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RANK�TWO RELAXATION HEURISTICS FOR MAX�CUT

AND OTHER BINARY QUADRATIC PROGRAMS�

SAMUEL BURERy � RENATO D�C� MONTEIROz � AND YIN ZHANGx

Abstract�

The Goemans�Williamson randomized algorithm guarantees a high�quality approximation to the Max�Cut problem�

but the cost associated with such an approximation can be excessively high for large�scale problems due to the need for

solving an expensive semide�nite relaxation� In order to achieve better practical performance� we propose an alternative�

rank�two relaxation and develop a specialized version of the Goemans�Williamson technique� The proposed approach leads

to continuous optimization heuristics applicable to Max�Cut as well as other binary quadratic programs� for example the

Max�Bisection problem�

A computer code based on the rank�two relaxation heuristics is compared with two state�of�the�art semide�nite pro�

gramming codes that implement the Goemans�Williamson randomized algorithm� as well as with a purely heuristic code

for e�ectively solving a particular Max�Cut problem arising in physics� Computational results show that the proposed

approach is fast and scalable and� more importantly� attains a higher approximation quality in practice than that of the

Goemans�Williamson randomized algorithm� An extension to Max�Bisection is also discussed as well as an important

di�erence between the proposed approach and the Goemans�Williamson algorithm� namely that the new approach does

not guarantee an upper bound on the Max�Cut optimal value�

Key words� Binary quadratic programs� Max�Cut and Max�Bisection� semide�nite relaxation� rank�two relaxation�

continuous optimization heuristics�

AMS subject classi�cations� ��C�	� ��C
�� ��C��

�� Introduction� Many combinatorial optimization problems can be formulated as quadratic pro�

grams with binary variables� a simple example being the Max�Cut problem� Since such problems are

usually NP�hard� which means that exact solutions are di�cult to obtain� di�erent heuristic or approx�

imation algorithms have been proposed� often based on continuous relaxations of the original discrete

problems� A relatively new relaxation scheme is called the semide�nite programming relaxation �or SDP

relaxation	 in which a vector�valued binary variable is replaced by a matrix�valued continuous variable�

resulting in a convex optimization problem called a semide�nite program �SDP	 that can be solved to a

prescribed accuracy in polynomial time� Some early ideas related to such a relaxation can be found in

a number of works� including 
��� �� �� �� ���

Based on solving the SDP relaxation� Goemans and Williamson 
��� proposed a randomized al�

gorithm for the Max�Cut problem and established the celebrated ����� performance guarantee� Since

then� SDP relaxation has become a powerful and popular theoretical tool for devising polynomial�time

approximation algorithms for hard combinatorial optimization problems� and even in cases where per�

formance guarantees are not known� randomized algorithms based on the SDP relaxation can often give

good�quality approximate solutions in practice� It is important to note that such Goemans�Williamson�
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type approaches produce both upper and lower bounds on the optimal value of the underlying discrete

problem�

In the meantime� there have been hopes that the SDP relaxation would eventually lead to practically

e�cient algorithms for solving large�scale combinatorial optimization problems by producing tight lower

and upper bounds� In this regard� however� results thus far have not always been encouraging� The

main di�culty lies in the fact that the number of variables and�or constraints in a SDP relaxation is

one order of magnitude higher than that of the original problem� Hence� the cost of solving such SDP

problems grows quickly as the size of the problems increases� In other words� a key issue here is the

scalability of the SDP relaxation approach with respect to the problem size�

There have been a great deal of research e�orts towards improving the e�ciency of SDP solvers�

including works on exploiting sparsity in more traditional interior�point methods 
�� �� ��� ��� �� and

works on alternative methods 
�� �� �� �� �� ��� ���� Indeed� the e�ciency of SDP solvers has been

improved signi�cantly in the last few years� Nevertheless� the scalability problem still remains�

On the other hand� computational studies have continued to a�rm that the quality of bounds

produced by the SDP relaxation is quite high� For example� the Goemans�Williamson approximation

algorithm produces lower bounds �i�e�� discrete solutions	 that are better than or at least comparable

to that of a number of heuristics �see 
���� for example	� It is thus natural to investigate whether the

quality of the SDP relaxation can be preserved while somehow extending its use to problems of very

large size�

Can the approaches inspired by Goemans and Williamson� which rely on solving the SDP relaxation�

ever become competitive in attacking large�scale problems� In this paper� we hope to provide a partial

answer to this question� We will argue that in terms of producing a lower bound� the answer seems to

be negative at least for some problem classes including the familiar Max�Cut problem� In other words�

if one is only interested in obtaining a high�quality approximate solution� then the SDP relaxation does

not seem to hold much promise� Our argument is based on strong empirical evidence showing that on

a large set of test problems the performance of the SDP relaxation approach is clearly inferior to that

of a new rank�two relaxation approach that we will propose and study in this paper� The advantages of

this rank�two approach are not only in terms of computational costs but� more notably� also in terms of

the approximation quality�

Based on the proposed rank�two relaxation and a specialized version of the Goemans�Williamson

technique� we construct a continuous optimization heuristic for approximating the Max�Cut problem and

establish some properties for this approach that are useful in designing algorithms� We then compare

a code based on our heuristic with some state�of�the�art SDP�based approximation codes on a set of

Max�Cut test problems� We also compare our code with a well�established� heuristic code for Max�Cut

on a set of test problems from physics� Finally� we consider extensions to other related problems�in

particular� to the Max�Bisection problem�

This paper is organized as follows� Section  brie�y introduces the Max�Cut problem and its cor�

responding SDP relaxation� In Section �� we present the rank�two relaxation scheme and study its

properties� including a useful characterization for a maximumcut� In Section �� we present our heuristic

algorithm for the Max�Cut problem� and computational results on Max�Cut are given in Section �� We

extend the heuristic to the Max�Bisection problem in Section � and give numerical results as well� Lastly�

we conclude the paper in Section ��
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�� Max�Cut and the Semide�nite Relaxation� Let an undirected and connected graph G �

�V�E	� where V � f�� � � � �� ng and E � f�i� j	 � � � i � j � ng� be given� Let the edge weights

wij � wji be given such that wij � � for �i� j	 �� E� and in particular� let wii � �� The Max�Cut problem

is to �nd a bipartition �V�� V�	 of V so that the sum of the weights of the edges between V� and V� is

maximized� It is well�known that the Max�Cut problem can be formulated as

max �
�

P
��i�j�nwij��� xixj	

s�t� jxij � �� i � �� � � � � n�
���	

which has the same solution as the following binary quadratic program�

min
P

��i�j�nwijxixj

s�t� jxij � �� i � �� � � � � n�
��	

Moreover� it is easy to verify that ��	 can be rewritten into the matrix optimization problem

min �
� W �X�

s�t� diag�X	 � e�

rank�X	 � ��

X � ��

���	

where W � 
wij��W �X �
Pn

i�j��wijxij� diag�X	 is the vector in 	n consisting of the diagonal elements

of X� e is the vector of all ones� and X � � means that X is symmetric positive semide�nite�

Since the Max�Cut problem is NP�hard� various heuristics and approximation algorithms have been

proposed to attack the problem� A recent ground�breaking work is due to Goemans and Williamson 
���

who replace the �unit scalars� xi in ��	 by unit vectors vi � 	n and the scalar products xixj by the

inner products vTi vj � The resulting problem is the following relaxation of the Max�Cut problem�

min
P

��i�j�nwijv
T
i vj

s�t� kvik� � �� i � �� � � � � n�
���	

where vi � 	n� Furthermore� a change of variables X � 
vTi vj � � 	n�n leads to the following so�called

SDP relaxation for the Max�Cut problem

min �
� W �X�

s�t� diag�X	 � e�

X � ��

���	

It is well�known that such a SDP problem is approximately solvable in polynomial time �see 
��� for

example	� Comparing ���	 with ���	� we clearly see that the SDP relaxation is nothing but the problem

obtained from ���	 by dropping the rank�one restriction on X�

It is worth observing that a solution �v�� � � � � vn	 of ���	 consists of n points on the surface of the unit

sphere in 	n� each representing a node in the graph� Goemans andWilliamson 
��� proposed the following

randomized algorithm for generating cuts in the graph� after a solution of ���	 is obtained� one randomly

partitions the unit sphere into two half�spheres H� and H� �the boundary in between can be on either

side	 and forms the bipartition consisting of V� � fi � vi � H�g and V� � fi � vi � H�g� Furthermore�

Goemans and Williamson established the celebrated result that if all the weights are nonnegative� then

the expected value of such randomly generated cuts is at least ����� times the maximum cut value� This

result gives a strong performance guarantee for this randomization procedure� In fact� it has recently

been shown in 
��� that the factor ����� is indeed the best possible in several senses�
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�� A Rank�Two Relaxation� In this section� we present an alternative rank�two relaxation

scheme that leads to a nonlinear optimization problem having only n variables but also a noncon�

vex objective function� Since the number of variables is not increased from the Max�Cut problem� this

approach possesses scalability for relaxing large�scale problems� On the other hand� since the relaxation

is nonconvex� we cannot expect to �nd an optimal solution in practice� and so we can no longer ensure

a computable upper bound on the original problem� For solving this problem to gain information about

the underlying Max�Cut problem� the trade�o� is obviously between computational e�ciency and a the�

oretical guarantee� When the main objective is to obtain high�quality approximate solutions� however�

we hope to demonstrate through computational experiments that the gain clearly outweighs the loss�

We replace the �unit scalar� variables xi in ��	 by unit vectors vi � 	� �not 	n	 and the scalar

products xixj by the inner products vTi vj� As before� the constraint jxij � � becomes kvik� � �� namely�

all the vectors vi should be on the unit circle� In this way� we obtain a relaxation of the Max�Cut

problem that has exactly the same form as ���	 except that now all vectors vi are in 	� instead of 	n�

Alternatively� this relaxation can also be viewed as replacing the rank�one restriction on X in ���	 by

the rank�two restriction rank�X	 � � hence we call it a rank�two relaxation�

Using polar coordinates� we can represent a set of n unit vectors v�� � � � � vn in 	� by means of a

vector � � ���� � � � � �n	
T � 	n consisting of n angles� namely

vi �

�
cos �i

sin �i

�
� 
 i � �� � � � � n�

In this case� we have

vTi vj � cos��i � �j	� 
 i� j � �� � � � � n�

Let T ��	 be the skew�symmetric matrix�valued function of � de�ned by

Tij��	 � �i � �j � 
 i� j � �� � � � � n�

and let f � 	n � 	 be the function de�ned as

f��	 �
�


W � cos�T ��		� 
 � � 	n�����	

where cos�T ��		 is the n  n matrix whose entries are the cosine of the corresponding entries of T ��	�

Then� in terms of the polar coordinates� we obtain the following relaxation for the Max�Cut problem�

min
���n

f��	���	

This is an unconstrained optimization problem with a nonconvex objective function� In general� it has

multiple local� non�global minima�

The derivatives of the function f��	 can be easily computed� Indeed� the �rst partial derivatives of

f��	 are given by

�f��	

��j
�

nX
k��

wkj sin��k � �j	� 
 j � �� � � � � n�

and hence�

g��	 � rf��	 � 
W � sin�T ��		�T e�����	
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where the notation ��� indicates the Hadamard� i�e�� entry�wise� product of W and sin�T ��		� The

second partial derivatives of f��	 are given by

��f��	

��i��j
�

�
wij cos��i � �j	� if i �� j�

�
P

k ��j wkj cos��k � �j	� if i � j�

for every i� j � �� � � � � n� and hence the Hessian of f��	 is given by

H��	 � r�f��	 � W � cos�T ��		 � Diag�
W � cos�T ��		�e	 �����	

where for any vector v� Diag�v	 is the diagonal matrix with v on its diagonal� Note that the major e�ort

in the evaluation of f � g and H is the computation of the quantities W � cos�T ��		 and W � sin�T ��		�

There are interesting relationships between cuts in the graph and the function f��	� which we will

now describe� We call a vector �� � 	n an angular representation of a cut� or simply a cut� if there exist

integers kij such that

��i � ��j � kij�� 
 i� j � �� � � � � n�����	

Clearly� in this case cos���i � ��j	 � �� and there exists a binary vector �x � f��� �gn such that

cos���i � ��j	 � �xi�xj � ��� 
 i� j � �� � � � � n�

Moreover� the cut value corresponding to a cut �� is

	���	 �
�



X
i�j

wij
�� cos���i � ��j	������	

We note that the function f��	 is invariant with respect to simultaneous� uniform rotation on every

component of �� i�e�� f��	 � f�� 
e	 for any scalar 
 � and is periodic with a period of � with respect to

each variable �i� Modulo the uniform rotation and the periodicity for each variable� there is an obvious

one�to�one correspondence between the binary and angular representations of a cut� namely�

��i �

�
�� if �xi �  ��

�� if �xi � ���

and vice versa� With the above correspondence in mind� in the sequel we will use �� and �x interchangeably

to represent a cut� Moreover� given an angular representation of a cut �� �or a binary one �x	� we will use

the notation x���	 �or ���x		 to denote the corresponding binary �or angular	 representation of the same

cut�

Since sin���i � ��j	 � � for any �� satisfying ����	� it follows directly from ����	 that g���	 � � at any

cut ��� We state this simple observation in the following proposition�

Proposition ���� Every cut �� � 	n is a stationary point of the function f��	�

We will now derive a characterization of a maximum �minimum	 cut in the lemma below which will

be useful in the later development� We �rst need the following de�nition� A matrixM � 	n�n is called

nonnegatively summable if the sum of the entries in every principal submatrix of M is nonnegative� or

equivalently� if uTMu � � for every binary vector u � f�� �gn� Clearly� every positive semide�nite matrix

is nonnegatively summable� On the other hand� the matrix eeT � I is nonnegatively summable� but not

positive semide�nite�
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Lemma ���� Let �x � f��� �gn be given and consider the matrix M ��x	 � 	n�n de�ned as

M ��x	 � W � ��x�xT 	�Diag�
W � ��x�xT 	�e	�����	

Then� �x is a maximum �respectively� minimum� cut if and only if M ��x	 �respectively� �M ��x	� is non�

negatively summable�

Proof� Let q � 	n � 	 be the quadratic function de�ned as q�x	 � �xTWx	� for all x � 	n and

note that �x is a maximum cut if and only if �x minimizes q�x	 over the set of all x � f��� �gn� Now� let

x � f��� �gn be given and observe that

�x� x �  � � �x�

where ��� represents the Hadamard product� and � � 	n is de�ned as

�i �

�
�� if xi � �xi�

�� if xi �� �xi�
����	

Using this identity and the fact that �T v � �TDiag�v	� for any v � 	n� we obtain

q�x	� q��x	 � �W �x	T �x� �x	  
�


�x� �x	TW �x� �x	

� ��xTW �� � �x	  �� � �x	TW �� � �x	

� ��T �
W � �x�xT �e	  �T 
W � �x�xT ��

� ��TDiag
�

W � �x�xT �e

�
�  �T 
W � �x�xT �� � �TM ��x	�

Noting that every x � f��� �gn corresponds to a unique vector � � f�� �gn via ����	 and vice versa� we

conclude from the above identity that �x minimizes q�x	 over x � f��� �gn if and only if �TM ��x	� � �

for all � � f�� �gn� or equivalently� M ��x	 is nonnegatively summable�

The proof of the second equivalence is analogous� Hence� the result follows�

Although every cut is a stationary point of f��	� the following theorem guarantees that only the

maximum cuts can possibly be local minima of f��	� In fact� the theorem gives a complete classi�cation

of cuts as stationary points of the function f��	�

Theorem ���� Let �� be a cut and let �x � x���	 be the associated binary cut� If �� is a local minimum

�respectively� local maximum� of f��	� then �x is a maximum �respectively� minimum� cut� Consequently�

if �x is neither a maximum cut nor a minimum cut� then �� must be a saddle point of f��	�

Proof� Since �xi�xj � cos���i � ��j	� we have r
�f���	 � M �x���		 due to ����	 and ����	� If �� is a local

minimum of f � then the Hessian r�f���	 is positive semi�de�nite� and hence nonnegatively summable�

The �rst implication of the theorem then follows from the �rst equivalence of Lemma ��� The second

implication of the theorem can be proved in a similar way using the second equivalence of Lemma ���

Hence� the result follows�

The converses of the two implications in the above theorem do not hold� Indeed� consider the

unweighted graph K� �the complete graph with three nodes	 for which the cut �x � 
� � � � ��T is

maximum� From ����	� we have

M ��x	 �

�
�	

 �� ��

�� � �

�� � �



�� �

D 

D 
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which is indeed nonnegatively summable� but not positive semi�de�nite� Hence� the corresponding

angular representation �� is not a local minimum of the function f��	 in view of the fact that M ��x	 �

r�f���	�

There are indeed instances where maximum cuts are local minima of f��	� as indicated by the

following observation�

Proposition ���� For a bipartite graph with nonnegative weights� the global minimum value of f��	

is attained by a maximum cut�

Proof� A maximum cut is one that cuts through all the edges in the bipartite graph� For this

cut� cos��i � �j	 � �� for all edges �i� j	 � E� Hence the global minimum value of f��	 is attained at

�eTWe��

Obviously� for problems where a maximum cut �x corresponds to a local minimum of f��	� the

optimality of �x can be checked in polynomial time by determining whether M ��x	 is positive semide�nite

or not�

Since non�maximum cuts cannot possibly be local minima of f��	� a good minimization algorithm

would not be attracted to stationary points corresponding to non�maximum cuts that are either local

maxima or saddle points of f��	� This fact will play an important role in the construction of our

algorithms�

�� A Heuristic Algorithm for Max�Cut� To produce an approximate solution to the Max�

Cut problem� we �rst minimize the function f��	 and obtain a local minimum � corresponding to a

distribution of points on the unit circle� Using periodicity� we may easily assume that �i � 
�� �	 for

each i � �� � � � � n� Any partition of the unit circle into two equal halves gives a cut as follows� pick an

angle � � 
�� �	 and let

xi �

�
 �� if �i � 
�� � �	�

��� otherwise�
����	

The corresponding value of the cut x is given by

�x	 �
�



X
i�j

wij��� xixj	����	

An advantage of the rank�two relaxation over the SDP relaxation is that it is straightforward and

inexpensive to examine all possible cuts generated in the above fashion� making it easy to �nd the

best one� The following� deterministic �rather than random	 procedure �nds a best possible Goemans�

Williamson�type cut associated with a given �� Without loss of generality� let us assume that � satis�es

�i � 
�� �	� i � �� � � � � n� and that

�� � �� � � � � � �n�

after a reordering if necessary�

Procedure�CUT �input �� output x�	�

Let � � �� ! � ��� i � �� Let j be the smallest index such that

�j � � if there is one� otherwise set j � n �� Set �n�� � ��

While � � �

�� Generate cut x by ����	 and compute �x	�

� If �x	 � !� then let ! � �x	 and x� � x�

D 
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�� If �i � �j � �� let � � �i and increment i by ��

otherwise let � � �j � � and increment j by ��

End

Since our rank�two relaxation has the same form as Goemans and Williamson"s relaxation ���	

except ours has variables in 	� rather than 	n� the same analysis of Goemans and Williamson� with

minimal changes� can be applied to show that the cut value generated by the above procedure is at least

����� times the relaxed cut value 	��	 as is de�ned in ����	� That is�

�x�	 � �����	��	�

However� since we cannot guarantee that 	��	 is an upper bound on the maximum cut value� there is

no performance guarantee� Nevertheless� we do have the property that� in a weak sense and to some

extent� the better local maximumof 	��	 �or� equivalently� local minimumof f��		 we obtain� the better

cut will likely be produced� To see this� let x�a and x
�
b be two binary cuts generated by Procedure�CUT

from �a and �b� respectively� If �x�a	 � 	��a	 and 	��b	 �
�

���	�	��a	� then since

�x�b 	 � ����� 	��b	 � 	��a	 � �x�a	�

x�b is a better cut than x�a�

After we minimize the function f��	 and obtain a local minimum ��� we will call Procedure�CUT to

produce a best possible cut x� associated with ��� At this point� we may stop and return the generated

cut x�� On the other hand� if we are willing to spend more time� we may try to improve the quality of

our approximation�

We know that the angular representation of the cut x�� ��x�	� is a stationary point�most likely a

saddle point�of the function f��	� but not a minimizer unless it is already a maximum cut� Assuming

that ��x�	 is in fact a saddle point� it is probable that close by there are local minima of f that are deeper

than �� is� Although we cannot restart the minimization directly from the stationary point ��x�	� we

can certainly restart from a slight perturbation of ��x�	 and hopefully escape to a better local minimum

�� which in turn would hopefully lead to a better cut x� or ��x�	� We can continue this process until

we reach a cut from which we deem that further improvement seems unlikely� We state this heuristic as

the following algorithm�

Algrithm��	 �input N� ��� output x�	

Given �� � 	n� integer N � �� let k � � and ! � ���

While k � N

�� Starting from ��� minimize f to get ��

� Compute a best cut x associated with � by Procedure�CUT�

�� If �x	 � !� let ! � �x	� x� � x and k � �� otherwise set k � k  ��

�� Set �� to a random perturbation of the angular representation of x�

End

The parameter N controls how many consecutive� non�improving random perturbations are allowed

before we stop the algorithm� If so desired� the algorithm can be run M times with multiple starting

points �� to increase the chances of achieving better cuts� Generally speaking� the larger N and M � the

longer time the algorithm will take to run� and the better cut it will return�

A geometric interpretation of Algorithm�� is as follows� After we arrive at a local minimum of f �

we search around this local minimum for a nearby saddle point �i�e�� a cut	 that has the lowest f�value

--
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in the neighborhood� We then move to the saddle point and restart the minimization to locate a nearby

local minimum that� hopefully� has a smaller f�value than the previous one� We repeat this process until

we deem that the search has become unfruitful�


� Computational Results for Max�Cut� We have implemented Algorithm�� in a Fortran��

code named �CirCut�� For the minimization of f��	� we use a simple gradient algorithm with a back�

tracking Armijo line�search� Since numerical experiments indicate that the accuracy of the minimization

is not crucial� we stop the minimization when the relative change in the function value is less than ���
�

In CirCut� we also include an option for a simple local search in the cut space� that is� after a cut

is returned from Procedure�CUT� one has the option to improve it through a quick local search that

moves one or two nodes at a time� producing a so�called locally �optimal solution� This feature can

often slightly improve the quality of a cut and is therefore set to be a default feature unless speci�ed

otherwise�

We compare our code CirCut with two SDP codes SBmethod and DSDP� both implementing the

Goemans�Williamson randomized algorithm �along with other features	� Since these codes produce both

an upper bound and a lower bound while our code only gives the latter� the comparisons should not be

taken at face value� In carrying out such comparisons� we have two objectives in mind� Firstly� since

our heuristic is derived from the Goemans�Williamson randomized algorithm by a rank restriction� we

want to see how our modi�cations a�ect the performance� both time�wise and quality�wise� of generating

lower bounds� Secondly� since the approximation quality of Goemans�Williamson randomized algorithm

has been shown to be at least as good as a number of heuristics 
���� through the comparisons we hope

to get a good picture on the approximation quality of our heuristic� We select the codes SBmethod

and DSDP for our comparisons because they represent the state of the art in solving large�scale SDP

problems�

We also compare our code with a state�of�the�art heuristic code for Max�Cut problems from the Ising

spin glass model in physics� developed by Hartmann 
���� The purpose of this comparison is self�evident�


��� Comparison with SBmethod� We �rst report numerical results on the Max�Cut problem

in comparison with SBmethod� an SDP code developed by Helmberg and Rendl 
��� SBmethod solves

a large class of semide�nite programs using a specialized bundle method� the so�called spectral bundle

method� and in particular is one of the fastest codes for solving Max�Cut SDP relaxations�

The �rst set of test problems comes from the DIMACS library of mixed semide�nite�quadratic�linear

programs 
��� This set contains four Max�Cut problems� called the torus problems� which originated

from the Ising model of spin glasses in physics �see Section ��� for details	� In Table ���� we give statistics

for this set of problems� note that the sizes of the graphs are given as �jV j� jEj	� In the table� the columns

�Lower Bound� and �Upper Bound� give the best lower and upper bounds on the maximum cut value

known to us to date� and the column �SDP bound� gives the SDP upper bounds on the maximum cut

values� All the lower and upper bounds were supplied to us by Michael J#unger and Frauke Liers 
�

except for the lower bounds ��� for pm������� and �������� for g���� which were the best cut values

so far obtained by CirCut on these two problems� respectively� We mention that for pm������ and g����

the best cut values so far obtained by CirCut are� respectively� ��� and ��������� and the latter value

is optimal�

In Table ��� we present a comparison between the code SBmethod and our code CirCut� Since

the latest version of SBmethod does not include the functionality of generating cuts by the Goemans�

Williamson randomized procedure� we used an earlier version that does� It is quite likely that the latest
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Table ���

Statistics for the Torus Set of Max�Cut Problems

Graph Name Size Lower Bound Upper Bound SDP Bound

pm������ ���� ����	 ��� ��� ��

pm������� ������ ����	 ��� ������� ����

g��� ���� ����	 �������� �������� ��������

g���� ������ ����	 ������e � �����e � ������e �

version of SBmethod would produce better timings than those presented in the table�

We ran both SBmethod and CirCut on an SGI Origin��� machine with sixteen ���MHZ R����

processors at Rice University� Since neither code is parallel� however� only one processor was used at

a time� For both codes� the cut values were obtained without any post�processing heuristics� i�e�� the

simple local search feature of CirCut was not invoked� The default parameter settings were used for

SBmethod� In Table ��� the cut value and computation time are reported for each problem� For CirCut�

the value of M is the number of times Algorithm�� was run with random starting points� and the value

of N is the parameter required by Algorithm��� The average time per run� the average cut value� and

the best value in the M runs are reported in the last three columns of the table� respectively� All the

reported times are in seconds� From the table� it is clear that an average run of CirCut is much faster

and produces better quality cuts on all four test problems�

Table ���

Comparison with SBmethod on Max�Cut Problems from the Torus Set

Graph SBmethod CirCut �N � �� M � ���	

Name Value Time Avg� Value Avg� Time Best Value

pm������ ��� ��� ��� ���� ��

pm������� �� ������ ��� ��� ���

g��� �������e � ����� �������e � ���� �������e �

g���� �����e � ������� ������e � ���� ������e �

More results are reported in Table ��� for CirCut using di�erent values of N � These results indicate

that the variations between the average and best cut values are quite moderate� and they also show that

even with N � � �no further improvement attempted after minimization	� CirCut gives quite respectable

cuts in a minimal amount of time on the average� As N increases� CirCut produces better quality cuts�

and uses more time of course� However� even for N � �� CirCut is still faster by orders of magnitude�

However� we should bear in mind that in every run SBmethod also produces an upper bound�

hence the running times for CirCut and SBmethod are not exactly comparable� They become totally

comparable only when the sole objective of the computation is to obtain approximate solutions� These

comments also apply to the comparisons presented in the next subsection and in Section ��


��� Comparison with DSDP� The second set of test problems are from the so�called G�set

graphs which are randomly generated� Recently� Choi and Ye reported computational results on a

subset of G�set graphs that were solved as Max�Cut problems using their SDP code COPL�DSDP 
���

or simply DSDP� The code DSDP uses a dual�scaling interior�point algorithm and an iterative linear�
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Table ���

More CirCut Results on Max�Cut problems from the Torus Set

Graph CirCut �N � �� M � ���	 CirCut �N � �� M � ���	

Name Avg� Val Avg� Time Best Val Avg� Val Avg� Time Best Val

pm������ ��� ����� ��� ��� ����� ���

pm������� �� ��� ��� ��� ��� ���

g��� ������� ���� �������� ������� ����� ��������

g���� ������ ����� ������� ������� ����� �������

equation solver� It is currently one of the fastest interior�point codes for solving SDP problems�

We ran CirCut on a subset of G�set graphs as Max�Cut problems and compare our results with

those reported in Choi and Ye 
��� The comparison is given in Table ���� along with graph name and size

information� We emphasize that the timing for DSDP was obtained on an HP ���������C���� machine

with a ��� MHZ processor 
��� while ours was on the aforementioned SGI Origin��� machine at Rice

University� These two machines seem to have comparable processing speeds� We did not run DSDP

on the same computer at Rice University for several reasons� ��	 the latest version of DSDP with an

iterative linear�equation solver has not yet been made publicly available� �	 since the speeds of DSDP

and CirCut are orders of magnitude apart� a precise timing is unnecessary in a qualitative comparison�

and ��	 it would be excessively time�consuming to rerun DSDP on all the tested problems �as can be

see from Table ���	�

The �rst two columns of Table ��� contain information concerning the tested graphs� followed by

timing �in seconds	 and cut value information� The DSDP results were given as reported in 
��� We ran

CirCut using two sets of parameters� C� results were for N � � and M � � �no further improvement

after minimization and a single starting point	� and C for N � �� and M � �� Note that in this table

the running times listed for C include allM � � runs� i�e�� the times are not averaged as in the previous

tables�

We observe that C� took less than �� seconds to return approximate solutions to all the � test

problems with a quality that� on average� is nearly as good as that of the DSDP cuts which required

more than � days of computation� On the other hand� C took more time to generate the cuts� but

the quality of the C cuts is almost uniformly better than those of DSDP with one exception� Only on

problem G�� did DSDP produce a slightly better cut� We mention� however� that CirCut can easily �nd

a cut of the same value on G�� if M is set to a larger value�


��� Comparison with a Heuristic Algorithm from Physics� An area of great interest in

modern physics is the study of spin glasses 
�� ���� and the particular problem of computing the so�called

groundstate of an Ising spin glass can be cast as the problem of �nding a maximumcut in a edge�weighted

graph� In this section� we compare our heuristic CirCut with a successful heuristic by Hartmann 
���

for �nding an approximation to the groundstate of specially structured spin glasses�

Roughly speaking� a spin glass is a collection of n magnetic spins that possesses various interactions

between the spins and also exhibits disorder in its frozen� or low�energy� state� In the collection� each

spin can take on one of a �nite number of positions� For example� when there are exactly two possible

positions� the two positions are imagined as �up� and �down� �or  � and ��	� In addition� the inter�

actions between the spins describe how the the positions of a given spin and its �neighbor� spins a�ect
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Table ���

Comparison with DSDP on Max�Cut Problems from the G�set

Graph Time Value

Name Size DSDP C� C DSDP C� C

G�� ����� ����	 ���� ���� ���� �� �� ���

G� ����� ����	 ���� ���� ���� ��� �� ��

G�� ����� ����	 ��� ���� ���� ��� ��� ��

G�� ����� ����	 ��� ���� ���� � ���� ����

G�� ����� ����	 ��� ���� ���� ��� ���� ����

G� ����� ���	 ��� ���� ���� ��� ��� ���

G� ����� ����	 ���� ���� ���� ��� ��� ��

G ����� �����	 ����� ���� ��� ���� ����� �����

G� ����� �����	 ����� ���� ����� ����� ����� ����

G� ����� �����	 ����� ���� ���� ���� ����� ����

G�� ����� �����	 ������ ��� ���� ���� ��� ����

G�� ����� �����	 ������ ���� ����� ��� ���� ���

G� ����� ����	 ���� ���� ����� ���� ���� ����

G�� ����� ����	 ���� ���� ��� ���� ��� ���

G�� ����� ����	 ����� ��� ��� ���� ��� ����

G�� ������ ����	 ���� ���� ����� ���� ���� ����

G�� ������ ����	 ������ ���� ����� ���� ����� ����

G�� ������ ����	 ������� ���� ���� ���� ���� ����

G�� ������ �����	 ������ ���� ��� ��� �� ���

G�� ������ �����	 ������� ���� ����� ����� ����� �����

G�� ������ �����	 ������ ���� ����� �� ��� ����

G� ������ �����	 ����� ���� ����� ��� ���� ����

G�� ������ �����	 ������� ���� ����� ��� ��� ����

G�� ������� ����	 ������ ���� ����� ���� ��� ���

G� ������� ����	 ������ ��� ����� ���� ���� ���

G�� ������� ����	 ������ ���� ������ ���� ���� ����

G�� ������ �����	 ������� ���� ������ ����� ���� ����

the overall energy of the spin glass� For example� in Table ���� we show the energy contributed by two

interacting spins i and j for a spin glass in which �i	 there are two possible positions for a spin� �ii	 all

interactions act pair�wise between spins� and �iii	 each interaction is either positive or negative�

The groundstate� or low�energy state� of a spin glass occurs when the positions of the n spins are

chosen so as to minimize the overall energy of the spin glass� and spin glasses are characterized by the

fact that their groundstate is disordered� that is� all interactions cannot be satis�ed with zero energy and

hence the overall energy of the system is positive� �Note that the standard physics terminology di�ers

somewhat from�but is equivalent to�our terminology�	

A special subclass of spin glasses� called the Ising spin glasses� has been studied extensively� Ising

spin glasses satisfy items �i	 and �ii	 of the previous paragraph� and the so�called �J model of Ising
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Table ���

Energy levels of two interacting spins

i j interaction energy

up up  �

up down  �

down up  �

down down  �

up up � �

up down � �

down up � �

down down � �

spin glasses also satis�es item �iii	� It is not di�cult to see that this model can be represented by an

edge�weighted graph �G � �V�E� �W 	� where the vertex set V consists of the n spins� the edge set E

describes the pair�wise interactions� and the symmetric weight matrix �W � � �wij	 has �wij equal to ��

��� or �� respectively� if i and j interact positively� negatively� or not at all� Moreover� if a variable xi

that can take on values  � or �� is used to represent the position of spin i� then the groundstate of the

Ising spin glass can be seen to be the optimal solution of the optimization

min
P

�i�j��E
�
��� � �wijxixj	

s�t� jxij � �� i � �� � � � � n�
����	

After some immediate simpli�cations� ����	 can be written in the equivalent form ��	� where wij �

� �wij� that is� ����	 is equivalent to the maximum cut problem on the graph G � �V�E�W 	� where

W � � �W �

Many approaches for solving ����	 have been investigated in both the physics community as well

as the optimization community �see 
� ��	� Recently� one of the most successful heuristic approaches

for solving ����	 has been the approach of Hartmann 
���� which in particular focuses on �nding the

groundstates of �J Ising spin glasses that can be embedded as square or cubic lattices in two or three

dimensions� respectively� The interactions are of the type �nearest neighbor� so that each vertex �or

spin	 has four neighbors in two dimensions and six in three dimensions� Such lattice graphs lead to

regular graphs having a great deal of structure� In addition� Hartmann considers interactions in which

negative interactions occur as many times as positive interactions� that is�
P

�i�j��E �wij � �� Hartmann

reported strong computational results with square lattices having side length L � �� �� � � � � �� and cubic

lattices having length L � �� �� � � � � ��� Note that the square lattices have a total of L� vertices and that

the cubic lattices have a total of L� vertices�

Although we refer the reader to 
��� for a full description of Hartmann"s algorithm� we summarize

the basic idea of the method here� Given a feasible solution x to ����	� the algorithm tries to �nd a new

feasible solution $x having less energy by using x to randomly build up a set of nodes $V for which the

groundstate xV of the induced graph on
$V can be found in polynomial time using a max��ow min�cut

algorithm� Then $x is formed from x by setting $xi � �xV 	i if i �
$V and $xi � xi if i �� V � The energy of

$x is guaranteed to be no worse than that of x� and so this procedure can be iterated until the energy

exhibits no strict improvement from iteration to iteration� Various parameters of the algorithm can

a�ect its running time and also the quality of solution that is returned� these parameters determine
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the number of iterations allowed with no improvement� the number of independent times the overall

algorithm is run� and� more generally� the exhaustiveness of the search performed by the algorithm�

We ran both CirCut and the algorithm of Hartmann on the same SGI Origin ��� used for the

computational results in the previous subsections� Hartmann"s code is written in ANSI C and uses only

one processor� In addition� we compiled both codes with the same compiler optimization option� In

Table ���� we compare CirCut with the algorithm of Hartmann on twenty graphs arising from twenty

cubic lattices having randomly generated interaction magnitudes� these problems are of the same type

that Hartmann investigated in 
���� Ten of the graphs have �L� n� jEj	 � ���� ����� ����	� and ten have

�L� n� jEj	 � ���� ���� ��	� We note that� for comparison purposes� the output of each algorithm is in

terms of the equivalent maximum cut problem� Two versions of CirCut corresponding to the parameter

choices �N�M 	 � ���� �	 and �N�M 	 � ���� ��	 were run on all thirty graphs� the versions are named

C� and C� respectively� Similarly� two versions H� and H of Hartmann"s algorithm were run such that

H� performed a less exhaustive search than H� We remark that H represented the default parameters

supplied to us by Hartmann�

Table ���

Comparison of CirCut and Hartmann�s algorithm

Graph Cut Values Times

% jV j jEj C� C H� H C� C H� H

� ���� ���� ��� ��� �� ��� � �� �� ���

 ���� ���� ��� �� �� ��� � �� �� ����

� ���� ���� ��� �� ��� �� � �� �� ����

� ���� ���� ��� ��� ��� ��� � �� �� ����

� ���� ���� ��� ��� ��� ��� � �� �� ����

� ���� ���� ��� ��� ��� ��� � �� �� ����

� ���� ���� �� ��� ��� ��� � �� �� ����

� ���� ���� �� ��� ��� �� � �� �� ���

� ���� ���� ��� ��� ��� �� � �� �� ����

�� ���� ���� ��� ��� ��� ��� � �� �� ���

�� ��� �� ��� ��� �� ���  �� �� �����

� ��� �� ��� �� ��� ��� � ��� �� ����

�� ��� �� �� ��� ��� �� � ��� �� �����

�� ��� �� ��� ��� ��� ��� �� ��� �� �����

�� ��� �� �� �� ��� ��� � ��� �� ����

�� ��� �� ��� ��� ��� ��� � ��� �� ����

�� ��� �� ��� ��� ��� ��� �� ��� �� ����

�� ��� �� �� ��� ��� ��� � ��� �� �����

�� ��� �� �� ��� ��� �� �� ��� �� ����

� ��� �� ��� � ��� ��� �� ��� �� �����

Table ��� contains data corresponding to the four algorithms" performance on each of the twenty

graphs� The �rst three columns give the graph number� the size of V � and the size of E� The next

four columns give the cut value found by the algorithms� and the �nal four columns give the times �in
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seconds	 required by each of the algorithms�

It can be seen from the table that on the �rst ten graphs ���� C� had the fastest speed� but the

cuts it returned were in a few cases inferior to those produced by H�� On the other hand� C was able

to produce better cuts than H� in a considerably less amount of time� The overall winner in terms of

cut values on the graphs �&�� was H� but this performance was achieved at the expense of very large

computation times� For the second set of graphs ��&�� we see that both C� and C outperformed H�

in terms of cut values and that C� was much faster than H� and C was notably faster than H� as

well� Again� H returned the best cuts but took a very long time� In all the cases� the di�erences in

the quality of cuts generated by the algorithms are small percentage�wise� For example� on average C�

attained over �� percent of the cut value of H in an amount of time less than one�tenth of a percent of

that used by H�

Overall� the results seem to indicate that C is a good choice when quality cuts are needed in a short

amount of time� In particular� C is at least as e�ective as H�� In addition� C� is a good alternative�

especially when the size of the graph becomes large� When high quality cuts are needed and time is not

an issue� H is the best choice� Moreover� we remark that� based on some unreported experimentation�

CirCut does not seem to be able to achieve the same cut values as H even if CirCut is allowed to search

for a very long time�

�� Some Extensions� Conceptually� there is little di�culty in extending the rank�two relaxation

idea to other combinatorial optimization problems in the form of a binary quadratic program� especially

to those arising from graph bipartitioning� For a given problem� however� whether or not the rank�two

relaxation will lead to high�performance algorithms� like the one we have demonstrated for Max�Cut�

must be determined by an individual investigation and a careful evaluation� Close attention must also

be paid to the speci�c structure of each problem in order to obtain good algorithms�

In this section� we focus on extending the rank�two relaxation idea to a close relative of Max�Cut

� the Max�Bisection problem� Max�Bisection is the same as Max�Cut except that it has the additional

constraint eTx � � �i�e�� the number of positive ones in x must equal the number of negative ones� hence

implying that n should be even	� which can also be written as

�eTx	� � �eeT 	 � �xxT 	 � ��

After the removal of the rank�one restriction� one obtains the following SDP relaxation of the Max�

Bisection problem �comparable to ���		�

min �
�
W �X

s�t� diag�X	 � e�

eeT �X � ��

X � ��

����	

Randomized procedures similar to the Goemans�Williamson technique for Max�Cut have been proposed

with di�erent performance guarantees for Max�Bisection� see 
��� ��� for example�

In a similar fashion as with Max�Cut� using the rank�two relaxation and polar coordinates� we obtain

a new relaxation for Max�Bisection�

min f��	

s�t� eT cos�T ��		e � ��
���	

-
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Suppose that we have obtained a �local or global	 minimizer � for ���	� How do we generate a

bisection� Without loss of generality� let us assume that n is even and that � satis�es �i � 
�� �	� i �

�� � � � � n� We may also assume that� after a reordering�

�� � �� � � � � � �n�

Then� to generate a bisection� we pick any integer k � 
�� n�	 and let

xi �

�
�� if i � 
k� k n�	�

��� otherwise�
����	

The following procedure e�ciently considers all possible values of k in ����	 and saves the best resultant

bisection�

Procedure�BIS �input �� output x�	�

Given � � 	n such that � � �� � � � � � �n � �� let ! � ���

For k � �� � � � � n�� �

�� Generate a cut x by ����	 and compute �x	�

� If �x	 � !� then let ! � �x	 and x� � x�

End

Instead of solving the constrained relaxation ���	� we have found through numerical experiments

that solving the unconstrained relaxation ���	 can generate the same or better quality bisections while

taking less time� Intuitively� this is not hard to understand since the best bisection generated by

Procedure�BIS for a given � is dependent only on the ordering of the points along the circle and in�

dependent of the actual locations of the points� In fact� it is easy to verify that the constraint in ���	

is equivalent to k
v� � � � vn�ek
� � � where vi � 
cos��i	 sin��i	�

T � that is� the n vectors on the unit

circle must sum up to zero� So by itself� the constraint puts a restriction on the locations of points� but

has nothing to do with their ordering� Hence� whether a given � satis�es the constraint or not has no

bearing on the quality of the bisection x� generated by Procedure�BIS� On the other hand� the quality of

x� depends greatly on the objective value f��	� Since it is more likely to obtain lower function values at

unconstrained local minima than at constrained ones� we are thus more likely to obtain better bisections

without the constraint�

In view of this� we construct our heuristic algorithm based on minimizing f��	 without the additional

constraint� We simply replace Procedure�CUT in Algorithm�� by Procedure�BIS� and obtain a heuristic

algorithm for the Max�Bisection problem� which we call Algorithm�� In Algorithm�� we also have the

option of improving a cut by a minimal local search that allows swapping only a pair of nodes at a time�

and is set to be a default feature�

We ran Algorithm� of CirCut on a subset of the G�set problems plus two additional test problems�

These extra problems were contained in a test set used in Choi and Ye 
�� and are publicly available�

In Table ���� we compare the results of CirCut with the results of DSDP reported in 
��� Again�

we mention that the timing for DSDP was obtained on an HP ���������C���� computer with a ���

MHZ processor� while ours was on an SGI Origin��� machine with sixteen ��� MHZ processors at Rice

University� �Note� however� that both codes always use a single processor�	

Again� the �rst two columns of Table ��� contain the information on the tested graphs� followed by

timing �in second	 and cut value information� We ran CirCut using two sets of parameters� C� results

were for N � � and M � � �no further improvement after minimization and a single starting point	�

and C for N � � and M � ��
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C� took less than  seconds to return approximate solutions to all �� test problems with a quality

that is superior to that of DSDP on average� While C took more time to generate the bisections� the

quality of the bisections generated by C is better than that of DSDP on all but one problem� G���

Again� we mention that if N and M are set to larger values� CirCut is able to produce a bisection of the

same value on G�� as that of DSDP"s� within a time still much shorter than that required by DSDP�

Table ���

Comparison with DSDP on Max�Bisection Problems

Graph Time Value

Name Size DSDP C� C DSDP C� C

G�� ������ ����	 ��� ��� �� ���� ���� ����

G�� ����������	 ������ ���� ��� ���� ����� �����

G�� ����������	 ������ ���� ���� ���� ��� ����

G�� �����������	 ����� ��� ��� �� ���� ���

G�� �����������	 ������� ���� ���� ����� ����� �����

G�� �����������	 ����� ��� ���� ���� ��� ����

G� �����������	 ������ ���� ���� ���� ��� ����

G�� �����������	 ������� ��� ���� ���� ���� ����

G� �����������	 ������� ���� ���� ��� ���� ����

G�� �����������	 ������� ���� ����� ���� ���� ����

G�� �����������	 ������ ���� ���� ���� ��� �����

bm� ��������	 ���� ���� ���� ��� ��� ���

biomedp �����������	 ������� ����� ����� ���� ���� ����

���� Maximization versus Minimization� So far� we have only presented computational results

on maximization problems� i�e�� the Max�Cut and Max�Bisection problems which are equivalent to

minimizing f��	� Moreover� all of the graphs in the test sets have either all positive edge weights or a

combination of both positive and negative weights�

Now let us consider the corresponding minimization problems on these graphs� equivalent to max�

imizing f��	� For those graphs having both positive and negative weights� one can apply the same

algorithms to the minimization problems by simply minimizing�f��	 instead of f��	� Things are not so

simple� however� if all the weights are positive� In this case� it is easy to see that the global minimum of

�f��	 is attained whenever all n points coincide on the unit circle such that cos��i��j 	 � �� This result

makes sense for the Min�Cut problem in that the minimum cut in a graph with all positive weights is

to have all nodes on one side of the cut �i�e�� to have no cut at all	� On the other hand� this result does

not have a meaningful interpretation for Min�Bisection� creating a challenge for generating a bisection

whenever a global minimum of �f��	 is attained �although actually �nding a global minimummay not

happen often	� An obvious� possible remedy to this problem is to reinstall the bisection constraint back

into the formulation� Further investigation is clearly needed for the Min�Bisection problem�

�� Concluding Remarks� The computational results indicate that the proposed rank�two relax�

ation heuristics are e�ective in approximating the Max�Cut and Max�Bisection problems� Being able

to return high�quality approximate solutions in a short amount of time� they are particularly useful in

situations where either the problem is very large or time is at a premier�



�� S� BURER� R� MONTEIRO AND Y� ZHANG

Several factors have contributed to the performance of the rank�two relaxation approach� ��	 the

costs of local optimization are extremely low� �	 desirable properties relate the discrete problem to its

rank�two relaxation enabling us to locate high�quality local minima� and ��	 good local minima of the

rank�two relaxation appear to be su�cient for generating good approximate solutions to the discrete

problem�

The proposed heuristics consistently produce better quality approximate solutions while taking only

a tiny fraction of time in comparison to the SDP relaxation approach� particularly on larger problems�

This fact suggests that as a practical technique for producing lower bounds� the SDP relaxation approach

does not seem to hold much promise� at least for the Max�Cut and the Max�Bisection problems� In

addition� the rank�two relaxation heuristic compares favorably to other heuristics� i�e�� ones that are not

based on the SDP relaxation�

It is known that� besides Max�Cut� a number of other combinatorial optimization problems can also

be formulated as unconstrained binary quadratic programs in the form of ��	� such as the Max�Clique

problem �see 
��� for example	� These are potential candidates for which the rank�two relaxation approach

may also produce high�performance heuristic algorithms� Further investigation in this direction will be

worthwhile�
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