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Abstract

The rank-width is a graph parameter related in terms of fixed functions to clique-
width but more tractable. Clique-width has nice algorithmic properties, but no good
“minor” relation is known analogous to graph minor embedding for tree-width. In
this paper, we discuss the vertex-minor relation of graphs and its connection with
rank-width. We prove a relationship between vertex-minors of bipartite graphs and
minors of binary matroids, and as an application, we prove that bipartite graphs of
sufficiently large rank-width contain certain bipartite graphs as vertex-minors. The
main theorem of this paper is that for fixed k, there is a finite list of graphs such that
a graph G has rank-width at most k if and only if no graph in the list is isomorphic
to a vertex-minor of G. Furthermore, we prove that a graph has rank-width at most
1 if and only if it is distance-hereditary.

Key words: clique-width; rank-width; vertex-minor; local complementation;
pivoting; branch-width; binary matroid

1 Introduction

This paper is motivated by the following open problem:

For fixed k > 3, find a polynomial-time algorithm to decide whether an
input graph has clique-width at most k.

The notion of clique-width was defined by Courcelle and Olariu [1]. It has
good algorithmic properties; many NP-hard graph problems can be solved in
polynomial time, if the input graphs have clique-width at most some fixed k.
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It is interesting to compare clique-width to tree-width. Tree-width was devel-
oped in the series of papers by Robertson and Seymour, some of which are
[2,3,4]. Like clique-width, if the input graphs have tree-width at most some
fixed k, then many NP-hard problems can be solved in polynomial time.

An analogy between tree-width and clique-width shows hope of results for
clique-width similar to those for tree-width. To do so, it would be desirable to
have something similar to graph minors. A graph H is a minor of a graph G if
H can be obtained by a sequence of contractions of edges, deletions of edges,
and deletions of vertices. It was shown that the tree-width of a minor of G is
at most the tree-width of G and moreover for each k, there is a finite list of
graphs such that a graph G has tree-width at most k if and only if no graph
in the list is isomorphic to a minor of G. For each k, the finiteness of this list
and a polynomial-time algorithm to check the minor containment can be used
to construct a polynomial-time algorithm to decide whether the tree-width of
a graph is at most k.

To do similar things for clique-width, we need an appropriate containment
relation on graphs, having the similar properties for clique-width. Certainly,
minor containment is not appropriate for clique-width because every graph
G is a minor of the complete graph Kn of n = |V (G)| vertices, and Kn has
clique-width 2 if n > 1.

Courcelle and Olariu [1] showed that if H is an induced subgraph of a graph
G, then the clique-width of H is at most that of G. But, induced subgraph
containment is not rich enough; Corneil et al. wrote the following comment in
their paper [5].

Unfortunately, there does not seem to be a succinct forbidden subgraph
characterization of graphs with clique-width at most 3, similar to the P4-
free characterization of graphs with clique-width at most 2. In fact every
cycle Cn with n ≥ 7 has clique-width 4, thereby showing an infinite set of
minimal forbidden induced subgraphs for Clique-width≤ 3.

We did not yet find an appropriate containment relation for clique-width, but
we found that a certain graph containment relation which we call the vertex-
minor relation is interesting in connection with rank-width. The notion of
rank-width, denoted by rwd(G), is defined by Oum and Seymour [6] so as to
yield an approximation algorithm for clique-width. They also show that rank-
width and clique-width are in a sense approximately equal; more precisely, the
following inequality [6] links rank-width to clique-width: If the clique-width of
G is k, then

log2(k + 1)− 1 ≤ rwd(G) ≤ k.

Thus, a set of graphs of bounded rank-width is also of bounded clique-width
and vice versa. For a graph G and v ∈ V (G), performing the local comple-
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mentation at v consists in replacing a subgraph induced on the neighbors of
v by its edge-complement graph. The graph obtained by applying local com-
plementation at v to G is denoted by G∗ v. A graph H is a vertex-minor of G
if H can be obtained by applying a sequence of local complementations and
deletions of vertices to G. We will show that if H is a vertex-minor of G, then
rank-width of H is at most that of G.

The notion of branch-width for both graphs and matroids was defined by
Robertson and Seymour [4]. A fundamental graph of a binary matroid M is
a bipartite graph with a bipartition (B, E(M) \ B) such that B is a basis
of M, and e ∈ B and f ∈ E(M) \ B are adjacent if and only if e is in the
fundamental circuit of f with respect to B. We will show that the branch-
width of a binary matroid is one more than the rank-width of its fundamental
graph. It turns out that a fundamental graph of a minor of a binary matroid
M is a vertex-minor of a fundamental graph of M. This allows us to think of
generalizing theorems about branch-width of binary matroids to rank-width
of graphs.

The main theorem of this paper is the following.

Theorem. Let k ≥ 1. The set of graphs having rank-width at most k is
characterized by excluded vertex-minors with at most (6k+1 − 1)/5 vertices.

This implies that for each k, there is a finite list of graphs, such that a graph
G has rank-width at most k if and only if no graph in the list is isomorphic
to a vertex-minor of G. This will be used by Courcelle and Oum [7] to find
a polynomial-time algorithm to decide whether rank-width is at most k for
fixed k. This is an exact analog to the corresponding theorem for tree-width.

The paper is organized as follows. In the next section, we review the notion of
rank-width and we define the vertex-minor relation. In Section 3, we discuss
the vertex-minor relation and rank-width of bipartite graphs in connection
with the minor relation and branch-width of binary matroids. This enables
us to translate a theorem for binary matroids into a theorem for bipartite
graphs. In Section 4, we prove useful inequalities which will be used in both
Section 5 and 6. In Section 5, we prove that the set of graphs having rank-
width at most k is characterized by excluded vertex-minors of bounded size for
fixed k ≥ 1. In Section 6, we show one example of generalizing a theorem for
binary matroids to general graphs; we generalize Tutte’s linking theorem about
minors in matroids to a theorem about vertex-minors in graphs. In Section 7,
we characterize graphs of rank-width at most one and obtain another proof
that distance-hereditary graphs have clique-width at most three.
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2 Definitions

In this section, we review the notion of rank-width and we introduce the
vertex-minor relation. In this paper, we assume that graphs are simple undi-
rected and finite.

Let us first review the definition of rank-width, introduced by Oum and Sey-
mour [6]. For a matrix M = (mij : i ∈ R, j ∈ C over a field F , let rk(M)
denote its linear rank. If X ⊆ R and Y ⊆ C, then let M [X, Y ] be the subma-
trix (mij : i ∈ X, j ∈ Y ) of M . We assume that adjacency matrices of graphs
are matrices over GF(2).

Definition. Let G be a graph and A, B be disjoint subsets of V (G). Let
M be the adjacency matrix of G over GF(2). We define the rank of (A, B),
rkG(A, B), as rk(M [X, Y ]). The cut-rank, cutrkG(A) of A ⊆ V (G), is defined
by

cutrkG(A) = rkG(A, V (G) \ A).

A subcubic tree is a tree such that every vertex has exactly one or three incident
edges. We call (T, L) a rank-decomposition of G if T is a subcubic tree and
and L is a bijection from V (G) to the set of leaves of T .

For an edge e of T , the two connected components of T \ e induce a partition
(X, Y ) of the set of leaves of T . The width of an edge e of a rank-decomposition
(T, L) is cutrkG(L−1(X)). The width of (T, L) is the maximum width of all
edges of T . The rank-width of G, denoted by rwd(G), is the minimum width
of all rank-decompositions of G. (If |V (G)| ≤ 1, we define rwd(G) = 0.)

Now, we define local complementation, pivoting, vertex-minors, and pivot-
minors. In fact, vertex-minor containment was called l-reduction by Bouchet [8],
but the author thinks “vertex-minor” is a better name, because of the many
analogies with matroid minors discussed in Section 3.

For two sets A and B, let A∆B = (A \B) ∪ (B \ A).

Definition. Let G = (V, E) be a graph and v ∈ V . The graph obtained by
applying local complementation at v to G is

G ∗ v = (V, E∆{xy : xv, yv ∈ E, x 6= y}).

For an edge uv ∈ E, the graph obtained by pivoting uv is defined by G∧uv =
G ∗ u ∗ v ∗ u. We call H is locally equivalent to G if G can be obtained by
applying a sequence of local complementations to G. We call H is a vertex-
minor of G if H can be obtained by applying a sequence of vertex deletions
and local complementations to G. We call H is a pivot-minor of G if H can be
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obtained by applying a sequence of vertex deletions and pivotings. A vertex-
minor H of G is called a proper vertex-minor if H has fewer vertices than G.
and similarly a pivot-minor H of G is called a proper pivot-minor if H has
fewer vertices than G.

A pivoting is well-defined because G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v if u and v
are adjacent. To prove this, we prove the following proposition that describes
pivoting directly.

G G ∧ uv

u v uv

V3

V1

V2
V3V2

V1

Fig. 1. Pivoting

Proposition 2.1. For a graph H and u, v ∈ V (H), let Huv be a graph ob-
tained by exchanging u and v in H. For X, Y ⊆ V (H), let H ∗ (X,Y ) be
the graph (V (H), E ′) where E ′ = E(H)∆{xy : x ∈ X, y ∈ Y, x 6= y}. Let
G = (V, E) be a graph. For x ∈ V , let N(x) be the set of neighbors of x
in G. For uv ∈ E, let V1 = N(u) ∩ N(v), V2 = N(u) \ N(v) \ {v}, and
V3 = N(v) \N(u) \ {v}. Then

G ∧ uv = (G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1))uv.

Proof. Note that V1, V2, V3 are disjoint subsets of V (G). For a graph H and
X ⊆ V (H), let H ∗ (X)2 = H ∗ (X, X).

Let us first consider the neighbors of u and v in G ∗ u ∗ v ∗ u. The set of
neighbors of u in G is N(u) = V1 ∪ V2 ∪ {v}. The set of neighbors of v in
G ∗ u is N(v)∆(N(u) \ {v}) = V2 ∪ V3 ∪ {u}. The set of neighbors of u in
G ∗ u ∗ v is N(u)∆(V2 ∪ V3) = V1 ∪ V3 ∪ {v}. Therefore, G ∗ u ∗ v ∗ u =
G ∗ (V1 ∪ V2 ∪ {v})2 ∗ (V2 ∪ V3 ∪ {u})2 ∗ (V1 ∪ V3 ∪ {v})2.

Now, we use the simple facts that G ∗ (X ∪ Y )2 = G ∗ (X)2 ∗ (Y )2 ∗ (X, Y ) for
X∩Y = ∅, G∗(X,Y )∗(Z,W ) = G∗(Z,W )∗(X,Y ), G∗(X,Y )∗(X,Y ) = G,
and G ∗ ({x})2 = G. So, G ∗ (V1 ∪ V2 ∪ {v})2 = G ∗ (V1)

2 ∗ (V2)
2 ∗ (V1, V2) ∗

(V1, {v}) ∗ (V2, {v}).
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By applying these, we obtain the following.

G ∗ u ∗ v ∗ u

= G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1)

∗ (V1, {v}) ∗ (V2, {v}) ∗ (V2, {u}) ∗ (V3, {u}) ∗ (V1, {v}) ∗ (V3, {v})
= G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1) ∗ (V2, {v}) ∗ (V2, {u}) ∗ (V3, {v}) ∗ (V3, {u})
= (G ∗ (V1, V2) ∗ (V2, V3) ∗ (V3, V1))uv.

In other words, pivoting uv is an operation that,

(1) for each (x, y) ∈ (V1 × V2) ∪ (V2 × V3) ∪ (V3 × V1), adds a new edge xy if
xy /∈ E(G) or deletes it otherwise,

(2) and then, exchanges u and v (so that u is adjacent to vertices in V1 ∪ V3,
and v is adjacent to vertices in V1 ∪ V2).

Corollary 2.2. If G is a graph and uv ∈ E(G), then G∗u∗v∗u = G∗v∗u∗v.

Proof. This is immediate from Proposition 2.1.

Corollary 2.3. If a graph G is bipartite and uv ∈ E(G), G ∧ uv is also
bipartite.

Proof. Let V1, V2, and V3 be sets defined in Proposition 2.1. Since G is bi-
partite, V1 = ∅. It does not break bipartiteness to add edges between V2 and
V3.

For a graph H, let x 'H y denote that either x = y or they are adjacent in G.
Let a⊕ b denote (a∧¬b)∨ (¬a∧ b). This operation is usually called the logical
“exclusive or” operation. (Note that we use the ∧ symbol with two meanings:
one for pivoting and another for the logical “and” operation.)

The next corollary is reformulation of the above proposition.

Corollary 2.4. Let G be a graph and let uv ∈ E(G). For all x, y ∈ V (G),
x 'G∧uv y if and only if

(x 'G y)⊕ (x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u).

Proof. If x = y, then it is clear because (x 'G u∧y 'G v)⊕(x 'G v∧y 'G u)
is always false.

Suppose {x, y} ∩ {u, v} = ∅ and x 6= y. Let V1, V2, and V3 be sets defined
in Proposition 2.1. We add or remove an edge xy if and only if there exist
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i, j ∈ {1, 2, 3} such that x ∈ Vi, y ∈ Vj, and i 6= j. It is equivalent to say that
(x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u) is true.

Now, consider when one of x or y is u or v. We may assume that x = u without
loss of generality. Then

(x 'G y)⊕ (x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u)

= (u 'G y)⊕ (y 'G v)⊕ (y 'G u) because u is adjacent to v.

= y 'G v

= y 'G∧uv u because we exchanged u and v.

= x 'G∧uv y

The following proposition is essentially equivalent to [9, Lemma 10] and [10,
Proposition 5], but our proof is a routine application of the previous corollary,
whereas [9] and [10] show it by reducing the problem into a certain graph of
11 vertices.

Proposition 2.5. If vv1, vv2 ∈ E(G) are two distinct edges incident to v,
then,

G ∧ vv1 ∧ v1v2 = G ∧ vv2,

and therefore G ∧ vv1 \ v is locally equivalent to G ∧ vv2 \ v.

Proof. First of all, G∧vv1∧v1v2 is well-defined because v1 and v2 are adjacent
in G∧ vv1. Let G′ = G∧ vv1. Corollary 2.4 implies that x 'G∧uv y if and only
if

(x 'G y)⊕ (x 'G u ∧ y 'G v)⊕ (x 'G v ∧ y 'G u).

For simplicity, we write ' instead of 'G.

x 'G′∧v1v2 y = (x 'G′ y)⊕ (x 'G′ v1 ∧ y 'G′ v2)⊕ (x 'G′ v2 ∧ y 'G′ v1)
(1)

x 'G′ y = (x ' y)⊕ (x ' v ∧ y ' v1)⊕ (x ' v1 ∧ y ' v) (2)

x 'G′ v1 = x ' v (3)

y 'G′ v2 = (y ' v2)⊕ (y ' v1)⊕ (y ' v ∧ v2 ' v1) (4)

x 'G′ v2 = (x ' v2)⊕ (x ' v1)⊕ (x ' v ∧ v2 ' v1) (5)

y 'G′ v1 = y ' v (6)

Now, let us apply (2) — (6) to (1). We use the fact that a ∧ (b ⊕ c) =
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(a ∧ b)⊕ (a ∧ c).

x 'G′∧v1v2 y

= (x 'G′ y)⊕ (x 'G′ v1 ∧ y 'G′ v2)⊕ (x 'G′ v2 ∧ y 'G′ v1)

= (x ' y)⊕ (x ' v ∧ y ' v1)⊕ (x ' v1 ∧ y ' v)

⊕ (x ' v ∧ y ' v2)⊕ (x ' v ∧ y ' v1)⊕ (x ' v ∧ y ' v ∧ v2 ' v1)

⊕ (x ' v2 ∧ y ' v)⊕ (x ' v1 ∧ y ' v)⊕ (x ' v ∧ y ' v ∧ v2 ' v1)

= (x ' y)⊕ (x ' v ∧ y ' v2)⊕ (x ' v2 ∧ y ' v)

= x 'G∧vv2 y

Therefore, x 'G∧vv1∧v1v2 y if and only if x 'G∧vv2 y.

The following observation is fundamental.

Proposition 2.6. Let G′ = G ∗ v. Then for every X ⊆ V (G),

cutrkG(X) = cutrkG′(X).

Proof. We may assume that v ∈ X by the symmetry of cut-rank. Let M ,
M ′ be the adjacency matrix of G, G′ respectively. Let N = M [X, V (G) \X]
and N ′ = M [X,V (G) \X]. It is easy to see that N ′ is obtained from N by
adding the row of v to the rows of its neighbors in X. Therefore, cutrkG(X) =
rk(N) = rk(N ′) = cutrkG′(X).

Corollary 2.7. If H is locally equivalent to G, then the rank-width of H is
equal to the rank-width of G. If H is a vertex-minor of G, then the rank-width
of H is at most the rank-width of G.

Proof. The first statement is obvious. Since vertex deletion does not increase
cut-rank, it does not increase rank-width, and therefore the second statement
is true.

3 Bipartite graphs and Binary matroids

In this section, we discuss the relation between branch-width of binary ma-
troids and rank-width of bipartite graphs. We will also discuss further prop-
erties relating binary matroids and bipartite graphs. As an example, we will
show the implication of the grid theorem for binary matroids by Geelen, Ger-
ards, and Whittle [11].

Let us review matroid theory first. For general matroid theory, we refer to
Oxley’s book [12]. We call M = (E, I) a matroid if E is a finite set and I is
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a collection of subsets of E, satisfying

(1) ∅ ∈ I
(2) If A ∈ I and B ⊆ A, then B ∈ I.
(3) For every Z ⊆ E, maximal subsets of Z in I all have the same size r(Z).

We call r(Z) the rank of Z.

An element of I is called independent in M. We let E(M) = E. We call
B ⊆ E a base if it is maximally independent. A matroid may also be defined
by axioms on the set of bases. We call B′ ⊆ E a cobase if E \B′ is a base. The
dual matroid M∗ of M is the matroid on E(M) such that the set of cobases
of M is equal to the set of bases of M∗.

A matroid M = (E, I) is binary if there exists a matrix N over GF(2) such
that E is a set of column vectors of N and

I = {X ⊆ E : X is linearly independent}.

For e ∈ E(M), M\ e is the matroid (E \ {e}, I ′) such that

I ′ = {X ⊆ E(M) \ {e} : X ∈ I}.

This operation is called deletion of e. For e ∈ E(M), M/e = (M∗ \ e)∗ and
this operation is called contraction of e. A matroid N is called a minor of
M if N can be obtained from M by applying a sequence of deletions and
contractions.

The connectivity function λM of M is

λM(X) = r(X) + r(E \X)− r(E) + 1.

We call (T, L) a branch-decomposition of M if T is a subcubic tree and and L
is a bijection from E(M) to the set of leaves of T . For an edge e of T , the two
connected components of T \ e induce a partition (X, Y ) of the set of leaves of
T . The width of an edge e of a branch-decomposition (T, L) is λM(L−1(X)).
The width of (T, L) is the maximum width of all edges of T . The branch-width
bw(M) of M is the minimum width of all branch-decompositions of M. (If
|E(M)| ≤ 1, we define bw(M) = 1.)

Let G = (V, E) be a bipartite graph with a bipartition V = A ∪ B. Let M
be the adjacency matrix of G. Let Bin(G, A, B) be the binary matroid on V ,

represented by the A×V matrix
(
IA M [A, B]

)
, where IA is the A×A identity

matrix. If M = Bin(G, A, B), then G is called a fundamental graph of M.

Here is a major observation, which gives a relation between connectivity of
binary matroids and cut-rank of bipartite graphs.
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Proposition 3.1. Let G = (V, E) be a bipartite graph with a bipartition
V = A ∪ B and let M = Bin(G, A, B). Then for every X ⊆ V , λM(X) =
cutrkG(X) + 1.

Proof. Let M be the adjacency matrix of G. First note that

M [X, V \X] =

 0 M [X ∩ A, (V \X) ∩B]

M [X ∩B, (V \X) ∩ A] 0

 .

Therefore, cutrkG(X) = rk(M [X ∩B, (V \X)∩A])+rk(M [X ∩ A, (V \X) ∩B]).
Consequently,

λM(X) = r(X) + r(V \X)− r(V ) + 1

= rk

 0 M [(V \X) ∩ A, X ∩B]

IX∩A M [X ∩ A, X ∩B]


+ rk

 0 M [X ∩ A, (V \X) ∩B]

I(V \X)∩A M [(V \X) ∩ A, (V \X) ∩B]

− |A|+ 1

= rk(M [(V \X) ∩ A, X ∩B] + rk(M [X ∩ A, (V \X) ∩B] + 1

= cutrkG(X) + 1.

An easy corollary of Proposition 3.1 is the following.

Corollary 3.2. Let G = (V, E) be a bipartite graph with a bipartition V =
A ∪ B and let M = Bin(G, A, B). Then the branch-width of M is one more
than the rank-width of G.

Proof. This is trivial because (T, L) is a branch-decomposition of M of width
k + 1 if and only if it is a rank-decomposition of G of width k.

Now, let us discuss the relation between minors of matroids and vertex-minors
of graphs.

Proposition 3.3. Let G = (V, E) be a bipartite graph with a bipartition
V = A ∪B and let M = Bin(G, A, B). Then

(1) Bin(G, B, A) = M∗,
(2) For uv ∈ E(G), Bin(G ∧ uv,A∆{u, v}, B∆{u, v}) = M.

(3) Bin(G \ v, A \ {v}, B \ {v}) =

M/v if v ∈ A,

M\ v if v ∈ B.
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Proof. Let M be the adjacency matrix of G. Then, M is represented by a

matrix
(
I M [A, B]

)
.

(1): It is known that M∗ is represented by a matrix
(
M [B, A] I

)
. Therefore,

M∗ = Bin(G, B, A)

(2): We may assume that u ∈ A, v ∈ B. Let R = (rij : i ∈ A, j ∈ V ) =(
I M [A, B]

)
be a matrix over GF(2). (So, rij = 1 if j ∈ B and ij ∈ E(G) or

i = j, and rij = 0 otherwise.) We know that elementary row operations on R
do not change the associated matroid M.

By adding the row vector of u, that is (ruj : j ∈ V ), to the rows of neighbors
of u in A, we obtain another matrix R′ = (r′ij : i ∈ A, j ∈ V ) representing the
same matroid. We observe that the column vector of u, v in R′ is equal to the
column vector of v, u in R respectively, and therefore R′[A, (A \ {u}) ∪ {v}}]
is an identity matrix. Moreover for i 6= u and j ∈ B \ {v}, r′ij 6= rij if and
only if ruj = 1 and riv = 1, or equivalently iv, ju ∈ E(G). By Proposition 2.1,
we know that for i ∈ A \ {u} and j ∈ B \ {v}, ij belongs to exactly one of
E(G) and E(G ∧ uv) if and only if iv, ju ∈ E(G). (Because G is bipartite,
iu, jv /∈ E(G).) Moreover the set of neighbors of u, v in G ∧ uv is equal to
the set of neighbors of v, u in G respectively. Therefore, we conclude that
M = Bin(G ∧ uv,A∆{v, w}, B∆{v, w}).

(3): If v ∈ B, by deleting the column of v in
(
I M [A, B]

)
, we obtain a matrix

representation of M\ v and therefore M\ v = Bin(G \ v, A, B \ {v}).

If v ∈ A, then M∗ = Bin(G, B, A), and therefore M∗\v = Bin(G, B, A\{v})
and M/v = Bin(G, A \ {v}, B).

Corollary 3.4. Let M be a binary matroid and G be the fundamental graph
of M with a bipartition V (G) = A∪B such that M = Bin(G, A, B). If v has
no neighbor in G, then

M\ v = M/v = Bin(G \ v, A \ {v}, B \ {v}).

Otherwise let w be a neighbor of v.

(1) M\ v =

Bin(G ∧ vw \ v, A∆{v, w}, B∆{v, w} \ {v}) if v ∈ A,

Bin(G \ v, A \ {v}, B \ {v}) otherwise.

(2) M/v =

Bin(G ∧ vw \ v, A∆{v, w} \ {v}, B∆{v, w}) if v ∈ B,

Bin(G \ v, A \ {v}, B \ {v}) otherwise.

Note that the matroid Bin(G ∧ vw \ v, A∆{v, w} \ {v}, B∆{v, w} \ {v}) is
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independent of the choice of w by Proposition 2.5 and (2) of Proposition 3.3.

Proof. If v has no neighbor in G, then v is a loop or a coloop of M, and
therefore M \ v = M/v. By (3) of Proposition 3.3, we deduce that Bin(G \
v, A \ {v}, B \ {v}) = M \ v = M/v.

Now we assume that w is a neighbor of v. By (1) of Proposition 3.3, it is enough
to show (1). If v ∈ B, then by (3) of Proposition 3.3, we obtain that M\ v =
Bin(G\v, A, B\{v}). If v ∈ A, then M = Bin(G∧vw, A∆{v, w}, B∆{v, w}),
and therefore M\ v = Bin(G ∧ vw, A∆{v, w}, B∆{v, w} \ {v}).

Corollary 3.5. If G, H are bipartite graphs with bipartitions A∪B = V (G)
and A′ ∪ B′ = V (H) and Bin(H, A′, B′) = Bin(G, A, B), then H can be
obtained by applying a sequence of pivotings to G, and therefore H is locally
equivalent to G.

Proof. We proceed by induction on |A′∆A|.

Let M = Bin(G, A, B) = Bin(H, A′, B′). If A′ = A, then G = H because M
determines every fundamental circuit with respect to A.

Now, we may assume that A′ 6= A. Since A and A′ are bases of M, we may
pick w ∈ A′ \ A and v ∈ A \ A′ such that w is in the fundamental circuit of
v with respect to A′, and therefore vw ∈ E(H). Let H ′ = H ∧ vw. By (2) of
Proposition 3.3, M = Bin(H ′, A′∆{v, w}, B′∆{v, w}). By induction, H ′ can
be obtained by applying a sequence of pivotings to G. Since H = H ′ ∧ vw, H
can be obtained by applying a sequence of pivotings to G.

Corollary 3.6.

(1) Let N , M be binary matroids, and H, G be fundamental graphs of N ,
M respectively. If N is a minor of M, then H is a pivot-minor of G, and
therefore H is a vertex-minor of G.

(2) Let G be a bipartite graph with a bipartition A ∪ B = V (G). If H is a
pivot-minor of G, then there is a bipartition A′ ∪ B′ = V (H) of H such
that Bin(H, A′, B′) is a minor of Bin(G, A, B).

Proof. (1) We proceed by induction on |E(M) \ E(N )|. By Corollary 3.5,
we may assume that M 6= N . By induction, it is enough to show it when
N = M\ v or N = M/v for v ∈ V (G). By Corollary 3.4, either G ∧ vw \ v
for some w ∈ V (G) or G \ v is a fundamental graph of N . By Corollary 3.5,
H can be obtained from either G ∧ vw \ v or G \ v by applying a sequence of
pivotings.
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(2): By (2) and (3) of Proposition 3.3, we obtain a bipartition (A′, B′) of H
such that Bin(H, A′, B′) is a minor of Bin(G, A, B).

By Proposition 3.3, theorems about branch-width of binary matroids give
corollaries about rank-width of bipartite graphs. One of the recent theorems
about branch-width of binary matroids is proved by Geelen, Gerards, and
Whittle. Let us recall their theorem in the context of binary matroids. The
n× n grid is a graph on the vertex set {1, 2, . . . , n} × {1, 2, . . . , n} such that
(x1, y1) and (x2, y2) are adjacent if and only if |x1 − x2|+ |y1 − y2| = 1.

Theorem 3.7 (Grid theorem for binary matroids [11]). For every pos-
itive integer k, there is an integer l such that if M is a binary matroid with
branch-width at least l, then M contains a minor isomorphic to the cycle
matroid of the k × k grid.

To make corollaries about rank-width from this theorem, it is helpful to replace
the k×k grid by a planar graph whose cycle matroid has a simpler fundamental
graph. We define a planar graph Rk = (V, E) (Fig. 2) as following:

V = {v1, v2, · · · , vk2},
E = {vivi+1 : 1 ≤ i ≤ k2 − 1} ∪ {vivi+k : 1 ≤ i ≤ k2 − k}.

We can obtain a minor of Rk isomorphic to the k × k grid by deleting edges
vikvik+1 for all 1 ≤ i ≤ k − 1. To show that Rk is isomorphic to a minor of
l × l grid for a big l, let us cite a useful lemma by Robertson, Seymour, and
Thomas.

Lemma 3.8 ([13, (1.5)]). If H is a planar graph with |V (H)|+2|E(H)| ≤ n,
then H is isomorphic to a minor of the 2n× 2n grid.

By this lemma, Rk is isomorphic to a minor of the 6k2 × 6k2 grid. Therefore,
Theorem 3.7 is still true if Rk is used instead of the k × k grid.

Now, let us construct a fundamental graph Sk of the cycle matroid of Rk. Since
edges of Rk represent elements of the cycle matroid of Rk, they are vertices
of Sk. Let ai = vivi+1 and bi = vivi+k. Let A = {ai : 1 ≤ i ≤ k2 − 1} and
B = {bi : 1 ≤ i ≤ k2 − k} so that A is the set of edges of a spanning tree of
Rk. For each bj ∈ B, aibj ∈ E(Sk) if and only if ai is in the fundamental cycle
of bj with respect to the spanning tree of Rk with the edge set A. In summary,
Sk is a bipartite graph with V (Sk) = A∪B such that aibj ∈ E(Sk) if and only
if i ≤ j < i + k (Fig. 2). By Corollary 3.6, we obtain the following.

Corollary 3.9. For every positive integer k, there is an integer l such that if
a bipartite graph G has rank-width at least l, then it contains a vertex-minor
isomorphic to Sk.
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Fig. 2. R4 and S4

This corollary will be used by Courcelle and Oum [7] to prove a slight weak-
ening of Seese’s conjecture.

4 Inequalities on cut-rank and vertex-minors

Submodularity plays an important role in many places of combinatorics. In
this section, we prove several inequalities concerning the cut-rank function.
The following proposition is called the submodular inequality of the matrix
rank function, and implies that the cut-rank function is submodular [6].

Proposition 4.1. Let M be a matrix over a field F . Let C be the set of column
indexes of M , and R the set of row indexes of M . Then for all X1, X2 ⊆ R
and Y1, Y2 ⊆ C, we have

rk(M [X1, X2])+rk(M [Y1, Y2]) ≥ rk(M [X1∪Y1, X2∩Y2])+rk(M [X1∩Y1, X2∪Y2]).

Proof. See [14, Proposition 2.1.9], [15, Lemma 2.3.11] or [16].

Corollary 4.2 ([6]). If G is a graph and X, Y ⊆ V (G), then

cutrkG(X) + cutrkG(Y ) ≥ cutrkG(X ∩ Y ) + cutrkG(X ∪ Y ).

Proof. Let M be the adjacency matrix of G over GF(2). Then

cutrkG(X) = rk(M [X, V (G) \X]).

Apply Proposition 4.1.

Proposition 4.3. Let G = (V, E) be a graph and let v ∈ V and Y1 ⊆ V . Let
M = A(G) be the adjacency matrix of G over GF(2). Then

cutrkG∗v\v(Y1) = rk

 1 M [{v}, V \ Y1 \ {v}]

M [Y1, {v}] M [Y1, V \ Y1 \ {v}]

− 1.
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Moreover, if w is a neighbor of v, then

cutrkG∧vw\v(Y1) = rk

 0 M [{v}, V \ Y1 \ {v}]

M [Y1, {v}] M [Y1, V \ Y1 \ {v}]

− 1.

Proof. We will use elementary row operations on matrices to prove the claim.
For a graph H, let A(H) denote the adjacency matrix of H. Let N be the
set of neighbors of v in G. Let JB

A be a matrix (1)i∈A,j∈B. We will write J
instead of JB

A if it is not confusing. Let V = V (G). Let Y2 = V \ Y1 \ {v}. Let
L11 = M [Y1 ∩N, Y2 ∩N ], L12 = M [Y1 ∩N, Y2 \N ], L21 = M [Y1 \N, Y2 ∩N ],
and L22 = M [Y1 \N, Y2 \N ]. Then

cutrkG∗v\v(Y1) = rk(A(G ∗ v)[Y1, Y2])

= rk

L11 + J L12

L21 L22



= rk


1 1 1 1 · · · 1 0 0 0 · · · 0

0 L11 + J L12

0 L21 L22

− 1

= rk


1 1 1 1 · · · 1 0 0 0 · · · 0

J L11 L12

0 L21 L22

− 1

= rk

 1 M [{v}, Y2]

M [Y1, {v}] M [Y1, Y2]

− 1.

Let W be the set of neighbors of w. We may assume that w ∈ Y1 by symmetry.
Consequently w ∈ Y1 ∩ (N \ W ). Let N1 = N \ W \ {w}, N2 = N ∩ W ,
N3 = W \ N , N4 = V \ N \W \ {w}. Let Mij = M [Y1 ∩ Ni, Y2 ∩ Nj] for all
i, j ∈ {1, 2, 3, 4}. Then

cutrkG∧vw\v(Y1) = rk(A(G ∧ vw)[Y1, Y2])

= rk



1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0

M11 M12 + J M13 + J M14

M21 + J M22 M23 + J M24

M31 + J M32 + J M33 M34

M41 M42 M43 M44
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= rk



1 0 0 0 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0

0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0

0 M11 M12 + J M13 + J M14

0 M21 + J M22 M23 + J M24

0 M31 + J M32 + J M33 M34

0 M41 M42 M43 M44


− 1

= rk



1 0 0 0 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0

0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0

J M11 M12 M13 M14

J M21 + J M22 + J M23 M24

0 M31 + J M32 + J M33 M34

0 M41 M42 M43 M44


− 1

= rk



0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0

1 0 0 0 · · · 0 1 1 1 · · · 1 1 1 1 · · · 1 0 0 0 · · · 0

J M11 M12 M13 M14

J M21 M22 M23 M24

0 M31 M32 M33 M34

0 M41 M42 M43 M44


− 1

= rk

 0 M [{v}, Y2]

M [Y1, {v}] M [Y1, Y2]

− 1.

The following lemma is analogous to [17, (5.2)].

Lemma 4.4. Let G be a graph and v ∈ V (G). Suppose that (X1, X2) and
(Y1, Y2) are partitions of V (G) \ {v}. Then

cutrkG\v(X1) + cutrkG∗v\v(Y1) ≥ cutrkG(X1 ∩ Y1) + cutrkG(X2 ∩ Y2)− 1.

If w is a neighbor of v, then

cutrkG\v(X1) + cutrkG∧vw\v(Y1) ≥ cutrkG(X1 ∩ Y1) + cutrkG(X2 ∩ Y2)− 1.

Proof. We use Proposition 4.3 and apply Proposition 4.1. Let M be the adja-
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cency matrix of G over GF(2). Then

cutrkG\v(X1) + cutrkG∧vw\v(Y1)

= rk(M [X1, X2] + rk(M [Y1 ∪ {v}, Y2 ∪ {v}])− 1

≥ rk(M [X1 ∩ Y1, X2 ∪ {v} ∪ Y2] + rk(M [X1 ∪ {v} ∪ Y1, Y2 ∩X2])− 1

= cutrkG(X1 ∩ Y1) + cutrkG(X2 ∩ Y2)− 1.

Moreover,

cutrkG\v(X1) + cutrkG∗v\v(Y1)

= rk(M [X1, X2] + rk

 1 M [{v}, Y2]

M [Y1, {v}] M [Y1, Y2]

− 1

≥ rk(M [X1 ∩ Y1, X2 ∪ {v} ∪ Y2]) + rk(M [X1 ∪ {v} ∪ Y1, Y2 ∩X2])− 1

= cutrkG(X1 ∩ Y1) + cutrkG(X2 ∩ Y2)− 1.

5 Excluded vertex-minors

In this section, we show that for any fixed k, there is a finite set Ck of graphs
such that for every graph G, rwd(G) ≤ k if and only if no graph in Ck is
isomorphic to a vertex-minor of G. Since the number of graphs with bounded
number of vertices is finite up to isomorphism, it is enough to show that if
a graph G has rank-width larger than k but every proper vertex-minor of G
has rank-width at most k, then |V (G)| is bounded by a function of k. We
prove a stronger statement that if rwd(G) > k and every proper pivot-minor
has rank-width at most k, then |V (G)| is bounded by a function of k. The
analogous result for matroids is proved by Geelen, Gerards, and Whittle [18]
and we extend their method to graphs.

Let us begin with some additional definitions from [18]. Let G be a graph and
(A, B) a partition of V (G). A branching of B is a triple (T, r, L) where T is a
subcubic tree with a fixed leaf node r and L is a bijection from B to the set of
leaf nodes of T different from r. For an edge e of T of the branching (T, r, L),
let Te be the set of vertices in B mapped by L to nodes in the component of
T \ e not containing r. We say B is k-branched if there is a branching (T, r, L)
of B such that for each edge e of T , cutrkG(Te) ≤ k. Note that if both A and
B are k-branched, then the rank-width of G is at most k.

The following lemma is proved by Geelen et al. [18, Lemma 2.1] in terms of
matroids. But their proof relies on the fact that λM is integer-valued submod-
ular, and since cut-rank also has these properties, we can use basically the
same argument.
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Lemma 5.1. Let G be a graph of rank-width k. Let (A, B) be a partition of
V (G) such that cutrkG(A) ≤ k. If there is no partition (A1, A2, A3) of A such
that cutrk(Ai) < cutrk(A) for all i ∈ {1, 2, 3}, then B is k-branched.

Proof. (Obvious modification of the proof of [18, Lemma 2.1])

Claim 5.1.1. If (X1, X2) is a partition of V (G) with cutrkG(X1) ≤ k, then
either cutrkG(B ∩X1) ≤ k or cutrkG(B ∩X2) ≤ k.

Proof of Claim 5.1.1. From the partition (A ∩ X1, A ∩ X2, ∅) of A, either
cutrkG(A ∩ X1) ≥ cutrkG(A) or cutrkG(A ∩ X2) ≥ cutrkG(A). We may
assume that cutrkG(A ∩ X1) ≥ cutrkG(A). By submodularity, cutrkG(A ∪
X1) ≤ cutrkG(A) + cutrkG(X1)− cutrkG(A ∩X1) ≤ k. So, cutrkG(B ∩X2) =
cutrkG(A ∪X1) ≤ k.

Let (T, L) be a rank-decomposition of G of width k. We may assume that T
has degree-3 nodes, as otherwise it is trivial. We may also assume that k > 0.
If v is a vertex of T and e is an edge of T , we let Xev = L−1(Xev) where Xev

is the set of leaves of T in the component of T \ e not containing v.

Claim 5.1.2. There exists a degree-3 vertex s of T such that, for each edge
e of T , cutrkG(Xes ∩B) ≤ k.

Proof of Claim 5.1.2. We construct an orientation of T . Let e be an edge of
T , and let u and v be the ends of e. If cutrkG(Xev ∩B) ≤ k, then we orient e
from u to v. By Claim 5.1.1, each edge receives at least one orientation.

First, assume that there exists a node v of T such that every other node can
be connected to v by a directed path on T . Since k ≥ 1, each edge incident
with a leaf has been oriented away from that leaf. Hence we may assume that
v has degree 3. Then the claim follows with s = v.

Next, we assume that there is no vertex reachable from every other vertex.
Then there exists a pair of edges e and f and a vertex w on the path connecting
e and f such that neither e nor f is oriented toward w. Let Y1 = Xew, Y3 =
Xfw, and Y2 = V (G) \ (Y1 ∪ Y2). Since e and f are oriented away from w,
cutrkG((Y2 ∪ Y3) ∩B) ≤ k and cutrkG((Y1 ∪ Y2) ∩B) ≤ k. By submodularity,

cutrkG(Y1 ∩B) + cutrkG(Y3 ∩B)

≤ cutrkG((Y2 ∪ Y3) ∩B) + cutrkG((Y1 ∪ Y2) ∩B) ≤ 2k.

This contradicts the fact that neither e nor f is oriented toward w.
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Let s be a vertex satisfying Claim 5.1.2, let e1, e2, and e3 be the edges of
T incident with s, and let Xi denote Xeis for each i ∈ {1, 2, 3}. Note that
cutrkG(Xi ∩A) ≥ cutrkG(A) for some i ∈ {1, 2, 3}; suppose that cutrkG(X1 ∩
A) ≥ cutrkG(A). Then by submodularity,

cutrkG((X2 ∪X3) ∩B) = cutrkG(X1 ∪ A)

≤ cutrkG(X1) + cutrkG(A)− cutrkG(X1 ∩ A)

≤ cutrkG(X1) ≤ k.

Now we construct a branching (T ′, r, L′) of B; let T be a tree obtained from the
minimum subtree of T containing both e1 and nodes in L(B) by subdividing
e1 with a vertex b, adding a new leaf r adjacent to b, and contracting one of
incident edges of each degree-2 vertex until no degree-2 vertices are left. For
each x ∈ B, we define L′(x) to be a leaf of T ′ induced by L(x). Then (T ′, r, L′)
is a branching.

It is easy to see that cutrkG(T ′
e) ≤ k for all e in T ′ by Claim 5.1.2. So, B is

k-branched.

We continue to follow [18]. Let Z+ be the set of nonnegative integers. Let
g : Z+ → Z+ be a function. A graph G is called (m, g)-connected if for every
partition (A, B) of V (G), cutrkG(A) = l < m implies either |A| ≤ g(l) or
|B| ≤ g(l).

Lemma 5.2. Let f : Z+ → Z+ be a nondecreasing function. Let G be a
(m, f)-connected graph and let v ∈ V (G) and vw ∈ E(G). Then either G \ v
or G ∧ vw \ v is (m, 2f)-connected.

Proof. The proof for matroids in [18, Lemma 3.1] works for general graphs.
For the completeness of this paper, the proof is included here.

Suppose not. There are partitions (X1, X2), (Y1, Y2) of V (G) \ {v} such that

a = cutrkG\v(X1) < m, |X1| > 2f(a), |X2| > 2f(a),

b = cutrkG∧vw\v(Y1) < m, |Y1| > 2f(b), |Y2| > 2f(b).

We may assume that a ≥ b by replacing G by G ∧ vw. We may assume that
|X1 ∩ Y1| > f(a) by swapping Y1 and Y2.

By Lemma 4.4, we obtain

cutrkG(X1 ∩ Y1) + cutrkG(X2 ∩ Y2) ≤ a + b + 1.

Thus, either cutrkG(X1∩Y1) ≤ a or cutrkG(X2∩Y2) ≤ b. So, either |X1∩Y1| ≤
f(a) or |X2 ∩ Y2| ≤ f(b). By assumption, |X2 ∩ Y2| ≤ f(b).
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Similarly we apply the same inequality after swapping X1 and X2. Either
|X2 ∩Y1| ≤ f(a) or |X1 ∩Y2| ≤ f(b). Since |X1 ∩Y2| = |Y2| − |Y2 ∩X2| > f(b),
|X2 ∩ Y1| ≤ f(a).

Then |X2| = |X2∩Y1|+|X2∩Y2| ≤ f(a)+f(b) ≤ 2f(a). This is a contradiction.

Let g(n) = (6n− 1)/5. Note that g(0) = 0, g(1) = 1, and g(n) = 6g(n− 1)+1
for all n ≥ 1.

Lemma 5.3. Let k ≥ 1. If G has rank-width larger than k but every proper
pivot-minor of G has rank-width at most k, then G is (k + 1, g)-connected.

Proof. We continue to follow the proof of [18, Lemma 4.1] with a slight mod-
ification.

It is easy to see that G is (1, g)-connected, because if G is disconnected, then
the rank-width of G is the maximum of the rank-width of each component.

Suppose that m ≤ k and G is (m, g)-connected and G is not (m + 1, g)-
connected. Then there exists a partition (A, B) with cutrkG(A) = m such
that |A|, |B| > g(m) = 6g(m− 1) + 1. Since G has rank-width greater than k,
either A or B is not k-branched. We may assume that B is not k-branched.
Let v ∈ A. Since G is connected, there is a neighbor w of v in G.

By Lemma 5.2, either G \ v or G ∧ vw \ v is (m, 2g)-connected. Since both
G \ v and G ∧ vw \ v are proper pivot-minors of G, they have rank-width at
most k.

We may assume that G\v is (m, 2g)-connected by swapping G and G∧vw. Let
(A1, A2, A3) be a partition of A\{v}. Since |A| > 6g(m−1)+1, |Ai| > 2g(m−1)
for some i ∈ {1, 2, 3}. Since G \ v is (m, 2g)-connected and |B| > 2g(m− 1),

cutrkG\v(Ai) ≥ m ≥ cutrkG\v(A \ {v}).

Therefore by Lemma 5.1, B is k-branched in G \ v. Since B is not k-branched
in G, there exists X ⊆ B such that

cutrkG(X) = cutrkG\v(X) + 1.

Let M be the adjacency matrix of G. By submodular inequality (Proposition
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4.1), we obtain

cutrkG\v(B) + cutrkG(X) = rk(M [B, V (G) \B \ {v}]) + rk(M [X, V (G) \X])

≥ rk(M [B, V (G) \B]) + rk(M [X,V (G) \X \ {v}])
= cutrkG(B) + cutrkG\v(X)

= cutrkG(B) + cutrkG(X)− 1,

and therefore cutrkG\v(B) = cutrkG(B)−1 = m−1. But this is a contradiction
because G \ v is (m, 2g)-connected.

Theorem 5.4. Let k ≥ 1. If G has rank-width larger than k but every proper
pivot-minor of G has rank-width at most k, then |V (G)| ≤ (6k+1 − 1)/5.

Proof. Let v ∈ V (G). Since G is connected, pick w such that vw ∈ E(G). We
may replace G by G∧ vw, and hence we may assume that G \ v is (k + 1, 2g)-
connected. Since G \ v has rank-width k, there exists a partition (X1, X2)
of V (G) \ {v} such that |X1|, |X2| ≥ 1

3
(|V (G)| − 1) and cutrkG\v(X1) ≤ k.

By (k + 1, 2g)-connectivity, either |X1| ≤ 2g(k) or |X2| ≤ 2g(k). Therefore,
|V (G)| − 1 ≤ 6g(k) and consequently |V (G)| ≤ 6g(k) + 1 = g(k + 1).

One of the main corollary of the above theorem is the following corollary.
This corollary is used by Courcelle and Oum [7] to show a polynomial-time
algorithm to recognize graphs of rank-width at most k.

Corollary 5.5. For each k ≥ 0, there is a finite list Ck of graphs having at
most ck vertices where

ck =

(6k+1 − 1)/5 if k > 0,

2 if k = 0,

such that a graph has rank-width at most k if and only if no graph in Ck is
isomorphic to a vertex-minor of G.

Proof. If k = 0, then we let K2 be a graph with two vertices and one edge
joining them and let C0 = {K2}. Since a graph G has rank-width 0 if and only
if G has no edge, the rank-width of G is 0 if and only if K2 is not isomorphic
to a vertex-minor of G. Now we may assume that k ≥ 1.

Let Ck be the set of graphs H with V (H) = {1, 2, . . . , n} for some integer n
such that rwd(H) > k and every proper vertex-minor has rank-width at most
k. By Theorem 5.4, Ck is finite and each graph in Ck has at most (6k+1− 1)/5
vertices.

Suppose the rank-width of a graph G is at most k. Since every graph in Ck

has rank-width larger than k, no graph in Ck is isomorphic to a vertex-minor
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of G.

Conversely, suppose that the rank-width of a graph G is larger than k. Let
H be a proper vertex-minor of G with the minimum number of vertices such
that rwd(H) > k. Then there exists a graph H ′ ∈ Ck isomorphic to H.

By Corollary 3.6, Theorem 5.4 implies the following corollary, which is a special
case of [18, Theorem 1.1].

Corollary 5.6. Let k ≥ 2. If a binary matroid M has branch-width larger
than k but every proper minor of M has branch-width at most k, then
|E(M)| ≤ (6k − 1)/5.

6 Tutte’s linking theorem

In this section, we show a theorem analogous to Tutte’s linking theorem [19]. In
the following theorem, we show that the minimum cut-rank of cuts separating
two disjoint sets X, Y of vertices of a graph G is equal to the maximum cut-
rank of X in all vertex-minors of G having X ∪ Y as the set of vertices. In
particular, this theorem implies that it is in NP ∩ coNP to answer whether
minX⊆Z⊆V (G)\Y cutrkG(Z) ≥ k when a graph G and subsets X, Y of V (G)
and k are given as the input. In [20], the author obtains a direct combinatorial
algorithm to solve this problem in polynomial time, which is essentially based
on this theorem. We note that there are algorithms that can minimize any
submodular function in polynomial time [21].

Theorem 6.1. Let G be a graph and X, Y be disjoint subsets of V (G). The
following are equivalent.

(1) min
X⊆Z⊆V (G)\Y

cutrkG(Z) ≥ k.

(2) There exists a vertex-minor G′ of G such that

V (G′) = X ∪ Y and cutrkG′(X) ≥ k.

(3) There exists a pivot-minor G′ of G such that

V (G′) = X ∪ Y and cutrkG′(X) ≥ k.

Proof. (2)⇒(1): We may assume that G′ is an induced subgraph of G by
applying local complementations to G. For all Z satisfying X ⊆ Z ⊆ V (G)\Y ,
we have k ≤ cutrkG′(X) = cutrk∗G(X, Y ) ≤ cutrk∗G(Z, V (G)\Z) = cutrkG(Z).

(3)⇒(2): Trivial.
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(1)⇒(3): We proceed by induction on |V (G) \ (X ∪ Y )|. Suppose there is no
such graph G′. If X ∪ Y = V (G), then it is trivial. Let x ∈ V (G) \ (X ∪ Y ).
If x has no neighbor, then for all Z ⊆ V (G) \ {x},

cutrkG\x(Z) = cutrkG(Z).

Therefore, minX⊆Z⊆V (G)\Y cutrkG(Z) = minX⊆Z⊆V (G)\{x}\Y cutrkG\x(Z).

So, we may assume that x has a neighbor y. By induction, there exists A ⊆
V (G) \ {x} such that

cutrkG\x(A) ≤ k − 1.

Also, there exists B ⊆ V (G) \ {x} such that

cutrkG∧xy\x(B) ≤ k − 1.

By Lemma 4.4, either cutrkG(A ∩ B) ≤ k − 1 or cutrkG(A ∪ B) ≤ k − 1.
Consequently, minX⊆Z⊆V (G)\Y cutrkG(Z) ≤ k − 1.

We can deduce Tutte’s linking theorem for binary matroids from the above
theorem. Here is the statement of Tutte’s linking theorem for binary matroids.

Corollary 6.2. Let M = (E, I) be a binary matroid and let X, Y be disjoint
subsets of E. Then

min
X⊆Z⊆E\Y

λM(Z) ≥ k

if and only if there is a minor M′ of M such that E(M′) = X ∪ Y and
λM′(X) ≥ k.

Proof. Let G be a bipartite graph with a bipartition A∪B = V (G) such that
Bin(G, A, B) = M. There exists a minor M′ of M such that E(M′) = X∪Y
and λM′(X) ≥ k if and only if there exists a pivot-minor H of G such that
V (H) = X ∪Y and cutrkH(X) ≥ k−1 by Corollary 3.6. The remaining proof
is routine by Proposition 3.1 and Proposition 6.1.

7 Distance-hereditary graphs

We call a graph G distance-hereditary if and only if for every connected induced
subgraph H of G, the distance between every pair of vertices in H is the same
as in G. In this section, we show that a graph is distance-hereditary if and
only if it has rank-width at most 1.

Two distinct vertices v, w are called twins of G if for every x ∈ V (G)\{v, w},
v is adjacent to x if and only if w is adjacent to x. We call v a pendant vertex
of G if it has only one incident edge in G.
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Proposition 7.1. Let G be a graph. If v, w ∈ V (G) are twins of G and G \ v
has at least one edge different from vw, then

rwd(G \ v) = rwd(G).

Note that we do not require that vw ∈ E(G).

Proof. It is enough to show that rwd(G \ v) ≥ rwd(G). Let (T, L) be a rank-
decomposition of G \ v of width rwd(G \ v). Let x = L(w) and let y ∈ V (T )
be such that xy ∈ E(T ).

Let T ′ be a tree obtained from T by deleting xy, adding two new vertices x′,
z, and adding three new edges yz, zx′, zx. Let L′(x′) = v and L′(u) = L(u)
for all u 6= x′.

So, (T ′, L′) is a rank-decomposition of G. For every edge e except zx′ and zx
in T ′, the width of e in (T ′, L′) is equal to the width of e in (T, L), because
v and w are twins. Both the width of zx and the width of zx′ are at most 1.
Since G has at least one edge e 6= vw and v, w are twins, G \ v has at least
one edge and rwd(G\v) ≥ 1, and therefore the width of (T ′, L′) is rwd(G\v).
Therefore, rwd(G \ v) ≥ rwd(G).

Proposition 7.2. If G has rank-width at most 1 and |V (G)| ≥ 2, then G has
a pair of vertices v and w such that either they are twins or w has no neighbor
different from v.

Proof. If |V (G)| = 2, then the claim is trivial, and so we may assume that
|V (G)| ≥ 3.

Let (T, L) be a rank-decomposition of G of width at most 1. Since the number
of leaf nodes is at least 3, there exists a node x of T that is adjacent to two
leaf nodes L(v), L(w) of T . Let y be the node of T adjacent to x different from
L(v) and L(w). The partition of V (G) induced by xy is ({v, w}, V (G)\{v, w}).
So, the width of xy is cutrkG({v, w}) ≤ 1. That means either v, w are twins or
v has no neighbor different from w or w has no neighbor different from v.

Proposition 7.3. G is distance-hereditary if and only if the rank-width of G
is at most 1.

Proof. Bandelt and Mulder [22] showed that every distance-hereditary graph
can be obtained by creating twins, adding an isolated vertex, or adding a pen-
dant vertex to a distance-hereditary graph or is a graph with one vertex. So,
the rank-width of every distance-hereditary graphs is at most 1 by Proposition
7.1. Conversely, if a graph has rank-width at most 1, then by Proposition 7.2,
it is a distance-hereditary graph.

24



Golumbic and Rotics [23] proved that distance-hereditary graphs have clique-
width at most 3, and this can be proved as a corollary of Proposition 7.3.

Corollary 7.4. Distance-hereditary graphs have clique-width at most 3.

Proof. Use the inequality that the clique-width of a graph G is at most
2rwd(G)+1 − 1 [6].

By Corollary 5.5, there is a finite list C1 of graphs having at most seven vertices
such that a graph G is distance-hereditary graphs if and only if no graph in
C1 is isomorphic to a vertex-minor of G. We may ask what C1 is. In fact, it is
proved by Bouchet that a graph G is distance-hereditary if and only if it has
no vertex-minor isomorphic to the 5-cycle [24,25].

8 Conclusion

We introduce vertex-minors of graphs by generalizing minors of binary ma-
troids. Surprisingly, the branch-width of binary matroids is one more than the
rank-width of their fundamental graph. Thus, all theorems on branch-width
of binary matroids implies theorems on rank-width of bipartite graphs, and
in many cases we are able to prove that the same theorems hold for general
graphs. Section 5 and 6 are such examples. In [26], the author shows that
graphs of bounded rank-width are well-quasi-ordered by the vertex-minor re-
lation; this generalizes the theorem by Geelen et al. [17] stating that binary
matroids of bounded branch-width are well-quasi-ordered by the matroid mi-
nor relation. However, it is still open whether Corollary 3.9 is true for general
graphs.

In [7], Courcelle and Oum show that vertex-minor relation can be written in
a certain kind of logic formulas, called modulo-2 counting monadic second-
order logic formulas, and therefore for fixed graph H, it is possible to decide
whether an input graph contains H in polynomial time if an input graph has
rank-width at most k for fixed k. This theorem is combined with Corollary
3.9 to show the existence of polynomial-time algorithms to decide whether an
input graph has rank-width at most k for fixed k. Moreover they use Corollary
3.9 to prove a slight weakening of Seese’s conjecture.
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