# Rank-width and Vertex-minors 

Sang-il Oum<br>Program in Applied and Computational Mathematics, Princeton University Fine Hall, Washington Road, Princeton, NJ 08544 USA


#### Abstract

The rank-width is a graph parameter related in terms of fixed functions to cliquewidth but more tractable. Clique-width has nice algorithmic properties, but no good "minor" relation is known analogous to graph minor embedding for tree-width. In this paper, we discuss the vertex-minor relation of graphs and its connection with rank-width. We prove a relationship between vertex-minors of bipartite graphs and minors of binary matroids, and as an application, we prove that bipartite graphs of sufficiently large rank-width contain certain bipartite graphs as vertex-minors. The main theorem of this paper is that for fixed $k$, there is a finite list of graphs such that a graph $G$ has rank-width at most $k$ if and only if no graph in the list is isomorphic to a vertex-minor of $G$. Furthermore, we prove that a graph has rank-width at most 1 if and only if it is distance-hereditary.


Key words: clique-width; rank-width; vertex-minor; local complementation; pivoting; branch-width; binary matroid

## 1 Introduction

This paper is motivated by the following open problem:
For fixed $k>3$, find a polynomial-time algorithm to decide whether an input graph has clique-width at most $k$.

The notion of clique-width was defined by Courcelle and Olariu [1]. It has good algorithmic properties; many NP-hard graph problems can be solved in polynomial time, if the input graphs have clique-width at most some fixed $k$.

Email address: sangil@princeton.edu (Sang-il Oum).

It is interesting to compare clique-width to tree-width. Tree-width was developed in the series of papers by Robertson and Seymour, some of which are [2,3,4]. Like clique-width, if the input graphs have tree-width at most some fixed $k$, then many NP-hard problems can be solved in polynomial time.

An analogy between tree-width and clique-width shows hope of results for clique-width similar to those for tree-width. To do so, it would be desirable to have something similar to graph minors. A graph $H$ is a minor of a graph $G$ if $H$ can be obtained by a sequence of contractions of edges, deletions of edges, and deletions of vertices. It was shown that the tree-width of a minor of $G$ is at most the tree-width of $G$ and moreover for each $k$, there is a finite list of graphs such that a graph $G$ has tree-width at most $k$ if and only if no graph in the list is isomorphic to a minor of $G$. For each $k$, the finiteness of this list and a polynomial-time algorithm to check the minor containment can be used to construct a polynomial-time algorithm to decide whether the tree-width of a graph is at most $k$.

To do similar things for clique-width, we need an appropriate containment relation on graphs, having the similar properties for clique-width. Certainly, minor containment is not appropriate for clique-width because every graph $G$ is a minor of the complete graph $K_{n}$ of $n=|V(G)|$ vertices, and $K_{n}$ has clique-width 2 if $n>1$.

Courcelle and Olariu [1] showed that if $H$ is an induced subgraph of a graph $G$, then the clique-width of $H$ is at most that of $G$. But, induced subgraph containment is not rich enough; Corneil et al. wrote the following comment in their paper [5].

Unfortunately, there does not seem to be a succinct forbidden subgraph characterization of graphs with clique-width at most 3 , similar to the $P_{4^{-}}$ free characterization of graphs with clique-width at most 2 . In fact every cycle $C_{n}$ with $n \geq 7$ has clique-width 4 , thereby showing an infinite set of minimal forbidden induced subgraphs for Clique-width $\leq 3$.

We did not yet find an appropriate containment relation for clique-width, but we found that a certain graph containment relation which we call the vertexminor relation is interesting in connection with rank-width. The notion of rank-width, denoted by $\operatorname{rwd}(G)$, is defined by Oum and Seymour [6] so as to yield an approximation algorithm for clique-width. They also show that rankwidth and clique-width are in a sense approximately equal; more precisely, the following inequality [6] links rank-width to clique-width: If the clique-width of $G$ is $k$, then

$$
\log _{2}(k+1)-1 \leq \operatorname{rwd}(G) \leq k
$$

Thus, a set of graphs of bounded rank-width is also of bounded clique-width and vice versa. For a graph $G$ and $v \in V(G)$, performing the local comple-
mentation at $v$ consists in replacing a subgraph induced on the neighbors of $v$ by its edge-complement graph. The graph obtained by applying local complementation at $v$ to $G$ is denoted by $G * v$. A graph $H$ is a vertex-minor of $G$ if $H$ can be obtained by applying a sequence of local complementations and deletions of vertices to $G$. We will show that if $H$ is a vertex-minor of $G$, then rank-width of $H$ is at most that of $G$.

The notion of branch-width for both graphs and matroids was defined by Robertson and Seymour [4]. A fundamental graph of a binary matroid $\mathcal{M}$ is a bipartite graph with a bipartition $(B, E(\mathcal{M}) \backslash B)$ such that $B$ is a basis of $\mathcal{M}$, and $e \in B$ and $f \in E(\mathcal{M}) \backslash B$ are adjacent if and only if $e$ is in the fundamental circuit of $f$ with respect to $B$. We will show that the branchwidth of a binary matroid is one more than the rank-width of its fundamental graph. It turns out that a fundamental graph of a minor of a binary matroid $\mathcal{M}$ is a vertex-minor of a fundamental graph of $\mathcal{M}$. This allows us to think of generalizing theorems about branch-width of binary matroids to rank-width of graphs.

The main theorem of this paper is the following.

Theorem. Let $k \geq 1$. The set of graphs having rank-width at most $k$ is characterized by excluded vertex-minors with at most $\left(6^{k+1}-1\right) / 5$ vertices.

This implies that for each $k$, there is a finite list of graphs, such that a graph $G$ has rank-width at most $k$ if and only if no graph in the list is isomorphic to a vertex-minor of $G$. This will be used by Courcelle and Oum [7] to find a polynomial-time algorithm to decide whether rank-width is at most $k$ for fixed $k$. This is an exact analog to the corresponding theorem for tree-width.

The paper is organized as follows. In the next section, we review the notion of rank-width and we define the vertex-minor relation. In Section 3, we discuss the vertex-minor relation and rank-width of bipartite graphs in connection with the minor relation and branch-width of binary matroids. This enables us to translate a theorem for binary matroids into a theorem for bipartite graphs. In Section 4, we prove useful inequalities which will be used in both Section 5 and 6. In Section 5, we prove that the set of graphs having rankwidth at most $k$ is characterized by excluded vertex-minors of bounded size for fixed $k \geq 1$. In Section 6, we show one example of generalizing a theorem for binary matroids to general graphs; we generalize Tutte's linking theorem about minors in matroids to a theorem about vertex-minors in graphs. In Section 7, we characterize graphs of rank-width at most one and obtain another proof that distance-hereditary graphs have clique-width at most three.

## 2 Definitions

In this section, we review the notion of rank-width and we introduce the vertex-minor relation. In this paper, we assume that graphs are simple undirected and finite.

Let us first review the definition of rank-width, introduced by Oum and Seymour [6]. For a matrix $M=\left(m_{i j}: i \in R, j \in C\right.$ over a field $F$, let $\operatorname{rk}(M)$ denote its linear rank. If $X \subseteq R$ and $Y \subseteq C$, then let $M[X, Y]$ be the submatrix ( $m_{i j}: i \in X, j \in Y$ ) of $M$. We assume that adjacency matrices of graphs are matrices over GF(2).

Definition. Let $G$ be a graph and $A, B$ be disjoint subsets of $V(G)$. Let $M$ be the adjacency matrix of $G$ over $\mathrm{GF}(2)$. We define the rank of $(A, B)$, $\operatorname{rk}_{G}(A, B)$, as $\operatorname{rk}(M[X, Y])$. The cut-rank, $\operatorname{cutrk}_{G}(A)$ of $A \subseteq V(G)$, is defined by

$$
\operatorname{cutrk}_{G}(A)=\operatorname{rk}_{G}(A, V(G) \backslash A)
$$

A subcubic tree is a tree such that every vertex has exactly one or three incident edges. We call $(T, L)$ a rank-decomposition of $G$ if $T$ is a subcubic tree and and $L$ is a bijection from $V(G)$ to the set of leaves of $T$.

For an edge $e$ of $T$, the two connected components of $T \backslash e$ induce a partition $(X, Y)$ of the set of leaves of $T$. The width of an edge $e$ of a rank-decomposition $(T, L)$ is $\operatorname{cutrk}_{G}\left(L^{-1}(X)\right)$. The width of $(T, L)$ is the maximum width of all edges of $T$. The rank-width of $G$, denoted by $\operatorname{rwd}(G)$, is the minimum width of all rank-decompositions of $G$. (If $|V(G)| \leq 1$, we define $\operatorname{rwd}(G)=0$.)

Now, we define local complementation, pivoting, vertex-minors, and pivotminors. In fact, vertex-minor containment was called $l$-reduction by Bouchet [8], but the author thinks "vertex-minor" is a better name, because of the many analogies with matroid minors discussed in Section 3.

For two sets $A$ and $B$, let $A \Delta B=(A \backslash B) \cup(B \backslash A)$.
Definition. Let $G=(V, E)$ be a graph and $v \in V$. The graph obtained by applying local complementation at $v$ to $G$ is

$$
G * v=(V, E \Delta\{x y: x v, y v \in E, x \neq y\})
$$

For an edge $u v \in E$, the graph obtained by pivoting $u v$ is defined by $G \wedge u v=$ $G * u * v * u$. We call $H$ is locally equivalent to $G$ if $G$ can be obtained by applying a sequence of local complementations to $G$. We call $H$ is a vertexminor of $G$ if $H$ can be obtained by applying a sequence of vertex deletions and local complementations to $G$. We call $H$ is a pivot-minor of $G$ if $H$ can be
obtained by applying a sequence of vertex deletions and pivotings. A vertexminor $H$ of $G$ is called a proper vertex-minor if $H$ has fewer vertices than $G$. and similarly a pivot-minor $H$ of $G$ is called a proper pivot-minor if $H$ has fewer vertices than $G$.

A pivoting is well-defined because $G * u * v * u=G * v * u * v$ if $u$ and $v$ are adjacent. To prove this, we prove the following proposition that describes pivoting directly.


Fig. 1. Pivoting

Proposition 2.1. For a graph $H$ and $u, v \in V(H)$, let $H_{u v}$ be a graph obtained by exchanging $u$ and $v$ in $H$. For $X, Y \subseteq V(H)$, let $H *(X, Y)$ be the graph $\left(V(H), E^{\prime}\right)$ where $E^{\prime}=E(H) \Delta\{x y: x \in X, y \in Y, x \neq y\}$. Let $G=(V, E)$ be a graph. For $x \in V$, let $N(x)$ be the set of neighbors of $x$ in $G$. For $u v \in E$, let $V_{1}=N(u) \cap N(v), V_{2}=N(u) \backslash N(v) \backslash\{v\}$, and $V_{3}=N(v) \backslash N(u) \backslash\{v\}$. Then

$$
G \wedge u v=\left(G *\left(V_{1}, V_{2}\right) *\left(V_{2}, V_{3}\right) *\left(V_{3}, V_{1}\right)\right)_{u v}
$$

Proof. Note that $V_{1}, V_{2}, V_{3}$ are disjoint subsets of $V(G)$. For a graph $H$ and $X \subseteq V(H)$, let $H *(X)^{2}=H *(X, X)$.

Let us first consider the neighbors of $u$ and $v$ in $G * u * v * u$. The set of neighbors of $u$ in $G$ is $N(u)=V_{1} \cup V_{2} \cup\{v\}$. The set of neighbors of $v$ in $G * u$ is $N(v) \Delta(N(u) \backslash\{v\})=V_{2} \cup V_{3} \cup\{u\}$. The set of neighbors of $u$ in $G * u * v$ is $N(u) \Delta\left(V_{2} \cup V_{3}\right)=V_{1} \cup V_{3} \cup\{v\}$. Therefore, $G * u * v * u=$ $G *\left(V_{1} \cup V_{2} \cup\{v\}\right)^{2} *\left(V_{2} \cup V_{3} \cup\{u\}\right)^{2} *\left(V_{1} \cup V_{3} \cup\{v\}\right)^{2}$.

Now, we use the simple facts that $G *(X \cup Y)^{2}=G *(X)^{2} *(Y)^{2} *(X, Y)$ for $X \cap Y=\emptyset, G *(X, Y) *(Z, W)=G *(Z, W) *(X, Y), G *(X, Y) *(X, Y)=G$, and $G *(\{x\})^{2}=G$. So, $G *\left(V_{1} \cup V_{2} \cup\{v\}\right)^{2}=G *\left(V_{1}\right)^{2} *\left(V_{2}\right)^{2} *\left(V_{1}, V_{2}\right) *$ $\left(V_{1},\{v\}\right) *\left(V_{2},\{v\}\right)$.

By applying these, we obtain the following.

$$
\begin{aligned}
& G * u * v * u \\
& =G *\left(V_{1}, V_{2}\right) *\left(V_{2}, V_{3}\right) *\left(V_{3}, V_{1}\right) \\
& \quad *\left(V_{1},\{v\}\right) *\left(V_{2},\{v\}\right) *\left(V_{2},\{u\}\right) *\left(V_{3},\{u\}\right) *\left(V_{1},\{v\}\right) *\left(V_{3},\{v\}\right) \\
& =G *\left(V_{1}, V_{2}\right) *\left(V_{2}, V_{3}\right) *\left(V_{3}, V_{1}\right) *\left(V_{2},\{v\}\right) *\left(V_{2},\{u\}\right) *\left(V_{3},\{v\}\right) *\left(V_{3},\{u\}\right) \\
& =\left(G *\left(V_{1}, V_{2}\right) *\left(V_{2}, V_{3}\right) *\left(V_{3}, V_{1}\right)\right)_{u v} .
\end{aligned}
$$

In other words, pivoting $u v$ is an operation that,
(1) for each $(x, y) \in\left(V_{1} \times V_{2}\right) \cup\left(V_{2} \times V_{3}\right) \cup\left(V_{3} \times V_{1}\right)$, adds a new edge $x y$ if $x y \notin E(G)$ or deletes it otherwise,
(2) and then, exchanges $u$ and $v$ (so that $u$ is adjacent to vertices in $V_{1} \cup V_{3}$, and $v$ is adjacent to vertices in $V_{1} \cup V_{2}$ ).

Corollary 2.2. If $G$ is a graph and $u v \in E(G)$, then $G * u * v * u=G * v * u * v$.

Proof. This is immediate from Proposition 2.1.
Corollary 2.3. If a graph $G$ is bipartite and $u v \in E(G), G \wedge u v$ is also bipartite.

Proof. Let $V_{1}, V_{2}$, and $V_{3}$ be sets defined in Proposition 2.1. Since $G$ is bipartite, $V_{1}=\emptyset$. It does not break bipartiteness to add edges between $V_{2}$ and $V_{3}$.

For a graph $H$, let $x \simeq_{H} y$ denote that either $x=y$ or they are adjacent in $G$. Let $a \oplus b$ denote $(a \wedge \neg b) \vee(\neg a \wedge b)$. This operation is usually called the logical "exclusive or" operation. (Note that we use the $\wedge$ symbol with two meanings: one for pivoting and another for the logical "and" operation.)

The next corollary is reformulation of the above proposition.
Corollary 2.4. Let $G$ be a graph and let $u v \in E(G)$. For all $x, y \in V(G)$, $x \simeq_{G \wedge u v} y$ if and only if

$$
\left(x \simeq_{G} y\right) \oplus\left(x \simeq_{G} u \wedge y \simeq_{G} v\right) \oplus\left(x \simeq_{G} v \wedge y \simeq_{G} u\right)
$$

Proof. If $x=y$, then it is clear because $\left(x \simeq_{G} u \wedge y \simeq_{G} v\right) \oplus\left(x \simeq_{G} v \wedge y \simeq_{G} u\right)$ is always false.

Suppose $\{x, y\} \cap\{u, v\}=\emptyset$ and $x \neq y$. Let $V_{1}, V_{2}$, and $V_{3}$ be sets defined in Proposition 2.1. We add or remove an edge $x y$ if and only if there exist
$i, j \in\{1,2,3\}$ such that $x \in V_{i}, y \in V_{j}$, and $i \neq j$. It is equivalent to say that $\left(x \simeq_{G} u \wedge y \simeq_{G} v\right) \oplus\left(x \simeq_{G} v \wedge y \simeq_{G} u\right)$ is true.

Now, consider when one of $x$ or $y$ is $u$ or $v$. We may assume that $x=u$ without loss of generality. Then

$$
\begin{array}{lr}
\left(x \simeq_{G} y\right) \oplus\left(x \simeq_{G} u \wedge y \simeq_{G} v\right) \oplus\left(x \simeq_{G} v \wedge y \simeq_{G} u\right) \\
=\left(u \simeq_{G} y\right) \oplus\left(y \simeq_{G} v\right) \oplus\left(y \simeq_{G} u\right) & \text { because } u \text { is adjacent to } v . \\
=y \simeq_{G} v & \\
=y \simeq_{G \wedge u v} u & \text { because we exchanged } u \text { and } v . \\
=x \simeq_{G \wedge u v} y &
\end{array}
$$

The following proposition is essentially equivalent to [9, Lemma 10] and [10, Proposition 5], but our proof is a routine application of the previous corollary, whereas [9] and [10] show it by reducing the problem into a certain graph of 11 vertices.

Proposition 2.5. If $v v_{1}, v v_{2} \in E(G)$ are two distinct edges incident to $v$, then,

$$
G \wedge v v_{1} \wedge v_{1} v_{2}=G \wedge v v_{2}
$$

and therefore $G \wedge v v_{1} \backslash v$ is locally equivalent to $G \wedge v v_{2} \backslash v$.

Proof. First of all, $G \wedge v v_{1} \wedge v_{1} v_{2}$ is well-defined because $v_{1}$ and $v_{2}$ are adjacent in $G \wedge v v_{1}$. Let $G^{\prime}=G \wedge v v_{1}$. Corollary 2.4 implies that $x \simeq_{G \wedge v v} y$ if and only if

$$
\left(x \simeq_{G} y\right) \oplus\left(x \simeq_{G} u \wedge y \simeq_{G} v\right) \oplus\left(x \simeq_{G} v \wedge y \simeq_{G} u\right)
$$

For simplicity, we write $\simeq$ instead of $\simeq_{G}$.

$$
\begin{align*}
& x \simeq_{G^{\prime} \wedge v_{1} v_{2}} y=\left(x \simeq_{G^{\prime}} y\right) \oplus\left(x \simeq_{G^{\prime}} v_{1} \wedge y \simeq_{G^{\prime}} v_{2}\right) \oplus\left(x \simeq_{G^{\prime}} v_{2} \wedge y \simeq_{G^{\prime}} v_{1}\right)  \tag{1}\\
& x \simeq{ }_{G^{\prime}} y=(x \simeq y) \oplus\left(x \simeq v \wedge y \simeq v_{1}\right) \oplus\left(x \simeq v_{1} \wedge y \simeq v\right)  \tag{2}\\
& x \simeq{ }_{G^{\prime}} v_{1}=x \simeq v  \tag{3}\\
& y \simeq{ }_{G^{\prime}} v_{2}=\left(y \simeq v_{2}\right) \oplus\left(y \simeq v_{1}\right) \oplus\left(y \simeq v \wedge v_{2} \simeq v_{1}\right)  \tag{4}\\
& x \simeq_{G^{\prime}} v_{2}=\left(x \simeq v_{2}\right) \oplus\left(x \simeq v_{1}\right) \oplus\left(x \simeq v \wedge v_{2} \simeq v_{1}\right)  \tag{5}\\
& y \simeq{ }_{G^{\prime}} v_{1}=y \simeq v \tag{6}
\end{align*}
$$

Now, let us apply (2) - (6) to (1). We use the fact that $a \wedge(b \oplus c)=$

$$
\begin{aligned}
& (a \wedge b) \oplus(a \wedge c) . \\
& \quad x \simeq_{G^{\prime} \wedge v_{1} v_{2}} y \\
& \quad=\left(x \simeq_{G^{\prime}} y\right) \oplus\left(x \simeq_{G^{\prime}} v_{1} \wedge y \simeq_{G^{\prime}} v_{2}\right) \oplus\left(x \simeq{ }_{G^{\prime}} v_{2} \wedge y \simeq_{G^{\prime}} v_{1}\right) \\
& \quad=(x \simeq y) \oplus\left(x \simeq v \wedge y \simeq v_{1}\right) \oplus\left(x \simeq v_{1} \wedge y \simeq v\right) \\
& \quad \oplus\left(x \simeq v \wedge y \simeq v_{2}\right) \oplus\left(x \simeq v \wedge y \simeq v_{1}\right) \oplus\left(x \simeq v \wedge y \simeq v \wedge v_{2} \simeq v_{1}\right) \\
& \quad \oplus\left(x \simeq v_{2} \wedge y \simeq v\right) \oplus\left(x \simeq v_{1} \wedge y \simeq v\right) \oplus\left(x \simeq v \wedge y \simeq v \wedge v_{2} \simeq v_{1}\right) \\
& \quad=(x \simeq y) \oplus\left(x \simeq v \wedge y \simeq v_{2}\right) \oplus\left(x \simeq v_{2} \wedge y \simeq v\right) \\
& \quad=x \simeq \simeq_{G \wedge v v_{2}} y
\end{aligned}
$$

Therefore, $x \simeq_{G \wedge v v_{1} \wedge v_{1} v_{2}} y$ if and only if $x \simeq_{G \wedge v v_{2}} y$.

The following observation is fundamental.
Proposition 2.6. Let $G^{\prime}=G * v$. Then for every $X \subseteq V(G)$,

$$
\operatorname{cutrk}_{G}(X)=\operatorname{cutrk}_{G^{\prime}}(X)
$$

Proof. We may assume that $v \in X$ by the symmetry of cut-rank. Let $M$, $M^{\prime}$ be the adjacency matrix of $G, G^{\prime}$ respectively. Let $N=M[X, V(G) \backslash X]$ and $N^{\prime}=M[X, V(G) \backslash X]$. It is easy to see that $N^{\prime}$ is obtained from $N$ by adding the row of $v$ to the rows of its neighbors in $X$. Therefore, $\operatorname{cutrk}_{G}(X)=$ $\operatorname{rk}(N)=\operatorname{rk}\left(N^{\prime}\right)=\operatorname{cutrk}_{G^{\prime}}(X)$.

Corollary 2.7. If $H$ is locally equivalent to $G$, then the rank-width of $H$ is equal to the rank-width of $G$. If $H$ is a vertex-minor of $G$, then the rank-width of $H$ is at most the rank-width of $G$.

Proof. The first statement is obvious. Since vertex deletion does not increase cut-rank, it does not increase rank-width, and therefore the second statement is true.

## 3 Bipartite graphs and Binary matroids

In this section, we discuss the relation between branch-width of binary matroids and rank-width of bipartite graphs. We will also discuss further properties relating binary matroids and bipartite graphs. As an example, we will show the implication of the grid theorem for binary matroids by Geelen, Gerards, and Whittle [11].

Let us review matroid theory first. For general matroid theory, we refer to Oxley's book [12]. We call $\mathcal{M}=(E, \mathcal{I})$ a matroid if $E$ is a finite set and $\mathcal{I}$ is
a collection of subsets of $E$, satisfying
(1) $\emptyset \in \mathcal{I}$
(2) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
(3) For every $Z \subseteq E$, maximal subsets of $Z$ in $\mathcal{I}$ all have the same size $r(Z)$. We call $r(Z)$ the rank of $Z$.

An element of $\mathcal{I}$ is called independent in $\mathcal{M}$. We let $E(\mathcal{M})=E$. We call $B \subseteq E$ a base if it is maximally independent. A matroid may also be defined by axioms on the set of bases. We call $B^{\prime} \subseteq E$ a cobase if $E \backslash B^{\prime}$ is a base. The dual matroid $\mathcal{M}^{*}$ of $\mathcal{M}$ is the matroid on $E(\mathcal{M})$ such that the set of cobases of $\mathcal{M}$ is equal to the set of bases of $\mathcal{M}^{*}$.

A matroid $\mathcal{M}=(E, \mathcal{I})$ is binary if there exists a matrix $N$ over GF(2) such that $E$ is a set of column vectors of $N$ and

$$
\mathcal{I}=\{X \subseteq E: X \text { is linearly independent }\}
$$

For $e \in E(\mathcal{M}), \mathcal{M} \backslash e$ is the matroid $\left(E \backslash\{e\}, \mathcal{I}^{\prime}\right)$ such that

$$
\mathcal{I}^{\prime}=\{X \subseteq E(\mathcal{M}) \backslash\{e\}: X \in \mathcal{I}\}
$$

This operation is called deletion of $e$. For $e \in E(\mathcal{M}), \mathcal{M} / e=\left(\mathcal{M}^{*} \backslash e\right)^{*}$ and this operation is called contraction of $e$. A matroid $\mathcal{N}$ is called a minor of $\mathcal{M}$ if $\mathcal{N}$ can be obtained from $\mathcal{M}$ by applying a sequence of deletions and contractions.

The connectivity function $\lambda_{\mathcal{M}}$ of $\mathcal{M}$ is

$$
\lambda_{\mathcal{M}}(X)=r(X)+r(E \backslash X)-r(E)+1
$$

We call $(T, L)$ a branch-decomposition of $\mathcal{M}$ if $T$ is a subcubic tree and and $L$ is a bijection from $E(\mathcal{M})$ to the set of leaves of $T$. For an edge $e$ of $T$, the two connected components of $T \backslash e$ induce a partition $(X, Y)$ of the set of leaves of $T$. The width of an edge $e$ of a branch-decomposition $(T, L)$ is $\lambda_{\mathcal{M}}\left(L^{-1}(X)\right)$. The width of $(T, L)$ is the maximum width of all edges of $T$. The branch-width $\operatorname{bw}(\mathcal{M})$ of $\mathcal{M}$ is the minimum width of all branch-decompositions of $\mathcal{M}$. (If $|E(\mathcal{M})| \leq 1$, we define $\operatorname{bw}(\mathcal{M})=1$.)

Let $G=(V, E)$ be a bipartite graph with a bipartition $V=A \cup B$. Let $M$ be the adjacency matrix of $G$. Let $\operatorname{Bin}(G, A, B)$ be the binary matroid on $V$, represented by the $A \times V$ matrix $\left(I_{A} M[A, B]\right)$, where $I_{A}$ is the $A \times A$ identity matrix. If $\mathcal{M}=\operatorname{Bin}(G, A, B)$, then $G$ is called a fundamental graph of $\mathcal{M}$.

Here is a major observation, which gives a relation between connectivity of binary matroids and cut-rank of bipartite graphs.

Proposition 3.1. Let $G=(V, E)$ be a bipartite graph with a bipartition $V=A \cup B$ and let $\mathcal{M}=\operatorname{Bin}(G, A, B)$. Then for every $X \subseteq V, \lambda_{\mathcal{M}}(X)=$ $\operatorname{cutrk}_{G}(X)+1$.

Proof. Let $M$ be the adjacency matrix of $G$. First note that

$$
M[X, V \backslash X]=\left(\begin{array}{cc}
0 & M[X \cap A,(V \backslash X) \cap B] \\
M[X \cap B,(V \backslash X) \cap A] & 0
\end{array}\right)
$$

Therefore, $\operatorname{cutrk}_{G}(X)=\operatorname{rk}(M[X \cap B,(V \backslash X) \cap A])+\operatorname{rk}(M[X \cap A,(V \backslash X) \cap B])$. Consequently,

$$
\begin{aligned}
\lambda_{\mathcal{M}}(X)= & r(X)+r(V \backslash X)-r(V)+1 \\
= & \operatorname{rk}\left(\begin{array}{cc}
0 & M[(V \backslash X) \cap A, X \cap B] \\
I_{X \cap A} & M[X \cap A, X \cap B]
\end{array}\right) \\
& +\operatorname{rk}\left(\begin{array}{cc}
0 & M[X \cap A,(V \backslash X) \cap B] \\
I_{(V \backslash X) \cap A} M[(V \backslash X) \cap A,(V \backslash X) \cap B]
\end{array}\right)-|A|+1 \\
= & \operatorname{rk}(M[(V \backslash X) \cap A, X \cap B]+\operatorname{rk}(M[X \cap A,(V \backslash X) \cap B]+1 \\
= & \operatorname{cutrk}_{G}(X)+1 .
\end{aligned}
$$

An easy corollary of Proposition 3.1 is the following.
Corollary 3.2. Let $G=(V, E)$ be a bipartite graph with a bipartition $V=$ $A \cup B$ and let $\mathcal{M}=\operatorname{Bin}(G, A, B)$. Then the branch-width of $\mathcal{M}$ is one more than the rank-width of $G$.

Proof. This is trivial because $(T, L)$ is a branch-decomposition of $\mathcal{M}$ of width $k+1$ if and only if it is a rank-decomposition of $G$ of width $k$.

Now, let us discuss the relation between minors of matroids and vertex-minors of graphs.

Proposition 3.3. Let $G=(V, E)$ be a bipartite graph with a bipartition $V=A \cup B$ and let $\mathcal{M}=\operatorname{Bin}(G, A, B)$. Then
(1) $\operatorname{Bin}(G, B, A)=\mathcal{M}^{*}$,
(2) For $u v \in E(G), \operatorname{Bin}(G \wedge u v, A \Delta\{u, v\}, B \Delta\{u, v\})=\mathcal{M}$.
(3) $\operatorname{Bin}(G \backslash v, A \backslash\{v\}, B \backslash\{v\})= \begin{cases}\mathcal{M} / v & \text { if } v \in A, \\ \mathcal{M} \backslash v & \text { if } v \in B .\end{cases}$

Proof. Let $M$ be the adjacency matrix of $G$. Then, $\mathcal{M}$ is represented by a $\operatorname{matrix}(I M[A, B])$.
(1): It is known that $\mathcal{M}^{*}$ is represented by a matrix $(M[B, A] I)$. Therefore, $\mathcal{M}^{*}=\operatorname{Bin}(G, B, A)$
(2): We may assume that $u \in A, v \in B$. Let $R=\left(r_{i j}: i \in A, j \in V\right)=$ $(I M[A, B])$ be a matrix over GF(2). (So, $r_{i j}=1$ if $j \in B$ and $i j \in E(G)$ or $i=j$, and $r_{i j}=0$ otherwise.) We know that elementary row operations on $R$ do not change the associated matroid $\mathcal{M}$.

By adding the row vector of $u$, that is $\left(r_{u j}: j \in V\right)$, to the rows of neighbors of $u$ in $A$, we obtain another matrix $R^{\prime}=\left(r_{i j}^{\prime}: i \in A, j \in V\right)$ representing the same matroid. We observe that the column vector of $u, v$ in $R^{\prime}$ is equal to the column vector of $v, u$ in $R$ respectively, and therefore $\left.R^{\prime}[A,(A \backslash\{u\}) \cup\{v\}\}\right]$ is an identity matrix. Moreover for $i \neq u$ and $j \in B \backslash\{v\}, r_{i j}^{\prime} \neq r_{i j}$ if and only if $r_{u j}=1$ and $r_{i v}=1$, or equivalently $i v, j u \in E(G)$. By Proposition 2.1, we know that for $i \in A \backslash\{u\}$ and $j \in B \backslash\{v\}$, ij belongs to exactly one of $E(G)$ and $E(G \wedge u v)$ if and only if $i v, j u \in E(G)$. (Because $G$ is bipartite, $i u, j v \notin E(G)$.$) Moreover the set of neighbors of u, v$ in $G \wedge u v$ is equal to the set of neighbors of $v, u$ in $G$ respectively. Therefore, we conclude that $\mathcal{M}=\operatorname{Bin}(G \wedge u v, A \Delta\{v, w\}, B \Delta\{v, w\})$.
(3): If $v \in B$, by deleting the column of $v$ in $(I M[A, B])$, we obtain a matrix representation of $\mathcal{M} \backslash v$ and therefore $\mathcal{M} \backslash v=\operatorname{Bin}(G \backslash v, A, B \backslash\{v\})$.

If $v \in A$, then $\mathcal{M}^{*}=\operatorname{Bin}(G, B, A)$, and therefore $\mathcal{M}^{*} \backslash v=\operatorname{Bin}(G, B, A \backslash\{v\})$ and $\mathcal{M} / v=\operatorname{Bin}(G, A \backslash\{v\}, B)$.

Corollary 3.4. Let $\mathcal{M}$ be a binary matroid and $G$ be the fundamental graph of $\mathcal{M}$ with a bipartition $V(G)=A \cup B$ such that $\mathcal{M}=\operatorname{Bin}(G, A, B)$. If $v$ has no neighbor in $G$, then

$$
\mathcal{M} \backslash v=M / v=\operatorname{Bin}(G \backslash v, A \backslash\{v\}, B \backslash\{v\}) .
$$

Otherwise let $w$ be a neighbor of $v$.
(1) $\mathcal{M} \backslash v= \begin{cases}\operatorname{Bin}(G \wedge v w \backslash v, A \Delta\{v, w\}, B \Delta\{v, w\} \backslash\{v\}) & \text { if } v \in A, \\ \operatorname{Bin}(G \backslash v, A \backslash\{v\}, B \backslash\{v\}) & \text { otherwise. }\end{cases}$
(2) $\mathcal{M} / v= \begin{cases}\operatorname{Bin}(G \wedge v w \backslash v, A \Delta\{v, w\} \backslash\{v\}, B \Delta\{v, w\}) & \text { if } v \in B, \\ \operatorname{Bin}(G \backslash v, A \backslash\{v\}, B \backslash\{v\}) & \text { otherwise. }\end{cases}$

Note that the matroid $\operatorname{Bin}(G \wedge v w \backslash v, A \Delta\{v, w\} \backslash\{v\}, B \Delta\{v, w\} \backslash\{v\})$ is
independent of the choice of $w$ by Proposition 2.5 and (2) of Proposition 3.3.

Proof. If $v$ has no neighbor in $G$, then $v$ is a loop or a coloop of $\mathcal{M}$, and therefore $M \backslash v=M / v$. By (3) of Proposition 3.3, we deduce that $\operatorname{Bin}(G \backslash$ $v, A \backslash\{v\}, B \backslash\{v\})=M \backslash v=M / v$.

Now we assume that $w$ is a neighbor of $v$. By (1) of Proposition 3.3, it is enough to show (1). If $v \in B$, then by (3) of Proposition 3.3, we obtain that $\mathcal{M} \backslash v=$ $\operatorname{Bin}(G \backslash v, A, B \backslash\{v\})$. If $v \in A$, then $\mathcal{M}=\operatorname{Bin}(G \wedge v w, A \Delta\{v, w\}, B \Delta\{v, w\})$, and therefore $\mathcal{M} \backslash v=\operatorname{Bin}(G \wedge v w, A \Delta\{v, w\}, B \Delta\{v, w\} \backslash\{v\})$.

Corollary 3.5. If $G, H$ are bipartite graphs with bipartitions $A \cup B=V(G)$ and $A^{\prime} \cup B^{\prime}=V(H)$ and $\operatorname{Bin}\left(H, A^{\prime}, B^{\prime}\right)=\operatorname{Bin}(G, A, B)$, then $H$ can be obtained by applying a sequence of pivotings to $G$, and therefore $H$ is locally equivalent to $G$.

Proof. We proceed by induction on $\left|A^{\prime} \Delta A\right|$.
Let $\mathcal{M}=\operatorname{Bin}(G, A, B)=\operatorname{Bin}\left(H, A^{\prime}, B^{\prime}\right)$. If $A^{\prime}=A$, then $G=H$ because $\mathcal{M}$ determines every fundamental circuit with respect to $A$.

Now, we may assume that $A^{\prime} \neq A$. Since $A$ and $A^{\prime}$ are bases of $\mathcal{M}$, we may pick $w \in A^{\prime} \backslash A$ and $v \in A \backslash A^{\prime}$ such that $w$ is in the fundamental circuit of $v$ with respect to $A^{\prime}$, and therefore $v w \in E(H)$. Let $H^{\prime}=H \wedge v w$. By (2) of Proposition 3.3, $\mathcal{M}=\operatorname{Bin}\left(H^{\prime}, A^{\prime} \Delta\{v, w\}, B^{\prime} \Delta\{v, w\}\right)$. By induction, $H^{\prime}$ can be obtained by applying a sequence of pivotings to $G$. Since $H=H^{\prime} \wedge v w, H$ can be obtained by applying a sequence of pivotings to $G$.

## Corollary 3.6.

(1) Let $\mathcal{N}, \mathcal{M}$ be binary matroids, and $H, G$ be fundamental graphs of $\mathcal{N}$, $\mathcal{M}$ respectively. If $\mathcal{N}$ is a minor of $\mathcal{M}$, then $H$ is a pivot-minor of $G$, and therefore $H$ is a vertex-minor of $G$.
(2) Let $G$ be a bipartite graph with a bipartition $A \cup B=V(G)$. If $H$ is a pivot-minor of $G$, then there is a bipartition $A^{\prime} \cup B^{\prime}=V(H)$ of $H$ such that $\operatorname{Bin}\left(H, A^{\prime}, B^{\prime}\right)$ is a minor of $\operatorname{Bin}(G, A, B)$.

Proof. (1) We proceed by induction on $|E(\mathcal{M}) \backslash E(\mathcal{N})|$. By Corollary 3.5, we may assume that $\mathcal{M} \neq \mathcal{N}$. By induction, it is enough to show it when $\mathcal{N}=\mathcal{M} \backslash v$ or $\mathcal{N}=\mathcal{M} / v$ for $v \in V(G)$. By Corollary 3.4, either $G \wedge v w \backslash v$ for some $w \in V(G)$ or $G \backslash v$ is a fundamental graph of $\mathcal{N}$. By Corollary 3.5, $H$ can be obtained from either $G \wedge v w \backslash v$ or $G \backslash v$ by applying a sequence of pivotings.
(2): By (2) and (3) of Proposition 3.3, we obtain a bipartition $\left(A^{\prime}, B^{\prime}\right)$ of $H$ such that $\operatorname{Bin}\left(H, A^{\prime}, B^{\prime}\right)$ is a minor of $\operatorname{Bin}(G, A, B)$.

By Proposition 3.3, theorems about branch-width of binary matroids give corollaries about rank-width of bipartite graphs. One of the recent theorems about branch-width of binary matroids is proved by Geelen, Gerards, and Whittle. Let us recall their theorem in the context of binary matroids. The $n \times n$ grid is a graph on the vertex set $\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}$ such that $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=1$.

Theorem 3.7 (Grid theorem for binary matroids [11]). For every positive integer $k$, there is an integer $l$ such that if $\mathcal{M}$ is a binary matroid with branch-width at least $l$, then $\mathcal{M}$ contains a minor isomorphic to the cycle matroid of the $k \times k$ grid.

To make corollaries about rank-width from this theorem, it is helpful to replace the $k \times k$ grid by a planar graph whose cycle matroid has a simpler fundamental graph. We define a planar graph $R_{k}=(V, E)$ (Fig. 2) as following:

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, \cdots, v_{k^{2}}\right\} \\
& E=\left\{v_{i} v_{i+1}: 1 \leq i \leq k^{2}-1\right\} \cup\left\{v_{i} v_{i+k}: 1 \leq i \leq k^{2}-k\right\} .
\end{aligned}
$$

We can obtain a minor of $R_{k}$ isomorphic to the $k \times k$ grid by deleting edges $v_{i k} v_{i k+1}$ for all $1 \leq i \leq k-1$. To show that $R_{k}$ is isomorphic to a minor of $l \times l$ grid for a big $l$, let us cite a useful lemma by Robertson, Seymour, and Thomas.

Lemma 3.8 ([13, (1.5)]). If $H$ is a planar graph with $|V(H)|+2|E(H)| \leq n$, then $H$ is isomorphic to a minor of the $2 n \times 2 n$ grid.

By this lemma, $R_{k}$ is isomorphic to a minor of the $6 k^{2} \times 6 k^{2}$ grid. Therefore, Theorem 3.7 is still true if $R_{k}$ is used instead of the $k \times k$ grid.

Now, let us construct a fundamental graph $S_{k}$ of the cycle matroid of $R_{k}$. Since edges of $R_{k}$ represent elements of the cycle matroid of $R_{k}$, they are vertices of $S_{k}$. Let $a_{i}=v_{i} v_{i+1}$ and $b_{i}=v_{i} v_{i+k}$. Let $A=\left\{a_{i}: 1 \leq i \leq k^{2}-1\right\}$ and $B=\left\{b_{i}: 1 \leq i \leq k^{2}-k\right\}$ so that $A$ is the set of edges of a spanning tree of $R_{k}$. For each $b_{j} \in B, a_{i} b_{j} \in E\left(S_{k}\right)$ if and only if $a_{i}$ is in the fundamental cycle of $b_{j}$ with respect to the spanning tree of $R_{k}$ with the edge set $A$. In summary, $S_{k}$ is a bipartite graph with $V\left(S_{k}\right)=A \cup B$ such that $a_{i} b_{j} \in E\left(S_{k}\right)$ if and only if $i \leq j<i+k$ (Fig. 2). By Corollary 3.6, we obtain the following.

Corollary 3.9. For every positive integer $k$, there is an integer $l$ such that if a bipartite graph $G$ has rank-width at least $l$, then it contains a vertex-minor isomorphic to $S_{k}$.


Fig. 2. $R_{4}$ and $S_{4}$
This corollary will be used by Courcelle and Oum [7] to prove a slight weakening of Seese's conjecture.

## 4 Inequalities on cut-rank and vertex-minors

Submodularity plays an important role in many places of combinatorics. In this section, we prove several inequalities concerning the cut-rank function. The following proposition is called the submodular inequality of the matrix rank function, and implies that the cut-rank function is submodular [6].

Proposition 4.1. Let $M$ be a matrix over a field $F$. Let $C$ be the set of column indexes of $M$, and $R$ the set of row indexes of $M$. Then for all $X_{1}, X_{2} \subseteq R$ and $Y_{1}, Y_{2} \subseteq C$, we have
$\operatorname{rk}\left(M\left[X_{1}, X_{2}\right]\right)+\operatorname{rk}\left(M\left[Y_{1}, Y_{2}\right]\right) \geq \operatorname{rk}\left(M\left[X_{1} \cup Y_{1}, X_{2} \cap Y_{2}\right]\right)+\operatorname{rk}\left(M\left[X_{1} \cap Y_{1}, X_{2} \cup Y_{2}\right]\right)$.

Proof. See [14, Proposition 2.1.9], [15, Lemma 2.3.11] or [16].
Corollary 4.2 ([6]). If $G$ is a graph and $X, Y \subseteq V(G)$, then

$$
\operatorname{cutrk}_{G}(X)+\operatorname{cutrk}_{G}(Y) \geq \operatorname{cutrk}_{G}(X \cap Y)+\operatorname{cutr}_{G}(X \cup Y)
$$

Proof. Let $M$ be the adjacency matrix of $G$ over $\mathrm{GF}(2)$. Then

$$
\operatorname{cutrk}_{G}(X)=\operatorname{rk}(M[X, V(G) \backslash X])
$$

Apply Proposition 4.1.
Proposition 4.3. Let $G=(V, E)$ be a graph and let $v \in V$ and $Y_{1} \subseteq V$. Let $M=A(G)$ be the adjacency matrix of $G$ over GF(2). Then

$$
\operatorname{cutrk}_{G * v \backslash v}\left(Y_{1}\right)=\operatorname{rk}\left(\begin{array}{cc}
1 & M\left[\{v\}, V \backslash Y_{1} \backslash\{v\}\right] \\
M\left[Y_{1},\{v\}\right] & M\left[Y_{1}, V \backslash Y_{1} \backslash\{v\}\right]
\end{array}\right)-1 .
$$

Moreover, if $w$ is a neighbor of $v$, then

$$
\operatorname{cutrk}_{G \wedge v w \backslash v}\left(Y_{1}\right)=\operatorname{rk}\left(\begin{array}{cr}
0 & M\left[\{v\}, V \backslash Y_{1} \backslash\{v\}\right] \\
M\left[Y_{1},\{v\}\right] & M\left[Y_{1}, V \backslash Y_{1} \backslash\{v\}\right]
\end{array}\right)-1 .
$$

Proof. We will use elementary row operations on matrices to prove the claim. For a graph $H$, let $A(H)$ denote the adjacency matrix of $H$. Let $N$ be the set of neighbors of $v$ in $G$. Let $J_{A}^{B}$ be a matrix $(1)_{i \in A, j \in B}$. We will write $J$ instead of $J_{A}^{B}$ if it is not confusing. Let $V=V(G)$. Let $Y_{2}=V \backslash Y_{1} \backslash\{v\}$. Let $L_{11}=M\left[Y_{1} \cap N, Y_{2} \cap N\right], L_{12}=M\left[Y_{1} \cap N, Y_{2} \backslash N\right], L_{21}=M\left[Y_{1} \backslash N, Y_{2} \cap N\right]$, and $L_{22}=M\left[Y_{1} \backslash N, Y_{2} \backslash N\right]$. Then

$$
\begin{aligned}
& \operatorname{cutrk}_{G * v \backslash v}\left(Y_{1}\right)=\operatorname{rk}\left(A(G * v)\left[Y_{1}, Y_{2}\right]\right) \\
& =\operatorname{rk}\left(\begin{array}{cc}
L_{11}+J & L_{12} \\
L_{21} & L_{22}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{rk}\left(\begin{array}{cc}
1 & M\left[\{v\}, Y_{2}\right] \\
M\left[Y_{1},\{v\}\right] & M\left[Y_{1}, Y_{2}\right]
\end{array}\right)-1 .
\end{aligned}
$$

Let $W$ be the set of neighbors of $w$. We may assume that $w \in Y_{1}$ by symmetry. Consequently $w \in Y_{1} \cap(N \backslash W)$. Let $N_{1}=N \backslash W \backslash\{w\}, N_{2}=N \cap W$, $N_{3}=W \backslash N, N_{4}=V \backslash N \backslash W \backslash\{w\}$. Let $M_{i j}=M\left[Y_{1} \cap N_{i}, Y_{2} \cap N_{j}\right]$ for all $i, j \in\{1,2,3,4\}$. Then

$$
\left.\begin{array}{rl}
\operatorname{cutrk}_{G \wedge v w \backslash v}\left(Y_{1}\right) & =\operatorname{rk}\left(A(G \wedge v w)\left[Y_{1}, Y_{2}\right]\right) \\
& =\operatorname{rk}\left(\begin{array}{cccccc}
1 & 11 \cdots & 1 & 1 & 1 \cdots & 0
\end{array}\right) 0 \cdots 0 \\
M_{11} & M_{12}+J \\
M_{21}+J & M_{22} \\
M_{31}+J & M_{32}+J \\
M_{41} & M_{42}
\end{array} M_{33}\right)
$$

$$
\begin{aligned}
& =\operatorname{rk}\left(\begin{array}{cc}
0 & M\left[\{v\}, Y_{2}\right] \\
M\left[Y_{1},\{v\}\right] & M\left[Y_{1}, Y_{2}\right]
\end{array}\right)-1 .
\end{aligned}
$$

The following lemma is analogous to [17, (5.2)].
Lemma 4.4. Let $G$ be a graph and $v \in V(G)$. Suppose that $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ are partitions of $V(G) \backslash\{v\}$. Then

$$
\operatorname{cutrk}_{G \backslash v}\left(X_{1}\right)+\operatorname{cutrk}_{G * v \backslash v}\left(Y_{1}\right) \geq \operatorname{cutrk}_{G}\left(X_{1} \cap Y_{1}\right)+\operatorname{cutrk}_{G}\left(X_{2} \cap Y_{2}\right)-1
$$

If $w$ is a neighbor of $v$, then

$$
\operatorname{cutrk}_{G \backslash v}\left(X_{1}\right)+\operatorname{cutrk}_{G \wedge v w \backslash v}\left(Y_{1}\right) \geq \operatorname{cutrk}_{G}\left(X_{1} \cap Y_{1}\right)+\operatorname{cutrk}_{G}\left(X_{2} \cap Y_{2}\right)-1 .
$$

Proof. We use Proposition 4.3 and apply Proposition 4.1. Let $M$ be the adja-
cency matrix of $G$ over $\operatorname{GF}(2)$. Then

$$
\begin{aligned}
& \operatorname{cutrk}_{G \backslash v}\left(X_{1}\right)+\operatorname{cutrk}_{G \wedge v w \backslash v}\left(Y_{1}\right) \\
& =\operatorname{rk}\left(M\left[X_{1}, X_{2}\right]+\operatorname{rk}\left(M\left[Y_{1} \cup\{v\}, Y_{2} \cup\{v\}\right]\right)-1\right. \\
& \geq \operatorname{rk}\left(M\left[X_{1} \cap Y_{1}, X_{2} \cup\{v\} \cup Y_{2}\right]+\operatorname{rk}\left(M\left[X_{1} \cup\{v\} \cup Y_{1}, Y_{2} \cap X_{2}\right]\right)-1\right. \\
& =\operatorname{cutrk}_{G}\left(X_{1} \cap Y_{1}\right)+\operatorname{cutrk}_{G}\left(X_{2} \cap Y_{2}\right)-1 .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \operatorname{cutrk}_{G \backslash v}\left(X_{1}\right)+\operatorname{cutrk}_{G * v \backslash v}\left(Y_{1}\right) \\
& =\operatorname{rk}\left(M\left[X_{1}, X_{2}\right]+\operatorname{rk}\left(\begin{array}{cr}
1 & M\left[\{v\}, Y_{2}\right] \\
M\left[Y_{1},\{v\}\right] & M\left[Y_{1}, Y_{2}\right]
\end{array}\right)-1\right. \\
& \geq \operatorname{rk}\left(M\left[X_{1} \cap Y_{1}, X_{2} \cup\{v\} \cup Y_{2}\right]\right)+\operatorname{rk}\left(M\left[X_{1} \cup\{v\} \cup Y_{1}, Y_{2} \cap X_{2}\right]\right)-1 \\
& =\operatorname{cutrk}_{G}\left(X_{1} \cap Y_{1}\right)+\operatorname{cutrk}_{G}\left(X_{2} \cap Y_{2}\right)-1 .
\end{aligned}
$$

## 5 Excluded vertex-minors

In this section, we show that for any fixed $k$, there is a finite set $\mathcal{C}_{k}$ of graphs such that for every graph $G, \operatorname{rwd}(G) \leq k$ if and only if no graph in $\mathcal{C}_{k}$ is isomorphic to a vertex-minor of $G$. Since the number of graphs with bounded number of vertices is finite up to isomorphism, it is enough to show that if a graph $G$ has rank-width larger than $k$ but every proper vertex-minor of $G$ has rank-width at most $k$, then $|V(G)|$ is bounded by a function of $k$. We prove a stronger statement that if $\operatorname{rwd}(G)>k$ and every proper pivot-minor has rank-width at most $k$, then $|V(G)|$ is bounded by a function of $k$. The analogous result for matroids is proved by Geelen, Gerards, and Whittle [18] and we extend their method to graphs.

Let us begin with some additional definitions from [18]. Let $G$ be a graph and $(A, B)$ a partition of $V(G)$. A branching of $B$ is a triple $(T, r, L)$ where $T$ is a subcubic tree with a fixed leaf node $r$ and $L$ is a bijection from $B$ to the set of leaf nodes of $T$ different from $r$. For an edge $e$ of $T$ of the branching $(T, r, L)$, let $T_{e}$ be the set of vertices in $B$ mapped by $L$ to nodes in the component of $T \backslash e$ not containing $r$. We say $B$ is $k$-branched if there is a branching $(T, r, L)$ of $B$ such that for each edge $e$ of $T, \operatorname{cutrk}_{G}\left(T_{e}\right) \leq k$. Note that if both $A$ and $B$ are $k$-branched, then the rank-width of $G$ is at most $k$.

The following lemma is proved by Geelen et al. [18, Lemma 2.1] in terms of matroids. But their proof relies on the fact that $\lambda_{\mathcal{M}}$ is integer-valued submodular, and since cut-rank also has these properties, we can use basically the same argument.

Lemma 5.1. Let $G$ be a graph of rank-width $k$. Let $(A, B)$ be a partition of $V(G)$ such that $\operatorname{cutrk}_{G}(A) \leq k$. If there is no partition $\left(A_{1}, A_{2}, A_{3}\right)$ of $A$ such that $\operatorname{cutrk}\left(A_{i}\right)<\operatorname{cutrk}(A)$ for all $i \in\{1,2,3\}$, then $B$ is $k$-branched.

Proof. (Obvious modification of the proof of [18, Lemma 2.1])
Claim 5.1.1. If $\left(X_{1}, X_{2}\right)$ is a partition of $V(G)$ with $\operatorname{cutrk}_{G}\left(X_{1}\right) \leq k$, then either $\operatorname{cutrk}_{G}\left(B \cap X_{1}\right) \leq k$ or $\operatorname{cutrk}_{G}\left(B \cap X_{2}\right) \leq k$.

Proof of Claim 5.1.1. From the partition $\left(A \cap X_{1}, A \cap X_{2}, \emptyset\right)$ of $A$, either $\operatorname{cutrk}_{G}\left(A \cap X_{1}\right) \geq \operatorname{cutrk}_{G}(A)$ or $\operatorname{cutrk}_{G}\left(A \cap X_{2}\right) \geq \operatorname{cutrk}_{G}(A)$. We may assume that $\operatorname{cutrk}_{G}\left(A \cap X_{1}\right) \geq \operatorname{cutrk}_{G}(A)$. By submodularity, $\operatorname{cutrk}_{G}(A \cup$ $\left.X_{1}\right) \leq \operatorname{cutrk}_{G}(A)+\operatorname{cutrk}_{G}\left(X_{1}\right)-\operatorname{cutrk}_{G}\left(A \cap X_{1}\right) \leq k$. So, $\operatorname{cutrk}_{G}\left(B \cap X_{2}\right)=$ $\operatorname{cutrk}_{G}\left(A \cup X_{1}\right) \leq k$.

Let $(T, L)$ be a rank-decomposition of $G$ of width $k$. We may assume that $T$ has degree-3 nodes, as otherwise it is trivial. We may also assume that $k>0$. If $v$ is a vertex of $T$ and $e$ is an edge of $T$, we let $X_{e v}=L^{-1}\left(\mathcal{X}_{e v}\right)$ where $\mathcal{X}_{e v}$ is the set of leaves of $T$ in the component of $T \backslash e$ not containing $v$.

Claim 5.1.2. There exists a degree-3 vertex $s$ of $T$ such that, for each edge $e$ of $T, \operatorname{cutrk}_{G}\left(X_{e s} \cap B\right) \leq k$.

Proof of Claim 5.1.2. We construct an orientation of $T$. Let $e$ be an edge of $T$, and let $u$ and $v$ be the ends of $e$. If $\operatorname{cutrk}_{G}\left(X_{e v} \cap B\right) \leq k$, then we orient $e$ from $u$ to $v$. By Claim 5.1.1, each edge receives at least one orientation.

First, assume that there exists a node $v$ of $T$ such that every other node can be connected to $v$ by a directed path on $T$. Since $k \geq 1$, each edge incident with a leaf has been oriented away from that leaf. Hence we may assume that $v$ has degree 3. Then the claim follows with $s=v$.

Next, we assume that there is no vertex reachable from every other vertex. Then there exists a pair of edges $e$ and $f$ and a vertex $w$ on the path connecting $e$ and $f$ such that neither $e$ nor $f$ is oriented toward $w$. Let $Y_{1}=X_{e w}, Y_{3}=$ $X_{f w}$, and $Y_{2}=V(G) \backslash\left(Y_{1} \cup Y_{2}\right)$. Since $e$ and $f$ are oriented away from $w$, $\operatorname{cutrk}_{G}\left(\left(Y_{2} \cup Y_{3}\right) \cap B\right) \leq k$ and $\operatorname{cutrk}_{G}\left(\left(Y_{1} \cup Y_{2}\right) \cap B\right) \leq k$. By submodularity,

$$
\begin{aligned}
\operatorname{cutrk}_{G}\left(Y_{1} \cap B\right)+ & \operatorname{cutrk}_{G}\left(Y_{3} \cap B\right) \\
& \leq \operatorname{cutrk}_{G}\left(\left(Y_{2} \cup Y_{3}\right) \cap B\right)+\operatorname{cutrk}_{G}\left(\left(Y_{1} \cup Y_{2}\right) \cap B\right) \leq 2 k .
\end{aligned}
$$

This contradicts the fact that neither $e$ nor $f$ is oriented toward $w$.

Let $s$ be a vertex satisfying Claim 5.1.2, let $e_{1}, e_{2}$, and $e_{3}$ be the edges of $T$ incident with $s$, and let $X_{i}$ denote $X_{e_{i} s}$ for each $i \in\{1,2,3\}$. Note that $\operatorname{cutrk}_{G}\left(X_{i} \cap A\right) \geq \operatorname{cutrk}_{G}(A)$ for some $i \in\{1,2,3\}$; suppose that $\operatorname{cutrk}_{G}\left(X_{1} \cap\right.$ $A) \geq \operatorname{cutrk}_{G}(A)$. Then by submodularity,

$$
\begin{aligned}
\operatorname{cutr}_{G}\left(\left(X_{2} \cup X_{3}\right) \cap B\right) & =\operatorname{cutrk}_{G}\left(X_{1} \cup A\right) \\
& \leq \operatorname{cutrk}_{G}\left(X_{1}\right)+\operatorname{cutr}_{G}(A)-\operatorname{cutrk}_{G}\left(X_{1} \cap A\right) \\
& \leq \operatorname{cutrk}_{G}\left(X_{1}\right) \leq k
\end{aligned}
$$

Now we construct a branching $\left(T^{\prime}, r, L^{\prime}\right)$ of $B$; let $T$ be a tree obtained from the minimum subtree of $T$ containing both $e_{1}$ and nodes in $L(B)$ by subdividing $e_{1}$ with a vertex $b$, adding a new leaf $r$ adjacent to $b$, and contracting one of incident edges of each degree-2 vertex until no degree-2 vertices are left. For each $x \in B$, we define $L^{\prime}(x)$ to be a leaf of $T^{\prime}$ induced by $L(x)$. Then $\left(T^{\prime}, r, L^{\prime}\right)$ is a branching.

It is easy to see that $\operatorname{cutrk}_{G}\left(T_{e}^{\prime}\right) \leq k$ for all $e$ in $T^{\prime}$ by Claim 5.1.2. So, $B$ is $k$-branched.

We continue to follow [18]. Let $\mathbb{Z}^{+}$be the set of nonnegative integers. Let $g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a function. A graph $G$ is called $(m, g)$-connected if for every partition $(A, B)$ of $V(G), \operatorname{cutrk}_{G}(A)=l<m$ implies either $|A| \leq g(l)$ or $|B| \leq g(l)$.

Lemma 5.2. Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be a nondecreasing function. Let $G$ be a $(m, f)$-connected graph and let $v \in V(G)$ and $v w \in E(G)$. Then either $G \backslash v$ or $G \wedge v w \backslash v$ is $(m, 2 f)$-connected.

Proof. The proof for matroids in [18, Lemma 3.1] works for general graphs. For the completeness of this paper, the proof is included here.

Suppose not. There are partitions $\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)$ of $V(G) \backslash\{v\}$ such that

$$
\begin{array}{rll}
a=\operatorname{cutrk}_{G \backslash v}\left(X_{1}\right)<m, & \left|X_{1}\right|>2 f(a), & \left|X_{2}\right|>2 f(a), \\
b=\operatorname{cutrk}_{G \wedge v w \backslash v}\left(Y_{1}\right)<m, & \left|Y_{1}\right|>2 f(b), & \left|Y_{2}\right|>2 f(b) .
\end{array}
$$

We may assume that $a \geq b$ by replacing $G$ by $G \wedge v w$. We may assume that $\left|X_{1} \cap Y_{1}\right|>f(a)$ by swapping $Y_{1}$ and $Y_{2}$.

By Lemma 4.4, we obtain

$$
\operatorname{cutrk}_{G}\left(X_{1} \cap Y_{1}\right)+\operatorname{cutrk}_{G}\left(X_{2} \cap Y_{2}\right) \leq a+b+1
$$

Thus, either $\operatorname{cutrk}_{G}\left(X_{1} \cap Y_{1}\right) \leq a$ or $\operatorname{cutrk}_{G}\left(X_{2} \cap Y_{2}\right) \leq b$. So, either $\left|X_{1} \cap Y_{1}\right| \leq$ $f(a)$ or $\left|X_{2} \cap Y_{2}\right| \leq f(b)$. By assumption, $\left|X_{2} \cap Y_{2}\right| \leq f(b)$.

Similarly we apply the same inequality after swapping $X_{1}$ and $X_{2}$. Either $\left|X_{2} \cap Y_{1}\right| \leq f(a)$ or $\left|X_{1} \cap Y_{2}\right| \leq f(b)$. Since $\left|X_{1} \cap Y_{2}\right|=\left|Y_{2}\right|-\left|Y_{2} \cap X_{2}\right|>f(b)$, $\left|X_{2} \cap Y_{1}\right| \leq f(a)$.

Then $\left|X_{2}\right|=\left|X_{2} \cap Y_{1}\right|+\left|X_{2} \cap Y_{2}\right| \leq f(a)+f(b) \leq 2 f(a)$. This is a contradiction.

Let $g(n)=\left(6^{n}-1\right) / 5$. Note that $g(0)=0, g(1)=1$, and $g(n)=6 g(n-1)+1$ for all $n \geq 1$.

Lemma 5.3. Let $k \geq 1$. If $G$ has rank-width larger than $k$ but every proper pivot-minor of $G$ has rank-width at most $k$, then $G$ is $(k+1, g)$-connected.

Proof. We continue to follow the proof of [18, Lemma 4.1] with a slight modification.

It is easy to see that $G$ is $(1, g)$-connected, because if $G$ is disconnected, then the rank-width of $G$ is the maximum of the rank-width of each component.

Suppose that $m \leq k$ and $G$ is $(m, g)$-connected and $G$ is not $(m+1, g)$ connected. Then there exists a partition $(A, B)$ with $\operatorname{cutrk}_{G}(A)=m$ such that $|A|,|B|>g(m)=6 g(m-1)+1$. Since $G$ has rank-width greater than $k$, either $A$ or $B$ is not $k$-branched. We may assume that $B$ is not $k$-branched. Let $v \in A$. Since $G$ is connected, there is a neighbor $w$ of $v$ in $G$.

By Lemma 5.2, either $G \backslash v$ or $G \wedge v w \backslash v$ is ( $m, 2 g$ )-connected. Since both $G \backslash v$ and $G \wedge v w \backslash v$ are proper pivot-minors of $G$, they have rank-width at most $k$.

We may assume that $G \backslash v$ is ( $m, 2 g$ )-connected by swapping $G$ and $G \wedge v w$. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a partition of $A \backslash\{v\}$. Since $|A|>6 g(m-1)+1,\left|A_{i}\right|>2 g(m-1)$ for some $i \in\{1,2,3\}$. Since $G \backslash v$ is $(m, 2 g)$-connected and $|B|>2 g(m-1)$,

$$
\operatorname{cutrk}_{G \backslash v}\left(A_{i}\right) \geq m \geq \operatorname{cutrk}_{G \backslash v}(A \backslash\{v\}) .
$$

Therefore by Lemma 5.1, $B$ is $k$-branched in $G \backslash v$. Since $B$ is not $k$-branched in $G$, there exists $X \subseteq B$ such that

$$
\operatorname{cutrk}_{G}(X)=\operatorname{cutrk}_{G \backslash v}(X)+1
$$

Let $M$ be the adjacency matrix of $G$. By submodular inequality (Proposition
4.1), we obtain

$$
\begin{aligned}
\operatorname{cutrk}_{G \backslash v}(B)+\operatorname{cutrk}_{G}(X) & =\operatorname{rk}(M[B, V(G) \backslash B \backslash\{v\}])+\operatorname{rk}(M[X, V(G) \backslash X]) \\
& \geq \operatorname{rk}(M[B, V(G) \backslash B])+\operatorname{rk}(M[X, V(G) \backslash X \backslash\{v\}]) \\
& =\operatorname{cutr}_{G}(B)+\operatorname{cutrk}_{G \backslash v}(X) \\
& =\operatorname{cutr}_{G}(B)+\operatorname{cutrk}_{G}(X)-1,
\end{aligned}
$$

and therefore $\operatorname{cutrk}_{G \backslash v}(B)=\operatorname{cutrk}_{G}(B)-1=m-1$. But this is a contradiction because $G \backslash v$ is $(m, 2 g)$-connected.

Theorem 5.4. Let $k \geq 1$. If $G$ has rank-width larger than $k$ but every proper pivot-minor of $G$ has rank-width at most $k$, then $|V(G)| \leq\left(6^{k+1}-1\right) / 5$.

Proof. Let $v \in V(G)$. Since $G$ is connected, pick $w$ such that $v w \in E(G)$. We may replace $G$ by $G \wedge v w$, and hence we may assume that $G \backslash v$ is $(k+1,2 g)$ connected. Since $G \backslash v$ has rank-width $k$, there exists a partition $\left(X_{1}, X_{2}\right)$ of $V(G) \backslash\{v\}$ such that $\left|X_{1}\right|,\left|X_{2}\right| \geq \frac{1}{3}(|V(G)|-1)$ and $\operatorname{cutrk}_{G \backslash v}\left(X_{1}\right) \leq k$. By $(k+1,2 g)$-connectivity, either $\left|X_{1}\right| \leq 2 g(k)$ or $\left|X_{2}\right| \leq 2 g(k)$. Therefore, $|V(G)|-1 \leq 6 g(k)$ and consequently $|V(G)| \leq 6 g(k)+1=g(k+1)$.

One of the main corollary of the above theorem is the following corollary. This corollary is used by Courcelle and Oum [7] to show a polynomial-time algorithm to recognize graphs of rank-width at most $k$.

Corollary 5.5. For each $k \geq 0$, there is a finite list $\mathcal{C}_{k}$ of graphs having at most $c_{k}$ vertices where

$$
c_{k}= \begin{cases}\left(6^{k+1}-1\right) / 5 & \text { if } k>0 \\ 2 & \text { if } k=0\end{cases}
$$

such that a graph has rank-width at most $k$ if and only if no graph in $\mathcal{C}_{k}$ is isomorphic to a vertex-minor of $G$.

Proof. If $k=0$, then we let $K_{2}$ be a graph with two vertices and one edge joining them and let $\mathcal{C}_{0}=\left\{K_{2}\right\}$. Since a graph $G$ has rank-width 0 if and only if $G$ has no edge, the rank-width of $G$ is 0 if and only if $K_{2}$ is not isomorphic to a vertex-minor of $G$. Now we may assume that $k \geq 1$.

Let $\mathcal{C}_{k}$ be the set of graphs $H$ with $V(H)=\{1,2, \ldots, n\}$ for some integer $n$ such that $\operatorname{rwd}(H)>k$ and every proper vertex-minor has rank-width at most $k$. By Theorem 5.4, $\mathcal{C}_{k}$ is finite and each graph in $\mathcal{C}_{k}$ has at most $\left(6^{k+1}-1\right) / 5$ vertices.

Suppose the rank-width of a graph $G$ is at most $k$. Since every graph in $\mathcal{C}_{k}$ has rank-width larger than $k$, no graph in $\mathcal{C}_{k}$ is isomorphic to a vertex-minor
of $G$.
Conversely, suppose that the rank-width of a graph $G$ is larger than $k$. Let $H$ be a proper vertex-minor of $G$ with the minimum number of vertices such that $\operatorname{rwd}(H)>k$. Then there exists a graph $H^{\prime} \in \mathcal{C}_{k}$ isomorphic to $H$.

By Corollary 3.6, Theorem 5.4 implies the following corollary, which is a special case of [18, Theorem 1.1].

Corollary 5.6. Let $k \geq 2$. If a binary matroid $\mathcal{M}$ has branch-width larger than $k$ but every proper minor of $\mathcal{M}$ has branch-width at most $k$, then $|E(\mathcal{M})| \leq\left(6^{k}-1\right) / 5$.

## 6 Tutte's linking theorem

In this section, we show a theorem analogous to Tutte's linking theorem [19]. In the following theorem, we show that the minimum cut-rank of cuts separating two disjoint sets $X, Y$ of vertices of a graph $G$ is equal to the maximum cutrank of $X$ in all vertex-minors of $G$ having $X \cup Y$ as the set of vertices. In particular, this theorem implies that it is in NP $\cap$ coNP to answer whether $\min _{X \subseteq Z \subseteq V(G) \backslash Y} \operatorname{cutrk}_{G}(Z) \geq k$ when a graph $G$ and subsets $X, Y$ of $V(G)$ and $k$ are given as the input. In [20], the author obtains a direct combinatorial algorithm to solve this problem in polynomial time, which is essentially based on this theorem. We note that there are algorithms that can minimize any submodular function in polynomial time [21].

Theorem 6.1. Let $G$ be a graph and $X, Y$ be disjoint subsets of $V(G)$. The following are equivalent.
(1) $\min _{X \subseteq Z \subseteq V(G) \backslash Y} \operatorname{cutrk}_{G}(Z) \geq k$.
(2) There exists a vertex-minor $G^{\prime}$ of $G$ such that

$$
V\left(G^{\prime}\right)=X \cup Y \text { and } \operatorname{cutrk}_{G^{\prime}}(X) \geq k
$$

(3) There exists a pivot-minor $G^{\prime}$ of $G$ such that

$$
V\left(G^{\prime}\right)=X \cup Y \text { and } \operatorname{cutrk}_{G^{\prime}}(X) \geq k
$$

Proof. (2) $\Rightarrow(1)$ : We may assume that $G^{\prime}$ is an induced subgraph of $G$ by applying local complementations to $G$. For all $Z$ satisfying $X \subseteq Z \subseteq V(G) \backslash Y$, we have $k \leq \operatorname{cutrk}_{G^{\prime}}(X)=\operatorname{cutrk}_{G}^{*}(X, Y) \leq \operatorname{cutrk}_{G}^{*}(Z, V(G) \backslash Z)=\operatorname{cutrk}_{G}(Z)$.
$(3) \Rightarrow(2)$ : Trivial.
$(1) \Rightarrow(3)$ : We proceed by induction on $|V(G) \backslash(X \cup Y)|$. Suppose there is no such graph $G^{\prime}$. If $X \cup Y=V(G)$, then it is trivial. Let $x \in V(G) \backslash(X \cup Y)$. If $x$ has no neighbor, then for all $Z \subseteq V(G) \backslash\{x\}$,

$$
\operatorname{cutrk}_{G \backslash x}(Z)=\operatorname{cutrk}_{G}(Z)
$$

Therefore, $\min _{X \subseteq Z \subseteq V(G) \backslash Y} \operatorname{cutrk}_{G}(Z)=\min _{X \subseteq Z \subseteq V(G) \backslash\{x\} \backslash Y} \operatorname{cutrk}_{G \backslash x}(Z)$.
So, we may assume that $x$ has a neighbor $y$. By induction, there exists $A \subseteq$ $V(G) \backslash\{x\}$ such that

$$
\operatorname{cutrk}_{G \backslash x}(A) \leq k-1
$$

Also, there exists $B \subseteq V(G) \backslash\{x\}$ such that

$$
\operatorname{cutrk}_{G \wedge x y \backslash x}(B) \leq k-1
$$

By Lemma 4.4, either $\operatorname{cutrk}_{G}(A \cap B) \leq k-1$ or $\operatorname{cutrk}_{G}(A \cup B) \leq k-1$. Consequently, $\min _{X \subseteq Z \subseteq V(G) \backslash Y} \operatorname{cutrk}_{G}(Z) \leq k-1$.

We can deduce Tutte's linking theorem for binary matroids from the above theorem. Here is the statement of Tutte's linking theorem for binary matroids.

Corollary 6.2. Let $\mathcal{M}=(E, \mathcal{I})$ be a binary matroid and let $X, Y$ be disjoint subsets of $E$. Then

$$
\min _{X \subseteq Z \subseteq E \backslash Y} \lambda_{\mathcal{M}}(Z) \geq k
$$

if and only if there is a minor $\mathcal{M}^{\prime}$ of $\mathcal{M}$ such that $E\left(\mathcal{M}^{\prime}\right)=X \cup Y$ and $\lambda_{\mathcal{M}^{\prime}}(X) \geq k$.

Proof. Let $G$ be a bipartite graph with a bipartition $A \cup B=V(G)$ such that $\operatorname{Bin}(G, A, B)=\mathcal{M}$. There exists a minor $\mathcal{M}^{\prime}$ of $\mathcal{M}$ such that $E\left(\mathcal{M}^{\prime}\right)=X \cup Y$ and $\lambda_{\mathcal{M}^{\prime}}(X) \geq k$ if and only if there exists a pivot-minor $H$ of $G$ such that $V(H)=X \cup Y$ and $\operatorname{cutrk}_{H}(X) \geq k-1$ by Corollary 3.6. The remaining proof is routine by Proposition 3.1 and Proposition 6.1.

## 7 Distance-hereditary graphs

We call a graph $G$ distance-hereditary if and only if for every connected induced subgraph $H$ of $G$, the distance between every pair of vertices in $H$ is the same as in $G$. In this section, we show that a graph is distance-hereditary if and only if it has rank-width at most 1 .

Two distinct vertices $v, w$ are called twins of $G$ if for every $x \in V(G) \backslash\{v, w\}$, $v$ is adjacent to $x$ if and only if $w$ is adjacent to $x$. We call $v$ a pendant vertex of $G$ if it has only one incident edge in $G$.

Proposition 7.1. Let $G$ be a graph. If $v, w \in V(G)$ are twins of $G$ and $G \backslash v$ has at least one edge different from $v w$, then

$$
\operatorname{rwd}(G \backslash v)=\operatorname{rwd}(G)
$$

Note that we do not require that $v w \in E(G)$.

Proof. It is enough to show that $\operatorname{rwd}(G \backslash v) \geq \operatorname{rwd}(G)$. Let $(T, L)$ be a rankdecomposition of $G \backslash v$ of width $\operatorname{rwd}(G \backslash v)$. Let $x=L(w)$ and let $y \in V(T)$ be such that $x y \in E(T)$.

Let $T^{\prime}$ be a tree obtained from $T$ by deleting $x y$, adding two new vertices $x^{\prime}$, $z$, and adding three new edges $y z, z x^{\prime}, z x$. Let $L^{\prime}\left(x^{\prime}\right)=v$ and $L^{\prime}(u)=L(u)$ for all $u \neq x^{\prime}$.

So, $\left(T^{\prime}, L^{\prime}\right)$ is a rank-decomposition of $G$. For every edge $e$ except $z x^{\prime}$ and $z x$ in $T^{\prime}$, the width of $e$ in $\left(T^{\prime}, L^{\prime}\right)$ is equal to the width of $e$ in $(T, L)$, because $v$ and $w$ are twins. Both the width of $z x$ and the width of $z x^{\prime}$ are at most 1 . Since $G$ has at least one edge $e \neq v w$ and $v, w$ are twins, $G \backslash v$ has at least one edge and $\operatorname{rwd}(G \backslash v) \geq 1$, and therefore the width of $\left(T^{\prime}, L^{\prime}\right)$ is $r w d(G \backslash v)$. Therefore, $\operatorname{rwd}(G \backslash v) \geq \operatorname{rwd}(G)$.

Proposition 7.2. If $G$ has rank-width at most 1 and $|V(G)| \geq 2$, then $G$ has a pair of vertices $v$ and $w$ such that either they are twins or $w$ has no neighbor different from $v$.

Proof. If $|V(G)|=2$, then the claim is trivial, and so we may assume that $|V(G)| \geq 3$.

Let $(T, L)$ be a rank-decomposition of $G$ of width at most 1 . Since the number of leaf nodes is at least 3 , there exists a node $x$ of $T$ that is adjacent to two leaf nodes $L(v), L(w)$ of $T$. Let $y$ be the node of $T$ adjacent to $x$ different from $L(v)$ and $L(w)$. The partition of $V(G)$ induced by $x y$ is $(\{v, w\}, V(G) \backslash\{v, w\})$. So, the width of $x y$ is $\operatorname{cutrk}_{G}(\{v, w\}) \leq 1$. That means either $v, w$ are twins or $v$ has no neighbor different from $w$ or $w$ has no neighbor different from $v$.

Proposition 7.3. $G$ is distance-hereditary if and only if the rank-width of $G$ is at most 1.

Proof. Bandelt and Mulder [22] showed that every distance-hereditary graph can be obtained by creating twins, adding an isolated vertex, or adding a pendant vertex to a distance-hereditary graph or is a graph with one vertex. So, the rank-width of every distance-hereditary graphs is at most 1 by Proposition 7.1. Conversely, if a graph has rank-width at most 1, then by Proposition 7.2, it is a distance-hereditary graph.

Golumbic and Rotics [23] proved that distance-hereditary graphs have cliquewidth at most 3, and this can be proved as a corollary of Proposition 7.3.

Corollary 7.4. Distance-hereditary graphs have clique-width at most 3.

Proof. Use the inequality that the clique-width of a graph $G$ is at most $2^{\mathrm{rwd}(G)+1}-1[6]$.

By Corollary 5.5, there is a finite list $\mathcal{C}_{1}$ of graphs having at most seven vertices such that a graph $G$ is distance-hereditary graphs if and only if no graph in $\mathcal{C}_{1}$ is isomorphic to a vertex-minor of $G$. We may ask what $\mathcal{C}_{1}$ is. In fact, it is proved by Bouchet that a graph $G$ is distance-hereditary if and only if it has no vertex-minor isomorphic to the 5 -cycle $[24,25]$.

## 8 Conclusion

We introduce vertex-minors of graphs by generalizing minors of binary matroids. Surprisingly, the branch-width of binary matroids is one more than the rank-width of their fundamental graph. Thus, all theorems on branch-width of binary matroids implies theorems on rank-width of bipartite graphs, and in many cases we are able to prove that the same theorems hold for general graphs. Section 5 and 6 are such examples. In [26], the author shows that graphs of bounded rank-width are well-quasi-ordered by the vertex-minor relation; this generalizes the theorem by Geelen et al. [17] stating that binary matroids of bounded branch-width are well-quasi-ordered by the matroid minor relation. However, it is still open whether Corollary 3.9 is true for general graphs.

In [7], Courcelle and Oum show that vertex-minor relation can be written in a certain kind of logic formulas, called modulo-2 counting monadic secondorder logic formulas, and therefore for fixed graph $H$, it is possible to decide whether an input graph contains $H$ in polynomial time if an input graph has rank-width at most $k$ for fixed $k$. This theorem is combined with Corollary 3.9 to show the existence of polynomial-time algorithms to decide whether an input graph has rank-width at most $k$ for fixed $k$. Moreover they use Corollary 3.9 to prove a slight weakening of Seese's conjecture.

Acknowledgment. The author would like to thank P. Seymour for our valuable discussions, A. Brandstädt for pointing out distance-hereditary graphs, and anonymous referee for numerous helpful comments and new references.

## References

[1] B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl. Math. 101 (1-3) (2000) 77-114.
[2] N. Robertson, P. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1) (1986) 92-114.
[3] N. Robertson, P. Seymour, Graph minors. IV. Tree-width and well-quasiordering, J. Combin. Theory Ser. B 48 (2) (1990) 227-254.
[4] N. Robertson, P. Seymour, Graph minors. X. Obstructions to treedecomposition, J. Combin. Theory Ser. B 52 (2) (1991) 153-190.
[5] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, U. Rotics, Polynomial time recognition of clique-width $\leq 3$ graphs (extended abstract), in: Gonnet, Gastón H. (ed.) et al., LATIN 2000: Theoretical informatics. 4th Latin American symposium, Punta del Este, Uruguay, April 10-14, 2000., Vol. 1776 of Lecture Notes in Comput. Sci., Springer, Berlin, 2000, pp. 126-134.
[6] S. Oum, P. Seymour, Approximating clique-width and branch-width, submitted (2004).
[7] B. Courcelle, S. Oum, Vertex-minors, monadic second-order logic, and a conjecture by Sesse, submitted (2004).
[8] A. Bouchet, Circle graph obstructions, J. Combin. Theory Ser. B 60 (1) (1994) 107-144.
[9] R. Arratia, B. Bollabás, G. B. Sorkin, The interlace polynomial of a graph, J. Combin. Theory Ser. B 92 (2) (2004) 199-233.
[10] F. Genest, Word and set complementation of graphs, invertible graphs, submitted (2005).
[11] J. F. Geelen, A. M. H. Gerards, G. Whittle, Excluding a planar graph from $\mathrm{GF}(q)$-representable matroids, manuscript (2003).
URL http://homepages.cwi.nl/~bgerards/personal/papers/grid.ps
[12] J. G. Oxley, Matroid theory, Oxford University Press, New York, 1992.
[13] N. Robertson, P. Seymour, R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (2) (1994) 323-348.
[14] K. Murota, Matrices and matroids for systems analysis, Vol. 20 of Algorithms and Combinatorics, Springer-Verlag, Berlin, 2000.
[15] K. Truemper, Matroid decomposition, Academic Press Inc., Boston, MA, 1992. URL http://www.utdallas.edu/~ kl aus/mbook.html
[16] K. Truemper, A decomposition theory for matroids. I. General results, J. Combin. Theory Ser. B 39 (1) (1985) 43-76.
[17] J. F. Geelen, A. M. H. Gerards, G. Whittle, Branch-width and well-quasiordering in matroids and graphs, J. Combin. Theory Ser. B 84 (2) (2002) 270290.
[18] J. F. Geelen, A. M. H. Gerards, N. Robertson, G. Whittle, On the excluded minors for the matroids of branch-width $k$, J. Combin. Theory Ser. B 88 (2) (2003) 261-265.
[19] W. T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 49-53.
[20] S. Oum, Approximating rank-width and clique-width quickly, submitted (2005).
[21] S. Iwata, L. Fleischer, S. Fujishige, A combinatorial strongly polynomial algorithm for minimizing submodular functions, Journal of the ACM (JACM) 48 (4) (2001) 761-777.
[22] H.-J. Bandelt, H. M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (2) (1986) 182-208.
[23] M. C. Golumbic, U. Rotics, On the clique-width of some perfect graph classes, Internat. J. Found. Comput. Sci. 11 (3) (2000) 423-443, selected papers from the Workshop on Theoretical Aspects of Computer Science (WG 99), Part 1 (Ascona). URL http://search.epnet.com/direct.asp?an=6618892\&db=aph
[24] A. Bouchet, Isotropic systems, European J. Combin. 8 (3) (1987) 231-244.
[25] A. Bouchet, Transforming trees by successive local complementations, J. Graph Theory 12 (2) (1988) 195-207.
[26] S. Oum, Rank-width and well-quasi-ordering, manuscript (2004).

