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RANK-TWO RELAXATION HEURISTICS FOR MAX-CUT
AND OTHER BINARY QUADRATIC PROGRAMS*

SAMUEL BURER!, RENATO D.C. MONTEIRO}, AND YIN ZHANGS

Abstract.

The Goemans-Williamson randomized algorithm guarantees a high-quality approximation to the Max-Cut problem,
but the cost associated with such an approximation can be excessively high for large-scale problems due to the need for
solving an expensive semidefinite relaxation. In order to achieve better practical performance, we propose an alternative,
rank-two relaxation and develop a specialized version of the Goemans-Williamson technique. The proposed approach leads
to continuous optimization heuristics applicable to Max-Cut as well as other binary quadratic programs, for example the
Max-Bisection problem.

A computer code based on the rank-two relaxation heuristics is compared with two state-of-the-art semidefinite pro-
gramming codes that implement the Goemans-Williamson randomized algorithm, as well as with a purely heuristic code
for effectively solving a particular Max-Cut problem arising in physics. Computational results show that the proposed
approach is fast and scalable and, more importantly, attains a higher approximation quality in practice than that of the
Goemans-Williamson randomized algorithm. An extension to Max-Bisection is also discussed as well as an important
difference between the proposed approach and the Goemans-Williamson algorithm, namely that the new approach does

not guarantee an upper bound on the Max-Cut optimal value.

Key words. Binary quadratic programs, Max-Cut and Max-Bisection, semidefinite relaxation, rank-two relaxation,

continuous optimization heuristics.

AMS subject classifications. 90C06, 90C27, 90C30

1. Introduction. Many combinatorial optimization problems can be formulated as quadratic pro-
grams with binary variables, a simple example being the Max-Cut problem. Since such problems are
usually NP-hard, which means that exact solutions are difficult to obtain, different heuristic or approx-
imation algorithms have been proposed, often based on continuous relaxations of the original discrete
problems. A relatively new relaxation scheme is called the semidefinite programming relaxation (or SDP
relaxation) in which a vector-valued binary variable is replaced by a matrix-valued continuous variable,
resulting in a convex optimization problem called a semidefinite program (SDP) that can be solved to a
prescribed accuracy in polynomial time. Some early ideas related to such a relaxation can be found in
a number of works, including [10, 23, 24, 26, 27].

Based on solving the SDP relaxation, Goemans and Williamson [18] proposed a randomized al-
gorithm for the Max-Cut problem and established the celebrated 0.878 performance guarantee. Since
then, SDP relaxation has become a powerful and popular theoretical tool for devising polynomial-time
approximation algorithms for hard combinatorial optimization problems, and even in cases where per-
formance guarantees are not known, randomized algorithms based on the SDP relaxation can often give

good-quality approximate solutions in practice. It is important to note that such Goemans-Williamson-
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type approaches produce both upper and lower bounds on the optimal value of the underlying discrete

problem.

In the meantime, there have been hopes that the SDP relaxation would eventually lead to practically
efficient algorithms for solving large-scale combinatorial optimization problems by producing tight lower
and upper bounds. In this regard, however, results thus far have not always been encouraging. The
main difficulty lies in the fact that the number of variables and/or constraints in a SDP relaxation is
one order of magnitude higher than that of the original problem. Hence, the cost of solving such SDP
problems grows quickly as the size of the problems increases. In other words, a key issue here is the

scalability of the SDP relaxation approach with respect to the problem size.

There have been a great deal of research efforts towards improving the efficiency of SDP solvers,
including works on exploiting sparsity in more traditional interior-point methods [1, 9, 16, 17, 29] and
works on alternative methods [5, 6, 7, 20, 21, 30, 31]. Indeed, the efficiency of SDP solvers has been

improved significantly in the last few years. Nevertheless, the scalability problem still remains.

On the other hand, computational studies have continued to affirm that the quality of bounds
produced by the SDP relaxation is quite high. For example, the Goemans-Williamson approximation
algorithm produces lower bounds (i.e., discrete solutions) that are better than or at least comparable
to that of a number of heuristics (see [11], for example). Tt is thus natural to investigate whether the
quality of the SDP relaxation can be preserved while somehow extending its use to problems of very

large size.

Can the approaches inspired by Goemans and Williamson, which rely on solving the SDP relaxation,
ever become competitive in attacking large-scale problems? In this paper, we hope to provide a partial
answer to this question. We will argue that in terms of producing a lower bound, the answer seems to
be negative at least for some problem classes including the familiar Max-Cut problem. In other words,
if one is only interested in obtaining a high-quality approximate solution, then the SDP relaxation does
not seem to hold much promise. Our argument is based on strong empirical evidence showing that on
a large set of test problems the performance of the SDP relaxation approach is clearly inferior to that
of a new rank-two relaxation approach that we will propose and study in this paper. The advantages of
this rank-two approach are not only in terms of computational costs but, more notably, also in terms of

the approximation quality.

Based on the proposed rank-two relaxation and a specialized version of the Goemans-Williamson
technique, we construct a continuous optimization heuristic for approximating the Max-Cut problem and
establish some properties for this approach that are useful in designing algorithms. We then compare
a code based on our heuristic with some state-of-the-art SDP-based approximation codes on a set of
Max-Cut test problems. We also compare our code with a well-established, heuristic code for Max-Cut
on a set of test problems from physics. Finally, we consider extensions to other related problems—in

particular, to the Max-Bisection problem.

This paper is organized as follows. Section 2 briefly introduces the Max-Cut problem and its cor-
responding SDP relaxation. In Section 3, we present the rank-two relaxation scheme and study its
properties, including a useful characterization for a maximum cut. In Section 4, we present our heuristic
algorithm for the Max-Cut problem, and computational results on Max-Cut are given in Section 5. We
extend the heuristic to the Max-Bisection problem in Section 6 and give numerical results as well. Lastly,

we conclude the paper in Section 7.
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2. Max-Cut and the Semidefinite Relaxation. Let an undirected and connected graph G =
(V,E), where V. = {1,2,---,n} and E C {(i,j) : 1 < i < j < n}, be given. Let the edge weights
w;; = wj; be given such that w;; = 0 for (¢, j) ¢ F, and in particular, let w;; = 0. The Max-Cut problem
is to find a bipartition (V1,Va2) of V' so that the sum of the weights of the edges between 1) and V; is

maximized. It is well-known that the Max-Cut problem can be formulated as

max % Zl§i<j§n wij(1 — wixj)

s.t. lz;|=1, i=1,...,n,

(2.1)

which has the same solution as the following binary quadratic program:

min Zl§i<j§n Wij&id

st. Jo|=1,i=1,... n.

(2.2)

Moreover, it is easy to verify that (2.2) can be rewritten into the matrix optimization problem

min % W eX,
s.t.  diag(X) =,
rank(X) =1,
X >0,

(2.3)

where W = [w;;], We X = szzl w55, diag(X) is the vector in N™ consisting of the diagonal elements
of X, e is the vector of all ones, and X > 0 means that X is symmetric positive semidefinite.

Since the Max-Cut problem is NP-hard, various heuristics and approximation algorithms have been
proposed to attack the problem. A recent ground-breaking work is due to Goemans and Williamson [18]
who replace the “unit scalars” #; in (2.2) by unit vectors v; € 2" and the scalar products z;z; by the

inner products v} vj. The resulting problem is the following relaxation of the Max-Cut problem:

; VT IDT
min Zl§i<j§n WiV Yy

st. wlla=1,i=1,...n,

(2.4)

where v; € R". Furthermore, a change of variables X = [v]v;] € R"*" leads to the following so-called
SDP relaxation for the Max-Cut problem

min % W eX,
(2.5) s.t.  diag(X) =,
X 0.

It is well-known that such a SDP problem is approximately solvable in polynomial time (see [25], for
example). Comparing (2.5) with (2.3), we clearly see that the SDP relaxation is nothing but the problem
obtained from (2.3) by dropping the rank-one restriction on X.

It is worth observing that a solution (vq, ..., v,) of (2.4) consists of n points on the surface of the unit
sphere in ?”, each representing a node in the graph. Goemans and Williamson [18] proposed the following
randomized algorithm for generating cuts in the graph: after a solution of (2.4) is obtained, one randomly
partitions the unit sphere into two half-spheres H; and Hy (the boundary in between can be on either
side) and forms the bipartition consisting of V4 = {¢ : v; € H1} and Vo = {¢ : v; € Hy}. Furthermore,
Goemans and Williamson established the celebrated result that if all the weights are nonnegative, then
the expected value of such randomly generated cuts is at least 0.878 times the maximum cut value. This
result gives a strong performance guarantee for this randomization procedure. In fact, it has recently

been shown in [13] that the factor 0.878 is indeed the best possible in several senses.
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3. A Rank-Two Relaxation. In this section, we present an alternative rank-two relaxation
scheme that leads to a nonlinear optimization problem having only n variables but also a noncon-
vex objective function. Since the number of variables is not increased from the Max-Cut problem, this
approach possesses scalability for relaxing large-scale problems. On the other hand, since the relaxation
1s nonconvex, we cannot expect to find an optimal solution in practice, and so we can no longer ensure
a computable upper bound on the original problem. For solving this problem to gain information about
the underlying Max-Cut problem, the trade-off is obviously between computational efficiency and a the-
oretical guarantee. When the main objective 1s to obtain high-quality approximate solutions, however,
we hope to demonstrate through computational experiments that the gain clearly outweighs the loss.

We replace the “unit scalar” variables z; in (2.2) by unit vectors v; € R? (not R") and the scalar
products z;x; by the inner products vl vj. As before, the constraint |z;| = 1 becomes ||v;|[2 = 1; namely,
all the vectors v; should be on the unit circle. In this way, we obtain a relaxation of the Max-Cut
problem that has exactly the same form as (2.4) except that now all vectors v; are in %? instead of R".
Alternatively, this relaxation can also be viewed as replacing the rank-one restriction on X in (2.3) by
the rank-two restriction rank(X) < 2; hence we call it a rank-two relaxation.

Using polar coordinates, we can represent a set of n unit vectors vy,...,v, in R? by means of a

vector § = (1,...,0,)T € R" consisting of n angles, namely
0;
v = ( o ) Vi=1,...n.
sin 6;

viij =cos(; —6;), Vi, j=1,...,n.

In this case, we have

Let T'(6) be the skew-symmetric matrix-valued function of # defined by
Ti;(0)=0;—6;, Vij=1,...n,

and let f: R™® — R be the function defined as

(3.1) f(9) = % W ecos(T(f)), V8eR",

where cos(T'(#)) is the n x n matrix whose entries are the cosine of the corresponding entries of T'(8).
Then, in terms of the polar coordinates; we obtain the following relaxation for the Max-Cut problem:

(3.2) Inin £(6)

This is an unconstrained optimization problem with a nonconvex objective function. In general, it has
multiple local, non-global minima.

The derivatives of the function f(#) can be easily computed. Indeed, the first partial derivatives of
f(9) are given by

3§é9) = Zwmsin(@k —05), Yi=1,...n,
J k=1

and hence,

(3.3) 9(0) = V(6) = W osin(T(0)] e,
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[1bl

where the notation “o” indicates the Hadamard, i.e., entry-wise, product of W and sin(7'(¢)). The

second partial derivatives of f(f) are given by

82f(9) o Wi COS(@Z' - Hj), if ¢ ;ﬁ j,
89289] B —Zkijwkjcos(ﬁk—ﬁj), le:_],

for every i,j = 1,...,n, and hence the Hessian of f(f) is given by
(3.4) H(0) = V2f(0) = W o cos(T()) — Diag ([W o cos(T(6))]e),

where for any vector v, Diag(v) is the diagonal matrix with v on its diagonal. Note that the major effort
in the evaluation of f, ¢ and H is the computation of the quantities W o cos(7(0)) and W o sin(7'(9)).

There are interesting relationships between cuts in the graph and the function f(#), which we will
now describe. We call a vector § € " an angular representation of a cut, or simply a cut, if there exist

integers k;; such that

(35) Hi—gj:kijﬂ', Vi,j:l,...,n.

Clearly, in this case cos(f; — ;) = 1 and there exists a binary vector € {—1,1}" such that
COS(éZ' — éj) =5z, ==x1, YVej=1,...,n.
Moreover, the cut value corresponding to a cut 6 is

(3.6) ¢@zézwm_m@_ﬂy

We note that the function f(€) is invariant with respect to simultaneous, uniform rotation on every
component of 8, i.e., f(§) = f(6+ re) for any scalar 7, and is periodic with a period of 27 with respect to
each variable ;. Modulo the uniform rotation and the periodicity for each variable, there is an obvious

one-to-one correspondence between the binary and angular representations of a cut; namely,

i = .
m, ifx; =—1,

9_{0,Hm:+L

and vice versa. With the above correspondence in mind, in the sequel we will use # and # interchangeably
to represent a cut. Moreover, given an angular representation of a cut (or a binary one Z), we will use
the notation z(#) (or #(z)) to denote the corresponding binary (or angular) representation of the same
cut.

Since sin(f; — 6;) = 0 for any 0 satisfying (3.5), it follows directly from (3.3) that g(#) = 0 at any
cut f. We state this simple observation in the following proposition.

PROPOSITION 3.1. Fuvery cut § € R" is a stationary point of the function f(0).

We will now derive a characterization of a maximum (minimum) cut in the lemma below which will
be useful in the later development. We first need the following definition. A matrix M € 3" *" is called
nonnegatiwely summable if the sum of the entries in every principal submatrix of M is nonnegative, or
equivalently, if u” Mu > 0 for every binary vector u € {0,1}". Clearly, every positive semidefinite matrix

is nonnegatively summable. On the other hand, the matrix ee” — I is nonnegatively summable, but not

positive semidefinite.
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LEMMA 3.2. Let # € {—1,1}" be given and consider the matriz M (Z) € R"*" defined as
(3.7) M (%) = W o (22") — Diag([W o (227 )]e).

Then, & is a maximum (respectively, minimum) cut if and only if M () (respectively, —M (Z)) is non-
negatively summable.

Proof. Let ¢ : R — R be the quadratic function defined as ¢(z) = (zTWz)/2 for all z € R* and
note that # is a maximum cut if and only if Z minimizes ¢(z) over the set of all # € {—1,1}". Now, let

z € {—1,1}" be given and observe that

ZT—x=200%,

[1bl

where “o” represents the Hadamard product, and § € R” is defined as

0, ifz; =1,
(3.8) g={ o nmes
1, if x; # &;.

Using this identity and the fact that §7v = §7 Diag(v)d for any v € R", we obtain

o(0) — a(z) = (W) (2 = ) + (e = )T Wz —2)
=28 W({dox)+20o0x)TW(J o)
= 20T ([W o 227 )e) + 207 [W o 22710
= —20" Diag ([W o 227 ]e) § + 267 [W o 22716 = 267 M(%)$

Noting that every z € {—1,1}" corresponds to a unique vector 6 € {0, 1}" via (3.8) and vice versa, we
conclude from the above identity that & minimizes ¢(z) over x € {—1,1}" if and only if 67 M (z)d > 0
for all 6 € {0,1}", or equivalently, M (Z) is nonnegatively summable.

The proof of the second equivalence is analogous. Hence, the result follows. O

Although every cut is a stationary point of f(#), the following theorem guarantees that only the
maximum cuts can possibly be local minima of f(6). In fact, the theorem gives a complete classification
of cuts as stationary points of the function f(#).

THEOREM 3.3. Let 6 be a cut and let = x(0) be the associated binary cut. If 0 is a local minimum
(respectively, local mazimum) of f(6), then & is a maximum (respectively, minimum) cut. Consequently,
if & is neither a mazimum cut nor a minimum cut, then 6 must be a saddle point of £(0).

Proof. Since z;z; = cos(#; — 0;), we have V2f(0) = M (z(0)) due to (3.4) and (3.7). If 0 is a local
minimum of f, then the Hessian sz(é) is positive semi-definite, and hence nonnegatively summable.
The first implication of the theorem then follows from the first equivalence of Lemma 3.2. The second
implication of the theorem can be proved in a similar way using the second equivalence of Lemma 3.2.

Hence, the result follows. O

The converses of the two implications in the above theorem do not hold. Indeed, consider the
unweighted graph K3 (the complete graph with three nodes) for which the cut z = [I —1 — 1]T is

maximum. From (3.7), we have
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which 1s indeed nonnegatively summable, but not positive semi-definite. Hence, the corresponding
angular representation @ is not a local minimum of the function f(6) in view of the fact that M (&) =
V2F(0).

There are indeed instances where maximum cuts are local minima of f(#), as indicated by the
following observation.

PROPOSITION 3.4. For a bipartite graph with nonnegative weights, the global minimum value of f(0)
1s attained by a mazimum cut.

Proof. A maximum cut 1s one that cuts through all the edges in the bipartite graph. For this
cut, cos(f; — 8;) = —1 for all edges (4,j) € E. Hence the global minimum value of f(6) is attained at
—eTWe/2. 0

Obviously, for problems where a maximum cut # corresponds to a local minimum of f(f), the
optimality of  can be checked in polynomial time by determining whether M (Z) is positive semidefinite
or not.

Since non-maximum cuts cannot possibly be local minima of f(#), a good minimization algorithm
would not be attracted to stationary points corresponding to non-maximum cuts that are either local
maxima or saddle points of f(#). This fact will play an important role in the construction of our

algorithms.

4. A Heuristic Algorithm for Max-Cut. To produce an approximate solution to the Max-
Cut problem, we first minimize the function f(#) and obtain a local minimum 6 corresponding to a
distribution of points on the unit circle. Using periodicity, we may easily assume that 6; € [0, 2r) for
each ¢ = 1,...,n. Any partition of the unit circle into two equal halves gives a cut as follows: pick an

angle o € [0, ) and let

(1) x'—{ +1, ifb; € [o, 0+ ),

-1, otherwise.

The corresponding value of the cut « is given by

(4.2) y(z) = %Zw”u — zixj).

i>j
An advantage of the rank-two relaxation over the SDP relaxation is that it is straightforward and
inexpensive to examine all possible cuts generated in the above fashion, making it easy to find the
best one. The following, deterministic (rather than random) procedure finds a best possible Goemans-
Williamson-type cut associated with a given . Without loss of generality, let us assume that 6 satisfies
0; €10,27), i=1,...,n, and that

0, <0,<...<0,,

after a reordering if necessary.
Procedure-CUT (input 6, output z*):
Let « =0, ' = —00, ¢ = 1. Let j be the smallest index such that
#; > m if there is one; otherwise set j =n + 1. Set 0, = 2.
While o <
1. Generate cut # by (4.1) and compute y(z).
2. If y(z) > T, then let T' = y(x) and z* = x.
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3. If 6; <0; —m, let @« =6; and increment ¢ by 1;
otherwise let & = #; — 7 and increment j by 1.
End
Since our rank-two relaxation has the same form as Goemans and Williamson’s relaxation (2.4)
except ours has variables in 32 rather than 37, the same analysis of Goemans and Williamson, with
minimal changes, can be applied to show that the cut value generated by the above procedure is at least

0.878 times the relaxed cut value (@) as is defined in (3.6). That is,
(™) > 0.878(6).

However, since we cannot guarantee that ¢(f) is an upper bound on the maximum cut value, there is
no performance guarantee. Nevertheless, we do have the property that, in a weak sense and to some
extent, the better local maximum of ¢(f) (or, equivalently, local minimum of f(6)) we obtain, the better
cut will likely be produced. To see this, let z} and z; be two binary cuts generated by Procedure-CUT
from 6, and 6, respectively. If v(z}) < ¥(6a) and v(6,) > 5a-5¢(fa), then since

y(wp) > 0.878 9(6s) > 1(0a) > v(x5),

xp 1s a better cut than .

After we minimize the function f() and obtain a local minimum 61, we will call Procedure-CUT to
produce a best possible cut z! associated with @'. At this point, we may stop and return the generated
cut z'. On the other hand, if we are willing to spend more time, we may try to improve the quality of
our approximation.

We know that the angular representation of the cut z!, (1), is a stationary point—most likely a
saddle point—of the function f(#), but not a minimizer unless it is already a maximum cut. Assuming
that (') is in fact a saddle point, it is probable that close by there are local minimaof f that are deeper
than 6% is. Although we cannot restart the minimization directly from the stationary point 6(z!), we
can certainly restart from a slight perturbation of 6(x!) and hopefully escape to a better local minimum
0? which in turn would hopefully lead to a better cut z? or #(z?). We can continue this process until
we reach a cut from which we deem that further improvement seems unlikely. We state this heuristic as
the following algorithm:

Algrithm-1: (input N,6° output )
Given 0° € R, integer N > 0,let k=0 and I' = —oo.
While &k < N
1. Starting from 6°, minimize f to get 6.
2. Compute a best cut x associated with by Procedure-CUT.
3. Ify(x) > T, let T = ~(x), * =« and k = 0; otherwise set k =k + 1.
4. Set 6° to a random perturbation of the angular representation of x.
End

The parameter N controls how many consecutive, non-improving random perturbations are allowed
before we stop the algorithm. If so desired, the algorithm can be run M times with multiple starting
points 69 to increase the chances of achieving better cuts. Generally speaking, the larger N and M, the
longer time the algorithm will take to run, and the better cut it will return.

A geometric interpretation of Algorithm-1 is as follows. After we arrive at a local minimum of f,

we search around this local minimum for a nearby saddle point (i.e., a cut) that has the lowest f-value
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in the neighborhood. We then move to the saddle point and restart the minimization to locate a nearby
local minimum that, hopefully, has a smaller f-value than the previous one. We repeat this process until

we deem that the search has become unfruitful.

5. Computational Results for Max-Cut. We have implemented Algorithm-1 in a Fortran90
code named “CirCut.” For the minimization of f(f), we use a simple gradient algorithm with a back-
tracking Armijo line-search. Since numerical experiments indicate that the accuracy of the minimization
is not crucial, we stop the minimization when the relative change in the function value is less than 10~%.

In CirCut, we also include an option for a simple local search in the cut space; that is, after a cut
is returned from Procedure-CUT, one has the option to improve it through a quick local search that
moves one or two nodes at a time, producing a so-called locally 2-optimal solution. This feature can
often slightly improve the quality of a cut and is therefore set to be a default feature unless specified
otherwise.

We compare our code CirCut with two SDP codes SBmethod and DSDP, both implementing the
Goemans-Williamson randomized algorithm (along with other features). Since these codes produce both
an upper bound and a lower bound while our code only gives the latter, the comparisons should not be
taken at face value. In carrying out such comparisons, we have two objectives in mind. Firstly, since
our heuristic is derived from the Goemans-Williamson randomized algorithm by a rank restriction, we
want to see how our modifications affect the performance, both time-wise and quality-wise, of generating
lower bounds. Secondly, since the approximation quality of Goemans-Williamson randomized algorithm
has been shown to be at least as good as a number of heuristics [11], through the comparisons we hope
to get a good picture on the approximation quality of our heuristic. We select the codes SBmethod
and DSDP for our comparisons because they represent the state of the art in solving large-scale SDP
problems.

We also compare our code with a state-of-the-art heuristic code for Max-Cut problems from the Ising

spin glass model in physics, developed by Hartmann [19]. The purpose of this comparison is self-evident.

5.1. Comparison with SBmethod. We first report numerical results on the Max-Cut problem
in comparison with SBmethod, an SDP code developed by Helmberg and Rendl [20]. SBmethod solves
a large class of semidefinite programs using a specialized bundle method, the so-called spectral bundle
method, and in particular is one of the fastest codes for solving Max-Cut SDP relaxations.

The first set of test problems comes from the DIMACS library of mixed semidefinite-quadratic-linear
programs [12]. This set contains four Max-Cut problems, called the torus problems, which originated
from the Ising model of spin glasses in physics (see Section 5.3 for details). In Table 5.1, we give statistics
for this set of problems; note that the sizes of the graphs are given as (|V],|FE]). In the table, the columns
“Lower Bound” and “Upper Bound” give the best lower and upper bounds on the maximum cut value
known to us to date, and the column “SDP bound” gives the SDP upper bounds on the maximum cut
values. All the lower and upper bounds were supplied to us by Michael Jiinger and Frauke Liers [22]
except for the lower bounds 2988 for pm3-15-50 and 285790637 for g3-15 which were the best cut values
so far obtained by CirCut on these two problems, respectively. We mention that for pm3-8-50 and g3-8,
the best cut values so far obtained by CirCut are, respectively, 454 and 41684814, and the latter value
is optimal.

In Table 5.2, we present a comparison between the code SBmethod and our code CirCut. Since
the latest version of SBmethod does not include the functionality of generating cuts by the Goemans-

Williamson randomized procedure, we used an earlier version that does. It is quite likely that the latest
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TABLE 5.1

Statistics for the Torus Set of Maz-Cut Problems

Graph Name Size Lower Bound | Upper Bound | SDP Bound
pm3-8-50 (512, 1536) 456 461 527
pm3-15-50 | (3375, 10125) 2988 3069.51 3474

g3-8 (512, 1536) 41684814 41684814 45735817
g3-15 (3375, 10125) | 2.85790e+8 2.87725e+8 3.1346e+8

version of SBmethod would produce better timings than those presented in the table.

We ran both SBmethod and CirCut on an SGI Origin2000 machine with sixteen 300MHZ R12000
processors at Rice University. Since neither code 1s parallel, however, only one processor was used at
a time. For both codes, the cut values were obtained without any post-processing heuristics, i.e., the
simple local search feature of CirCut was not invoked. The default parameter settings were used for
SBmethod. In Table 5.2, the cut value and computation time are reported for each problem. For CirCut,
the value of M is the number of times Algorithm-1 was run with random starting points, and the value
of N 1s the parameter required by Algorithm-1. The average time per run, the average cut value, and
the best value in the M runs are reported in the last three columns of the table, respectively. All the
reported times are in seconds. From the table, it is clear that an average run of CirCut is much faster

and produces better quality cuts on all four test problems.

TABLE 5.2
Comparison with SBmethod on Maxz-Cut Problems from the Torus Set

Graph SBmethod CirCut (N =4, M = 100)
Name Value Time Avg. Value | Avg. Time | Best Value
pm3-8-50 434 28.72 443 0.218 452
pm3-15-50 2728 2131.89 2888 2.332 2936
g3-8 4.04736e4+7 | 36.03 4.09098e+7 0.298 4.13946e47
g3-15 2.73412e+8 | 3604.54 || 2.74357e+48 2.835 2.77917e+8

More results are reported in Table 5.3 for CirCut using different values of N. These results indicate
that the variations between the average and best cut values are quite moderate, and they also show that
even with N = 0 (no further improvement attempted after minimization), CirCut gives quite respectable
cuts in a minimal amount of time on the average. As N increases, CirCut produces better quality cuts,
and uses more time of course. However, even for N = 8, CirCut is still faster by orders of magnitude.

However, we should bear in mind that in every run SBmethod also produces an upper bound,
hence the running times for CirCut and SBmethod are not exactly comparable. They become totally
comparable only when the sole objective of the computation is to obtain approximate solutions. These

comments also apply to the comparisons presented in the next subsection and in Section 6.

5.2. Comparison with DSDP. The second set of test problems are from the so-called G-set
graphs which are randomly generated. Recently, Choi and Ye reported computational results on a

subset of G-set graphs that were solved as Max-Cut problems using their SDP code COPL-DSDP [9],

or simply DSDP. The code DSDP uses a dual-scaling interior-point algorithm and an iterative linear-
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TABLE 5.3

More CirCut Results on Maz-Cut problems from the Torus Set

Graph CirCut (N =0, M = 100) CirCut (N =8, M = 100)
Name Avg. Val | Avg. Time | Best Val Avg. Val | Avg. Time | Best Val
pm3-8-50 430 0.031 444 448 0.386 454
pm3-15-50 2792 0.212 2834 2937 4.272 2964
g3-8 37870328 0.024 40314704 40917332 0.538 41684814
g3-15 253522848 0.154 264732800 || 277864512 7.880 281029888

11

equation solver. It is currently one of the fastest interior-point codes for solving SDP problems.

We ran CirCut on a subset of G-set graphs as Max-Cut problems and compare our results with
those reported in Choi and Ye [9]. The comparison is given in Table 5.4, along with graph name and size
information. We emphasize that the timing for DSDP was obtained on an HP 9000/785/C3600 machine
with a 367 MHZ processor [8], while ours was on the aforementioned SGI Origin2000 machine at Rice
University. These two machines seem to have comparable processing speeds. We did not run DSDP
on the same computer at Rice University for several reasons: (1) the latest version of DSDP with an
iterative linear-equation solver has not yet been made publicly available; (2) since the speeds of DSDP
and CirCut are orders of magnitude apart, a precise timing is unnecessary in a qualitative comparison,
and (3) it would be excessively time-consuming to rerun DSDP on all the tested problems (as can be
see from Table 5.4).

The first two columns of Table 5.4 contain information concerning the tested graphs, followed by
timing (in seconds) and cut value information. The DSDP results were given as reported in [9]. We ran
CirCut using two sets of parameters: C1 results were for N = 0 and M = 1 (no further improvement
after minimization and a single starting point); and C2 for N = 10 and M = 5. Note that in this table
the running times listed for C2 include all M = 5 runs, i.e., the times are not averaged as in the previous
tables.

We observe that C1 took less than 11 seconds to return approximate solutions to all the 27 test
problems with a quality that, on average, 1s nearly as good as that of the DSDP cuts which required
more than 5 days of computation. On the other hand, C2 took more time to generate the cuts, but
the quality of the C2 cuts is almost uniformly better than those of DSDP with one exception. Only on
problem G50 did DSDP produce a slightly better cut. We mention, however, that CirCut can easily find

a cut of the same value on G50 if M is set to a larger value.

5.3. Comparison with a Heuristic Algorithm from Physics. An area of great interest in
modern physics is the study of spin glasses [3, 14], and the particular problem of computing the so-called
groundstate of an Ising spin glass can be cast as the problem of finding a maximum cut in a edge-weighted
graph. In this section, we compare our heuristic CirCut with a successful heuristic by Hartmann [19]
for finding an approximation to the groundstate of specially structured spin glasses.

Roughly speaking, a spin glass is a collection of n magnetic spins that possesses various interactions
between the spins and also exhibits disorder in its frozen, or low-energy, state. In the collection, each
spin can take on one of a finite number of positions. For example, when there are exactly two possible
positions, the two positions are imagined as “up” and “down” (or +1 and —1). In addition, the inter-

actions between the spins describe how the the positions of a given spin and its “neighbor” spins affect
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TABLE 5.4
Comparison with DSDP on Maz-Cut Problems from the G-set

Graph Time Value
Name Size DSDP C1 C2 | DSDP C1 C2
G11 (800, 1600) 16.6  0.06 3.88 542 524 554
G12 (800, 1600) 17.7 0.06 3.76 540 512 552
G13 (800, 1600) 18.2  0.06 3.45 564 536 572
Gl14 (800, 4694) 35.2  0.09 5.53 2922 3016 3053
G15 (800, 4661) 32.1 0.09 5.91 2938 3011 3039
G20 (800, 4672) 32.0 0.11 5.56 838 901 939
G21 (800, 4667) 37.6 0.08 5.56 841 887 921
G22 (2000, 19990) 4123.3 0.36 2231 | 12960 13148 13331
G23 (2000, 19990) 3233.5 0.37 18.85 | 13006 13197 13269
G24 (2000, 19990) 3250.7 0.30  27.30 | 12933 13195 13287
G30 (2000, 19990) 37189 0.32  23.77 3038 3234 3377
G31 (2000, 19990) 3835.7 0.33 19.61 2851 3146 3255
G32 (2000, 4000) 142.6  0.18 13.09 1338 1306 1380
G33 (2000, 4000) 1325 0.14  12.62 1330 1290 1352
G34 (2000, 4000) 156.7 0.12 9.82 1334 1276 1358
G50 (3000, 6000) 264.6 0.17  15.71 5880 5748 5856
GbHb (5000, 12498) 1474.8 0.54  39.73 9960 10000 10240
GH6 (5000, 12498) 15618.6 0.46  33.52 3634 3757 3943
GHT (5000, 10000) 1819.8 048  32.23 3320 3202 3412
G60 (7000, 17148) 58535.1 0.73  56.75 | 13610 13765 14081
G61 (7000, 17148) 52719.6 0.51  63.57 5252 5429 5690
G62 (7000, 14000) 5187.2 0.47  47.04 4612 4486 4740
G64 (7000, 41459) | 102163.9 0.94  67.56 7624 8216  857H
G70 (10000, 9999) 33116.2 0.37  94.39 9456 9280 9529

G72 (10000, 20000) | 12838.1 0.72  86.59 6644 6444 6820
G77 (14000, 28000) | 32643.4 0.95 109.41 9418 9108 9670
G81 (20000, 40000) | 131778.2 1.49 140.46 | 13448 12830 13662

the overall energy of the spin glass. For example, in Table 5.5, we show the energy contributed by two
interacting spins ¢ and j for a spin glass in which (i) there are two possible positions for a spin, (ii) all
interactions act pair-wise between spins, and (iii) each interaction is either positive or negative.

The groundstate, or low-energy state, of a spin glass occurs when the positions of the n spins are
chosen so as to minimize the overall energy of the spin glass, and spin glasses are characterized by the
fact that their groundstate is disordered, that is, all interactions cannot be satisfied with zero energy and
hence the overall energy of the system is positive. (Note that the standard physics terminology differs

somewhat from—but is equivalent to—our terminology.)

A special subclass of spin glasses, called the Ising spin glasses, has been studied extensively. Ising

spin glasses satisfy items (i) and (ii) of the previous paragraph, and the so-called +J model of Ising
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TABLE 5.5

FEnergy levels of two interacting spins

1 j interaction | energy
up up + 0
up down + 1

down up + 1
down | down + 0
up up - 1
up down — 0
down up — 0
down | down — 1

spin glasses also satisfies item (iii). Tt is not difficult to see that this model can be represented by an
edge-weighted graph G = (V, E, W), where the vertex set V consists of the n spins, the edge set E
describes the pair-wise interactions, and the symmetric weight matrix W = (@;;) has w;; equal to 1,
—1, or 0, respectively, if ¢ and j interact positively, negatively, or not at all. Moreover, if a variable z;
that can take on values +1 or —1 is used to represent the position of spin ¢, then the groundstate of the

Ising spin glass can be seen to be the optimal solution of the optimization

min 30 oep 51— wijzizy)

st. Ju=1, i=1,... n.

(5.1)

After some immediate simplifications, (5.1) can be written in the equivalent form (2.2), where w;; =
—;;, that is, (5.1) is equivalent to the maximum cut problem on the graph G = (V, E, W), where
W=-W.

Many approaches for solving (5.1) have been investigated in both the physics community as well
as the optimization community (see [2, 28]). Recently, one of the most successful heuristic approaches
for solving (5.1) has been the approach of Hartmann [19], which in particular focuses on finding the
groundstates of +J Ising spin glasses that can be embedded as square or cubic lattices in two or three
dimensions, respectively. The interactions are of the type “nearest neighbor” so that each vertex (or
spin) has four neighbors in two dimensions and six in three dimensions. Such lattice graphs lead to
regular graphs having a great deal of structure. In addition, Hartmann considers interactions in which
negative interactions occur as many times as positive interactions, that is, Z(z’,j)eE w;; = 0. Hartmann
reported strong computational results with square lattices having side length . =4,5,...,30 and cubic
lattices having length L = 4,5, ..., 14. Note that the square lattices have a total of L? vertices and that
the cubic lattices have a total of L? vertices.

Although we refer the reader to [19] for a full description of Hartmann’s algorithm, we summarize
the basic idea of the method here. Given a feasible solution # to (5.1), the algorithm tries to find a new
feasible solution & having less energy by using x to randomly build up a set of nodes V for which the
groundstate z of the induced graph on V can be found in polynomial time using a max-flow min-cut
algorithm. Then z is formed from z by setting z; = (l‘v)Z if i € V and #; = a; if i € V. The energy of
z 1s guaranteed to be no worse than that of z, and so this procedure can be iterated until the energy
exhibits no strict improvement from iteration to iteration. Various parameters of the algorithm can

affect its running time and also the quality of solution that is returned; these parameters determine
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the number of iterations allowed with no improvement, the number of independent times the overall

algorithm is run, and, more generally, the exhaustiveness of the search performed by the algorithm.

We ran both CirCut and the algorithm of Hartmann on the same SGI Origin 2000 used for the
computational results in the previous subsections. Hartmann’s code is written in ANSI C and uses only
one processor. In addition, we compiled both codes with the same compiler optimization option. In
Table 5.6, we compare CirCut with the algorithm of Hartmann on twenty graphs arising from twenty
cubic lattices having randomly generated interaction magnitudes; these problems are of the same type
that Hartmann investigated in [19]. Ten of the graphs have (L, n, |E|) = (10, 1000, 3000); and ten have
(L,n, |E|) = (14,2744, 8232). We note that, for comparison purposes, the output of each algorithm is in
terms of the equivalent maximum cut problem. Two versions of CirCut corresponding to the parameter
choices (N, M) = (10,5) and (N, M) = (50,10) were run on all thirty graphs; the versions are named
C1 and C2, respectively. Similarly, two versions H1 and H2 of Hartmann’s algorithm were run such that
H1 performed a less exhaustive search than H2. We remark that H2 represented the default parameters

supplied to us by Hartmann.

TABLE 5.6

Comparison of CirCut and Hartmann’s algorithm

Graph Cut Values Times
# V| |E| C1 C2 H1 H2 | C1 C2 HI1 H2
1 1000 3000 | 874 880 882 896 5 39 69 9528
2 1000 3000 | 894 892 892 900 T 47 68 9605
3 1000 3000 | 878 882 878 892 6 45 68 9537
4 1000 3000 | 888 894 890 898 7 54 68 9583
5 1000 3000 | 878 880 876 886 6 48 69 9551
6 1000 3000 | 866 876 874 888 6 47 68 9555
7 1000 3000 | 882 894 890 900 8 57T 69 9564
8 1000 3000 | 872 874 870 882 7T b3 69 9629
9 1000 3000 | 884 896 888 902 6 48 68 9551
10 1000 3000 | 876 888 884 894 5 56 69 9629
11 2744 8232 | 2396 2410 2382 2446 | 22 219 236 33049
12 2744 8232 | 2398 2426 2390 2458 | 20 170 236 32836
13 2744 8232 | 2382 2404 2370 2442 | 20 165 235 33171
14 2744 8232 | 2398 2418 2394 2450 | 19 173 236 33136
15 2744 8232 | 2382 2412 2370 2446 | 20 177 235 32851
16 2744 8232 | 2404 2416 2384 2450 | 23 183 236 33129
17 2744 8232 | 2390 2406 2384 2444 | 19 166 234 32999
18 2744 8232 | 2412 2414 2386 2446 | 28 171 236 33089
19 2744 8232 | 2382 2390 2356 2424 | 31 187 235 32963
20 2744 8232 | 2410 2422 2388 2458 | 19 166 236 33140

Table 5.6 contains data corresponding to the four algorithms’ performance on each of the twenty
graphs. The first three columns give the graph number, the size of V| and the size of E. The next

four columns give the cut value found by the algorithms, and the final four columns give the times (in
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seconds) required by each of the algorithms.

It can be seen from the table that on the first ten graphs 1-10 C1 had the fastest speed, but the
cuts it returned were in a few cases inferior to those produced by H1. On the other hand, C2 was able
to produce better cuts than H1 in a considerably less amount of time. The overall winner in terms of
cut values on the graphs 1-10 was H2, but this performance was achieved at the expense of very large
computation times. For the second set of graphs 11-20, we see that both C1 and C2 outperformed H1
in terms of cut values and that C1 was much faster than H1 and C2 was notably faster than H1 as
well. Again, H2 returned the best cuts but took a very long time. In all the cases, the differences in
the quality of cuts generated by the algorithms are small percentage-wise. For example, on average C1
attained over 98 percent of the cut value of H2 in an amount of time less than one-tenth of a percent of
that used by H2.

Overall, the results seem to indicate that C2 is a good choice when quality cuts are needed in a short
amount of time. In particular, C2 is at least as effective as H1. In addition, C1 is a good alternative,
especially when the size of the graph becomes large. When high quality cuts are needed and time is not
an issue, H2 is the best choice. Moreover, we remark that, based on some unreported experimentation,
CirCut does not seem to be able to achieve the same cut values as H2 even if CirCut is allowed to search

for a very long time.

6. Some Extensions. Conceptually, there is little difficulty in extending the rank-two relaxation
idea to other combinatorial optimization problems in the form of a binary quadratic program, especially
to those arising from graph bipartitioning. For a given problem, however, whether or not the rank-two
relaxation will lead to high-performance algorithms, like the one we have demonstrated for Max-Cut,
must be determined by an individual investigation and a careful evaluation. Close attention must also
be paid to the specific structure of each problem in order to obtain good algorithms.

In this section, we focus on extending the rank-two relaxation idea to a close relative of Max-Cut
— the Max-Bisection problem. Max-Bisection is the same as Max-Cut except that it has the additional
constraint ez = 0 (i.e., the number of positive ones in # must equal the number of negative ones, hence

implying that n should be even), which can also be written as
(eTJL‘)2 = (eeT) . (xa:T) =0.

After the removal of the rank-one restriction, one obtains the following SDP relaxation of the Max-

Bisection problem (comparable to (2.5)):

min % WeX
s.t.  diag(X) =,
ceT ¢ X =0,

X = 0.

(6.1)

Randomized procedures similar to the Goemans-Williamson technique for Max-Cut have been proposed
with different performance guarantees for Max-Bisection; see [15, 32], for example.
In a similar fashion as with Max-Cut, using the rank-two relaxation and polar coordinates, we obtain

a new relaxation for Max-Bisection:

min ()

(6.2) st €T cos(T'(#))e = 0.
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Suppose that we have obtained a (local or global) minimizer # for (6.2). How do we generate a
bisection? Without loss of generality, let us assume that n is even and that ¢ satisfies 0; € [0,27), i =

1,...,n. We may also assume that, after a reordering,

0 <0,<...<0,.

Then, to generate a bisection, we pick any integer k& € [1,n/2) and let

1, ifielkk 2
(6.3) v — , ifielk, frn/ ),
-1, otherwise.

The following procedure efficiently considers all possible values of & in (6.3) and saves the best resultant
bisection:
Procedure-BIS (input 6, output z*):
Given 6 € N” such that 0 <6; <--- <8, <2, let [' = —o0.
Fork=1,...,n/2—1
1. Generate a cut # by (6.3) and compute y(z).
2. If y(x) > T, then let T' = () and z* = x.
End

Instead of solving the constrained relaxation (6.2), we have found through numerical experiments
that solving the unconstrained relaxation (3.2) can generate the same or better quality bisections while
taking less time. Intuitively, this is not hard to understand since the best bisection generated by
Procedure-BIS for a given 6 is dependent only on the ordering of the points along the circle and in-
dependent of the actual locations of the points. In fact, it is easy to verify that the constraint in (6.2)
is equivalent to [|[v; - vule||? = 0 where v; = [cos(6;) sin(6;)]T; that is, the n vectors on the unit
circle must sum up to zero. So by itself, the constraint puts a restriction on the locations of points, but
has nothing to do with their ordering. Hence, whether a given 6§ satisfies the constraint or not has no
bearing on the quality of the bisection z* generated by Procedure-BIS. On the other hand, the quality of
z* depends greatly on the objective value f(#). Since it is more likely to obtain lower function values at
unconstrained local minima than at constrained ones, we are thus more likely to obtain better bisections
without the constraint.

In view of this, we construct our heuristic algorithm based on minimizing f(f) without the additional
constraint. We simply replace Procedure-CUT in Algorithm-1 by Procedure-BIS, and obtain a heuristic
algorithm for the Max-Bisection problem, which we call Algorithm-2. In Algorithm-2, we also have the
option of improving a cut by a minimal local search that allows swapping only a pair of nodes at a time,
and is set to be a default feature.

We ran Algorithm-2 of CirCut on a subset of the G-set problems plus two additional test problems.
These extra problems were contained in a test set used in Choi and Ye [9] and are publicly available.

In Table 6.1, we compare the results of CirCut with the results of DSDP reported in [9]. Again,
we mention that the timing for DSDP was obtained on an HP 9000/785/C3600 computer with a 367
MHZ processor, while ours was on an SGI Origin2000 machine with sixteen 300 MHZ processors at Rice
University. (Note, however, that both codes always use a single processor.)

Again, the first two columns of Table 6.1 contain the information on the tested graphs, followed by
timing (in second) and cut value information. We ran CirCut using two sets of parameters: C1 results
were for N = 0 and M = 1 (no further improvement after minimization and a single starting point);

and C2 for N =5 and M = 1.
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C1 took less than 22 seconds to return approximate solutions to all 13 test problems with a quality
that is superior to that of DSDP on average. While C2 took more time to generate the bisections, the
quality of the bisections generated by C2 is better than that of DSDP on all but one problem: G50.
Again, we mention that if N and M are set to larger values, CirCut is able to produce a bisection of the
same value on G50 as that of DSDP’s, within a time still much shorter than that required by DSDP.

TABLE 6.1
Comparison with DSDP on Maz-Bisection Problems

Graph Time Value
Name Size DSDP C1 C2 | DSDP C1 C2
G50 (3000, 6000) 462.2 029  2.29 5878 5690 5830
GbHb (5000,12498) 1793.4  0.46  4.32 9958 10007 10171
GH6 (5000,12498) 207935  0.44  3.36 3611 3672 3835
GHT (5000,10000) 2090.8  0.32 298 3322 3146 3382
G60 (7000,17148) 48949.9 054  4.66 | 13640 13759 13945
G61 (7000,17148) 42467.2  0.62 7.16 5195 5312  5b4H
G62 (7000,14000) 5446.0  0.50  4.98 4576 4402 4706
G64 (7000,41459) | 123409.7  0.92 12.05 7700 8056 8431
GT72 (10000,20000) 15383.9 0.76  7.34 6628 6314 6736
GT7 (14000,28000) | 36446.7  1.15 11.38 6560 8980 9638
G81 (20000,40000) | 334824.2  1.54 26.87 9450 12582 13618
bml (882,4711) 33.9 0.08 0.65 848 857 863
biomedp (6514,629839) | 46750.7 13.89 37.55 5355 5575 5593

6.1. Maximization versus Minimization. So far, we have only presented computational results
on maximization problems, i.e., the Max-Cut and Max-Bisection problems which are equivalent to
minimizing f(0). Moreover, all of the graphs in the test sets have either all positive edge weights or a
combination of both positive and negative weights.

Now let us consider the corresponding minimization problems on these graphs, equivalent to max-
imizing f(0). TFor those graphs having both positive and negative weights, one can apply the same
algorithms to the minimization problems by simply minimizing — f(#) instead of f(6). Things are not so
simple, however, if all the weights are positive. In this case, it is easy to see that the global minimum of
—f(0) is attained whenever all n points coincide on the unit circle such that cos(f; —6;) = 1. This result
makes sense for the Min-Cut problem in that the minimum cut in a graph with all positive weights is
to have all nodes on one side of the cut (i.e., to have no cut at all). On the other hand, this result does
not have a meaningful interpretation for Min-Bisection, creating a challenge for generating a bisection
whenever a global minimum of — f(#) is attained (although actually finding a global minimum may not
happen often). An obvious, possible remedy to this problem is to reinstall the bisection constraint back

into the formulation. Further investigation is clearly needed for the Min-Bisection problem.

7. Concluding Remarks. The computational results indicate that the proposed rank-two relax-
ation heuristics are effective in approximating the Max-Cut and Max-Bisection problems. Being able
to return high-quality approximate solutions in a short amount of time, they are particularly useful in

situations where either the problem is very large or time is at a premier.
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Several factors have contributed to the performance of the rank-two relaxation approach: (1) the
costs of local optimization are extremely low; (2) desirable properties relate the discrete problem to its
rank-two relaxation enabling us to locate high-quality local minima; and (3) good local minima of the
rank-two relaxation appear to be sufficient for generating good approximate solutions to the discrete
problem.

The proposed heuristics consistently produce better quality approximate solutions while taking only
a tiny fraction of time in comparison to the SDP relaxation approach, particularly on larger problems.
This fact suggests that as a practical technique for producing lower bounds, the SDP relaxation approach
does not seem to hold much promise, at least for the Max-Cut and the Max-Bisection problems. In
addition, the rank-two relaxation heuristic compares favorably to other heuristics, 1.e., ones that are not
based on the SDP relaxation.

It is known that, besides Max-Cut, a number of other combinatorial optimization problems can also
be formulated as unconstrained binary quadratic programs in the form of (2.2), such as the Max-Clique
problem (see [4], for example). These are potential candidates for which the rank-two relaxation approach
may also produce high-performance heuristic algorithms. Further investigation in this direction will be

worthwhile.
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