$, of degree 12 with $\omega_{S} \simeq \mathcal{O}_{S}$, but the only smooth surface with $\omega_{S} \simeq \mathcal{O}_{S}$ in $\mathbb{P}^{4}$ is the abelian surface of degree 10 of Horrocks-Mumford.

Remark 3.2. For $n>4$ the results in [6] give stronger and stronger (as $n$ increases) conditions for the existence of indecomposable rank two vector bundles generated by global sections.

Putting everything together, the proof of Theorem 1.1 is complete.

## References

[1] V. Beorchia and Ph. Ellia, Normal bundle and complete intersections, Rend. Sem. Mat. Univ. Politec. Torino 48 (1990), 553-562.
[2] J. D'Almeida, Une involution sur un espace de modules de fibrés instantons, Bull. Soc. Math. France 128 (2000), 577-584.
[3] W. Decker, Stable rank 2 vector bundles with Chern classes $c_{1}=-1, c_{2}=4$, Math. Ann. 275 (1986), 481-500.
[4] Ph. Ellia, Sur les fibrés uniformes de rang $n+1$ sur $\mathbb{P}^{n}$, Mém. Soc. Math. France 7 (1982).
[5] Ph. Ellia, D. Franco, and L. Gruson, On subcanonical surfaces of $\mathbb{P}^{4}$, Math. Z. 251 (2005), 257-265.
[6] Ph. Ellia, D. Franco, and L. Gruson, Smooth divisors of projective hypersurfaces, Comment. Math. Helv. 83 (2008), 371-385.
[7] M.L. Fania and E. Mezzetti, Vector spaces of skew-symmetric matrices of constant rank, Linear Algebra Appl. 434 (2011), 2383-2403.
[8] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb., no. 2, Springer, Berlin, 1984.
[9] L. Gruson and Ch. Peskine, Genre des courbes de l'espace projectif, Lecture Notes in Math. 687 (1978), 31-59.
[10] S. Huh, On triple Veronese embeddings of $\mathbb{P}^{n}$ in the Grassmannians, Math. Nachr. 284 (2011), 1453-1461.
[11] S. Mori, On degrees and genera of curves on smooth quartic surfaces in $\mathbb{P}^{3}$, Nagoya Math. J. 96 (1984), 127-132.
[12] J.C. Sierra and L. Ugaglia, On double Veronese embeddings in the Grassmannian $G(1, N)$, Math. Nachr. 279 (2006), 798-804.
[13] J.C. Sierra and L. Ugaglia, On globally generated vector bundles on projective spaces, J. Pure Appl. Algebra 213 (2009), 2141-2146.
[14] A. Van de Ven, On uniform vector bundles, Math. Ann. 195 (1972), 245-248.

Authors' addresses:
Ludovica Chiodera
Dipartimento di Matematica
Università di Ferrara
via Machiavelli 35, 44100 Ferrara, Italy
E-mail: ludovica.chiodera@unife.it
Philippe Ellia
Dipartimento di Matematica
Università di Ferrara
via Machiavelli 35, 44100 Ferrara, Italy
E-mail: phe@unife.it

