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1. Introduction

Consider a stable subordinator {S(t)} with characteristic exponent 0 < α < 1 and
jumps, with increments X(t) = S(t) − S(t−), occurring at random times. The �rst
passage time when S(t) crosses the value 1 is denoted by T . We are interested in the
distributions of the ranked increments until time T , including the truncated increment
at time T . Denote these ranked increments by L1 > L2 > . . . ≥ 0. The corresponding
variables for the tied down situation, conditioning on the event S(T ) ∈ (1, 1 + ε), are
denoted L∗1 > L∗2 > . . . ≥ 0. To obtain such results, we study a related situation and
show that the results concerning the related situation are equal in distribution to the
original situation. Let S = S(1), and let {Xi}∞i=1 be nonnegative iid random variables
belonging to the domain of attraction of the stable random variable S. De�ne the sum
Sn =

∑n
i=1 Xi where the random variable Xi is referred to as the ith contribution to

the sum. Since S is stable we have Sn

an

d→ S, n →∞, where an = n1/α. No centering is
required for 0 < α < 1. Denote the ranked contributions X(1) > X(2) > . . . > X(n) ≥ 0.
The corresponding asymptotic random variables are denoted {Vi : X(i)

an

d→ Vi, i =

1, 2, . . .}. The Laplace transforms of S/Vi are equivalent to the Laplace transforms of
1/Li. Corresponding results for the tied down situation are also presented.

The main contribution of this paper is as follows: (1) previous results are collected
for easy reference; (2) a straightforward derivation of the Laplace transforms using a
Poisson characterization is provided; (3) formulae for the densities are given also in
the special case of ranked excursion lengths of free Brownian motion; (4) the results
are illustrated graphically using accurate approximations for 0 ≤ x ≤ 1/2 and explicit
formulae for 1/2 ≤ x ≤ 1.

There are many papers considering the Laplace transforms mentioned above. The
earliest results, due to Darling, go back as far as the 50's. Darling's results have
been generalized and extended by Wendel, Rosén, Pitman, Yor, Csáki, Hu, Lindell,
Holst and others. Our ambition is to give an easy reference to the most important
results, and also to provide an easily accessible proof of the main results. For the
special case of Brownian motion and the Brownian bridge, there are either accurate
approximation formulae or explicit formulae available for the densities, and thus we
obtain a good description for all values. This is illustrated graphically. It is pointed out
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that, in principle, it is not more di�cult to obtain similar results regarding densities
for arbitrary 0 < α < 1. Our technique to derive the Laplace transforms is a
straightforward calculation based on a result for stable random variables stating that
the number of contributions of a certain length falling into a speci�ed interval (x, x+dx)

is Poisson distributed with intensity speci�ed by the Lévy measure l(x)dx = cαdx
xα+1 . In

principle, it is the same technique as used by Pitman and Yor [14], but our calculations
are more explicit. The technique used to calculate the densities is to invert the Laplace
transforms by calculus of residues. The densities are given in terms of in�nite sums
involving a certain Kummer function. Using mathematical software, such as Maple, it
is possible to �nd the 0s and to plot the densities.

Section 2 recapitulates general theory about stable distributions, Lévy processes and
Brownian motion that is required in the following sections. Section 3 provides a survey
of previous results. In Section 4 we derive the Laplace transforms and in Section 5
we describe how the results can be applied to ranked excursion lengths of Brownian
motion. These results are also illustrated graphically. Concluding remarks are given
in Section 6. Appendix A provides a detailed description of the Kummer function.

2. Preliminaries

2.1. Stable distributions

The de�nitions below follow the de�nitions in Feller [8]. Let {Xi}n
i=1 be iid variables

with the common distribution G and let Sn =
∑n

i=1 Xi.

De�nition 1. The distribution G is stable in the broad sense if there exist constants
cn > 0, γn such that

Sn
d= cnX + γn (1)

and G is not concentrated at one point. G is stable in the strict sense if (1) holds with
γn = 0. In the sequel we always assume that a stable distribution is stable in the strict
sense.

The norming constants are of the form cn = n1/α with 0 < α ≤ 2, see e.g. Feller [8].
The constant α is referred to as the characteristic exponent of G.
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De�nition 2. The distribution F of the independent random variables Xi belongs to
the domain of attraction of a distribution G if there exist norming constants an > 0,
bn such that the distribution of a−1

n (Sn − bn) tends to G.

The statement in De�nition 2 can be reformulated to the e�ect that a distribution G

possesses a domain of attraction i� it is stable.
Laplace transform of a stable distribution: The Laplace transform is a convenient
tool when analyzing stable distributions. See e.g. Bondesson and Holst [2] for results
on the weak convergence of iid sums to stable variables, using Laplace transforms. For
a nonnegative random variable with a stable distribution, the Laplace transform is
given by

γα(λ) = exp (−cλα) , (2)

see e.g. Bondesson and Holst [2]. The parameter α is the characteristic exponent. For
a stable variable S, we also have the Laplace transform

E
(
e−λS

)
= exp

(
−

∫ ∞

0

(
1− e−λx

)
l(x)dx

)
, (3)

where l(x) = cα
xα+1 , x > 0, 0 < α < 1. See e.g. Resnick [15].

2.2. Lévy processes

The de�nitions below are from e.g. Kyprianou [10].

De�nition 3. A process {Y (t)}, de�ned for t ≥ 0, is said to be a Lévy process if it
possesses the following properties:

1. The paths of Y are P-almost surely cádlág.

2. P (Y (0) = 0) = 1.

3. For 0 ≤ s ≤ t, Y (t)− Y (s) is equal in distribution to Y (t− s).

4. For 0 ≤ s ≤ t, Y (t)− Y (s) is independent of {Y (u) : u ≤ s}.

De�nition 4. A stable process {S(t)} is a Lévy process where S(1) is a stable dis-
tribution with characteristic exponent α, and for all λ, {S(λt) : t ≥ 0} has the same
distribution as {λ1/αS(t) : t ≥ 0}.

De�nition 5. A stable subordinator {S(t)} is a stable process where all increments
are nonnegative.
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2.3. Brownian motion

De�nition 6. Standard Brownian motion, {B(t)}, is a Lévy process with normally
distributed increments and B(1) ∼ N(0, 1).

De�nition 7. The process {B∗(t)} de�ned by

B∗(t) := B(t)− tB(1), 0 ≤ t ≤ 1,

is referred to as the Brownian bridge, i.e. a Brownian motion visiting the origin both
at time 0 and 1.

The distribution with density

f(x) =
1√

2πx3
exp

(
− 1

2x

)
, x > 0 (4)

is stable with α = 1/2, see e.g. Feller [8]. Let {Xi}∞i=1 be the lengths of the excursions
in a symmetric simple random walk. The Xi's are iid random variables where the
distribution is given by

Xi = 2Yi, P(Y = k) =
1

2k − 1

(
2k

k

)
1

22k
, k = 1, 2, . . . ,

see e.g. Feller [7] page 78. Let Sn =
∑n

i=1 Xi and an = n2. Bondesson and Holst [2]
give a proof of the following asymptotic result

P
(

Sn

an
≤ x

)
→

∫ x

0

f(y)dy, n →∞, (5)

where f(y) is described by (4). Hence, the distribution of the random variables
{Xi} belongs to the domain of attraction of the stable distribution with characteristic
exponent α = 1

2 .

De�nition 8. Let {B(s)} be standard Brownian motion. Then,

Tt = sup{s ≤ t : B(s) = 0}

is the time of the last visit to the origin, before time t.

The distribution of T1 is given by an arc sine law and hence, the density function is

fT1(x) =
1

π
√

x(1− x)
, 0 ≤ x ≤ 1, (6)

see e.g. Feller [7].
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3. Survey of previous results

First, we provide results for the Laplace transforms or generating functions of the
random random variables of interest. Then we proceed with explicit formulae for the
distributions.

3.1. Transforms

First, we present a general result obtained by Wendel [16]. Wendel's set-up and
notation is reformulated slightly here. We interpret the results for the special case of
stable subordinators. Let {S(t)} be a stable subordinator with characteristic exponent
0 < α < 1. Let Z be the set of values which the subordinator S(t) assumes. The open
set [0, 1) \Z is the union of countably many increments of the subordinator, which we
take to be arranged in decreasing order of size Ln. Denote the �rst passage time, when
S(t) crosses the value 1, by T . We note that also the truncated increment at time T is
included in the sequence {Ln}. Let Fn(x) = P (Ln ≤ x) be the distribution functions
corresponding to Ln. De�ne C(ε) as the event that Z meets the interval (1, 1 + ε), i.e.
S(T ) ∈ (1, 1 + ε), and say that the subordinator is tied down if we condition on the
event C(ε). In the sequel we let the superscript ∗ distinguish the tied down situation
from the free one. For the case where the process is tied down, let L∗n be the increments
in decreasing order and let F ∗n(x) = P (L∗n ≤ x) = limε→0 P (Ln ≤ x|C(ε)), 0 ≤ x ≤ 1.
Through this relation, Wendel links the tied down situation with the free one. Let

Φ(λ) :=
∫ ∞

1

e−λy αdy

yα+1
, (7)

Ψ(λ) := 1 +
∫ 1

0

(
1− e−λy

) αdy

yα+1
= Φ(λ) + λαΓ(1− α). (8)

Ψ(λ) = M (−α, 1− α,−λ) = e−λM (1, 1− α, λ) where the function M (a, b, s) is
known as the Kummer function, see Appendix A. Wendel obtains the following results
for 0 < α < 1:

Theorem 3.1.
∫ ∞

0

e−λxd(1− Fn(1/x)) =
∫ ∞

0

e−λ/xdFn(x) = e−λ Φ(λ)n−1

Ψ(λ)n
. (9)

∫ ∞

0

e−λxxα−1(1− F ∗n(1/x))dx =
Γ(α)Φ(λ)n

λαΨ(λ)n
. (10)
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Equation (9) is also recovered in the paper by Pitman and Yor [14] for stable subor-
dinators using Poisson random measures. For related results, see Lamperti [11]. In
Section 4, we present a proof of (9) following the same lines as in the paper by Pitman
and Yor [14]; however in greater detail. By exploiting the random walk and weak
convergence, Csáki and Hu [3] obtain (9) for the special case α = 1/2. Invariance
principles concerning the weak convergence are obtained in Csáki and Hu [4]. Using
characteristic functions, Darling [5] provides a proof of (9) for the more general case
0 < α ≤ 2 when n = 1. We also note that (10) is related to the results obtained
by Lindell and Holst [12]; results which are valid for the tied down situation in
the special case α = 1/2. By exploiting weak convergence of the random walk and
inverting generating functions, Lindell and Holst obtain explicit formulae for the joint
and marginal distributions, see below and also Section 3.2. Introduce the Kummer
function K(λ) := M(− 1

2 , 1
2 ,−λ). The following theorem for the Brownian bridge,

due to Lindell and Holst, is their key result which gives the generating function for
the number of excursions {N∗

j }r
j=1 with lengths in the respective intervals (xj , xj−1],

0 < xr ≤ xr−1 ≤ · · · ≤ x1 < x0 = ∞.

Theorem 3.2.

E
(
z

N∗
1

1 · · · zN∗
r

r

)
=

1
2i
√

xr

∫ i∞

−i∞

eλ/xr

K(λ)− z1A(λ)−∑r
j=2 zjBj(λ)

dλ

where
A(λ) = K

(
λx1

xr

) √
xr

x1
−
√

πλ,

Bj(λ) = K

(
λxj

xr

) √
xr

xj
−K

(
λxj−1

xr

) √
xr

xj−1
.

3.2. Inverting the transforms

Wendel [16] provides a formula for the distribution of the largest increment of a
stable subordinator, 0 < α < 1. The formula is obtained by inverting (10). The special
case α = 1/2 is due to Rosén, i.e the distribution for the largest excursion length of the
Brownian bridge. Inspired by Roséns result, Lindell and Holst [12] investigate the joint
and marginal distributions for the n largest excursion lengths of the Brownian bridge.
Let V ∗

1 > V ∗
2 > . . . > V ∗

n > 0 be the ranked excursion lengths of the Brownian bridge.
The following results are due to Rosén for n = 1, and due to Lindell and Holst for
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n = 2, 3. The results are obtained by inversion of the generating function in Theorem
3.2.

Corollary 3.1. The distributions of the three longest excursions of the Brownian bridge
are given by the following expressions.
n=1: For 0 ≤ x ≤ 1

P(V ∗
1 ≤ x) =

2π√
x

∞∑

k=−∞
−λkeλk(1+ 1

x ),

where the λk's are the 0s of K(λ), see Appendix A.
n=2: For 0 ≤ x ≤ 1/2

P(V ∗
2 ≤ x) = 2P(V ∗

1 ≤ x)

+ 2π

∞∑

k=−∞
−λke2λk

(
2e

λk
x

(
1 + λk +

λk

x

)
K

(
λk

x

)
− 1

)
.

n=3: For 0 ≤ x ≤ 1/3

P(V ∗
3 ≤ x) = 3(P(V ∗

2 ≤ x)−P(V ∗
1 ≤ x))

− 2π2

√
x

∞∑

k=−∞
λ2

keλk( 1
x +3)

(
λ2

k

(
2
x2

+
6
x

+ 4
)

+ λk

(
7
x

+ 9
)

+ 3
)

.

n=1,2: For 0 ≤ x2 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1/2

P(V ∗
1 ≤ x1, V

∗
2 ≤ x2) = 2P(V ∗

1 ≤ x2)

+
2π√
x1

∞∑

k=−∞
−λke

λk

“
1−x1

x2
+2
”(

2eλk
x1
x2 K

(
λkx1

x2

)(
1 + λk +

λk

x2

)
− 1

)
.

Using only a few terms of the sums, these expressions give accurate approximations
for 0 ≤ x ≤ 1/2, see Lindell [13]. Explicit formulae for the density of the longest
excursion length of the Brownian bridge, V ∗

1 , are obtained by e.g Wendel [16], Pitman
and Yor [14], and Gourdon [9]. These explicit formulae are valid for the interval
1/4 ≤ x ≤ 1. In particular, the density for the longest excursion of the Brownian
bridge, h∗1(x), is given by

h∗1(x) =
1

2x3/2
, 1/2 ≤ x ≤ 1. (11)

In Section 5, for the special case α = 1/2, we calculate the densities also for the
ranked excursion lengths of free Brownian motion, on the unit interval. The technique
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used to invert the Laplace transforms is the same technique as used by Lindell and
Holst [12]. It is a straightforward calculation of integrals using calculus of residues
and a close examination of the special Kummer function. As expected, the results
for the Brownian motion and for the Brownian bridge do not coincide, see graphical
illustrations in Section 5.2.

We note here that it should also be possible to invert the transforms for arbitrary
0 < α < 1. The same procedure may be used, and the 0s for the corresponding
Kummer functions are required in the formulae.

4. Ranked contributions � Derivation of Laplace transforms using a
Poisson characterization

The convergence of the normalized sum of iid variables to a stable distribution
can be conveniently analyzed in a Poisson process framework, see e.g. Section 2.7 in
Durrett [6]. For a description of the Poisson characterization of the increments of a
Lévy process, see e.g. Section 2.2 in Kyprianou [10].

It turns out that {X(i)

an
}n

i=1 converges to a Poisson process {Vi}∞i=1 where the intensity
is speci�ed in terms of the Lévy measure

l(v)dv =
cαdv

vα+1
, v > 0. (12)

Recall that {Vi}∞i=1 are the ranked contributions to S, V1 > V2 · · · > Vn > . . . > 0.
Using the convergence to a Poisson process, it is possible to prove

Sn

an
→ S, n →∞, (13)

where S =
∑∞

i=1 Vi.
Below, we derive the Laplace transforms of the random variables S

Vi
. First we

provide a proof for the special case S
V1

and then we proceed with the general case.
Largest contribution: We have

X(1)

an
→ V1, n →∞, (14)

where V1 is a non-degenerate distribution having

P (V1 ≤ v) = P (no points > v) = exp−
∫ ∞

v

l(v)dv = exp
(−cv−α

)
.
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Hence,

P (V1 ∈ dv) = l(v)dv exp
(−cv−α

)
.

Recalling the Laplace transform for S, given by (3), conditioning on the event V1 ∈ dv,
we have

E
(
e−λS |V1 ∈ dv

)
= exp

(
−λv +

∫ v

0

(
e−λy − 1

)
l(y)dy

)

= exp
(
−λv +

∫ v

0

(
e−λy − 1

) cαdy

yα+1

)

= {Change of variables y → vy}

= exp
(
−λv +

∫ 1

0

(
e−λvy − 1

) cαdy

vαyα+1

)
.

Hence,

E
(
e−λ S

v |V1 ∈ dv
)

= exp
(
−λ +

∫ 1

0

(
e−λy − 1

) cαdy

yα+1vα

)

and

E
(
e−λ S

V1

)
= E

(
E

(
e−λ S

v |V1 ∈ dv
))

=
∫ ∞

0

E
(
e−λ S

v |V1 ∈ dv
)
P (V1 ∈ dv)

=
∫ ∞

0

cαdv

vα+1
exp

(
−cv−α − λ +

∫ 1

0

(
e−λy − 1

) cαdy

yα+1vα

)

= {Change of variables t = cv−α}

= e−λ

∫ ∞

0

dt exp t

[∫ 1

0

(
e−λy − 1

) α

yα+1
dy − 1

]

=
e−λ

1 +
∫ 1

0
(1− e−λy) αdy

yα+1

=
e−λ

Ψ(λ)
.

Note that the expression above does not involve c.

n largest contributions: Let

S =
∞∑

i=1

Vi =
n∑

i=1

Vi + R,

We have

P(V1 ∈ dv1, · · · , Vn ∈ dvn) = l(vn)dvn · · · l(v1)dv1 exp
(−cv−α

n

)
, 0 < vn < · · · < v1.

Conditional on Vn ∈ dvn, the points V1, . . . , Vn−1 are distributed over the interval
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[vn,∞) and can be arranged in (n− 1)! ways. Thus, for Vn ∈ dvn, we have

E
(
e−λ

Pn−1
i=1 Vi , Vn ∈ dvn

)
=

=
∫

vn<vn−1<···<v1

e−λ
Pn−1

i=1 vi l(vn)dvnl(vn−1)dvn−1 · · · l(v1)dv1 exp
(−cv−α

n

)

= exp
(−cv−α

n

)
(∫∞

vn
e−λvl(v)dv

)n−1

(n− 1)!
l(vn)dvn.

Conditional on Vn ∈ dvn, R =
∑∞

i=n+1 Vi is independent of the expression above.
Recall the Laplace transform for S =

∑∞
i=1 Vi, given by (3). We have

E
(
e−λS , Vn ∈ dvn

)
=

= e−λvn exp
(
−

∫ vn

0

(
1− e−λv

)
l(v)dv

)
exp

(−cv−α
n

)
(∫∞

vn
e−λvl(v)dv

)n−1

(n− 1)!
l(vn)dvn,

and, dividing by vn,

E
(
e−λ S

vn , Vn ∈ dvn

)
=

= exp
(
−λ−

∫ vn

0

(
1− e−λ v

vn

)
l(v)dv

)
exp

(−cv−α
n

)
(∫∞

vn
e−λ v

vn l(v)dv
)n−1

(n− 1)!
l(vn)dvn

= {Change of variables v = vny}

= exp
(
−λ− v−α

n

∫ 1

0

(
1− e−λy

)
l(y)dy

)
exp

(−cv−α
n

) (∫∞
1

e−λyl(y)dy
)n−1

v
α(n−1)
n (n− 1)!

l(vn)dvn

= exp
(
−λ− cv−α

n

[
α

∫ 1

0

(
1− e−λy

) dy

yα+1
+ 1

]) (
cα

∫∞
1

e−λyy−α−1dy
)n−1

v
α(n−1)
n (n− 1)!

cαdvn

vα+1
n

.

We need the following property of the Gamma function. For all integers n,

∫ ∞

0

e−yγyn−1dy =
Γ(n)
γn

=
(n− 1)!

γn
.
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Integrating over vn, and substituting t = cv−α
n , we have

E
(
e−λ S

Vn

)
=

=
∫ ∞

0

exp
(
−λ− t

[
α

∫ 1

0

(
1− e−λy

) dy

yα+1
+ 1

])
tn−1

(
α

∫∞
1

e−λyy−α−1dy
)n−1

(n− 1)!
dt

= {Let γ = 1 + α

∫ 1

0

(
1− e−λy

) dy

yα+1
}

= e−λ

∫ ∞

0

e−tγtn−1dt

(∫∞
1

e−λyy−α−1αdy
)n−1

(n− 1)!

=
e−λ

(∫∞
1

e−λy αdy
yα+1

)n−1

(
1 +

∫ 1

0
(1− e−λy) αdy

yα+1

)n = e−λ Φ(λ)n−1

Ψ(λ)n
.

Note again that the expression above does not involve c. We have the same expression
as in the �rst part of Theorem 3.1, due to Wendel. Note that Wendel studied the
ranked increments of a stable subordinator until the �rst passage time T , including the
truncated increment at time T . Here, we have derived the Laplace transform for the
ranked increments contributing to the value of the stable subordinator S = S(1), i.e.
at time 1. Obviously, since the expressions for the Laplace transforms coincide, the
distributions of both cases agree. For a complete alternative proof of Wendel's result
we must provide a rigorous argument proving that it is su�cient to consider one of the
situations in order to obtain a proof also for the other. Fortunately, such a result is
provided by Proposition 6 in Pitman and Yor [14]. See also further references therein.

5. Ranked excursion lengths of Brownian motion

5.1. Densities for ranked excursion lengths of Brownian motion

The zero-free intervals of Brownian motion in the unit interval can be described as
consisting of two parts; the �rst part is a Brownian bridge and the second part is a
path starting at the origin ending up on either the positive side or the negative side
without touching the time axis. The time of the last visit to the origin is described by
the density in (6). This is the special case of Wendel's results for a stable subordinator,
where also the truncated increment is included in the sequence {Ln}. Integrating over
possible values for the last visit to the origin, using (6) and (11), we have the explicit
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density

h1(x) =
1

πx3/2
√

1− x
, 1/2 ≤ x ≤ 1, (15)

for the longest excursion of Brownian motion in the unit interval. Consider the special
case of Theorem 3.1 where α = 1

2 . Recall K(λ) := M(− 1
2 , 1

2 ,−λ). Since Γ
(

1
2

)
=
√

π

we have

E
(
e−λ S

Vn

)
= e−λ

(
K(λ)−

√
λπ

)n−1

K(λ)n
. (16)

It is possible to calculate the densities gn(x) of the random variables S
Vn

by the Laplace
inversion formula, i.e.

gn(x) =
1

2πi

∫ i∞

−i∞
eλ(x−1)

(
K(λ)−

√
λπ

)n−1

K(λ)n
dλ. (17)

These integrals are evaluated in Lindell and Holst [12] for n = 1, 2, 3 by calculus of
residues. Here we only perform the calculations for n = 1 to describe the technique.
The densities hn(x) of the random variables Vn

S are easily obtained by the transforma-
tion theorem. We obtain the following corollary.

Corollary 5.1. The densities of 1
L1

d= S
V1

and L1
d= V1

S respectively are

g1(x) = −2
∞∑

k=−∞
λkeλkx, 1 ≤ x ≤ ∞.

h1(x) = −2
∞∑

k=−∞
λk

eλk/x

x2
, 0 ≤ x ≤ 1.

Proof. By the Residue theorem

1
2πi

∫

Γ

f(z)dz =
∑

zk inside Γ

Res(f ; zk),

where the sum is taken over all those singularities zk of f that lie inside the closed
contour Γ. Consider a contour Γ consisting of the parts −iA < λ < iA and {λ =

AeiΘ, π
2 ≤ Θ ≤ 3π

2 }. Letting A → ∞ and applying the Residue theorem, we can
calculate the integral in (17) for n = 1.

g1(x) =
1

2πi

∫ i∞

−i∞

eλ(x−1)

K(λ)
dλ =

∑

λk inside Γ

Res
(

eλ(x−1)

K(λ)
;λk

)
.

12



The residues are given by { eλk

d
dλ K(λ)|λ=λk

, k integer valued}, where d
dλK(λk) = −e−λk

2λk
.

See Appendix A. Since the results hold asymptotically for the normalized excursion
lengths of the simple symmetric random walk, we have proved the assertion for Brow-
nian motion. The transformation theorem �nishes the proof of the assertion, for h1(x).

Corollary 5.2. The densities of 1
L2

d= S
V2

and L2
d= V2

S respectively are:
For 2 ≤ x ≤ ∞

g2(x) = g1(x)− 2√
x− 1

×
∞∑

k=−∞
λke2λk

(
2eλk(x−1) (1 + λkx)K (λk(x− 1))− 1

)
.

For 0 ≤ x ≤ 1/2

h2(x) = h1(x)− 2
x3/2

√
1− x

×
∞∑

k=−∞
λke2λk

(
2eλk(1/x−1)

(
1 +

λk

x

)
K (λk(1/x− 1))− 1

)
.

Proof. Identifying previously calculated integrals, we have

g2(x) =
1

2πi

∫ i∞

−i∞
eλ(x−1)

(
K(λ)−

√
λπ

)

K(λ)2
dλ

= g1(x)− 1
2πi

∫ i∞

−i∞
eλ(x−1)

√
λπ

K(λ)2
dλ.

For the evaluation of the remaining integral, we refer to Lindell and Holst [12]. The
transformation theorem �nishes the proof of the assertion, for h2(x).

Corollary 5.3. The densities of 1
L3

d= S
V3

and L3
d= V3

S respectively are:
For 3 ≤ x ≤ ∞

g3(x) = 2g2(x)− g1(x)

− 2π

∞∑

k=−∞
λ2

keλk(x+2)
(
2λ2

k(x + x2) + λk(2 + 7x) + 3
)
.

For 0 ≤ x ≤ 1/3

h3(x) = 2h2(x)− h1(x)

− 2π

x2

∞∑

k=−∞
λ2

keλk(1/x+2)
(
2λ2

k(1/x + (1/x)2) + λk(2 + 7/x) + 3
)
.

13



Proof. Identifying previously calculated integrals, we have

g3(x) =
1

2πi

∫ i∞

−i∞
eλ(x−1)

(
K(λ)−

√
λπ

)2

K(λ)3
dλ

= 2g2(x)− g1(x) +
1
2i

∫ i∞

−i∞
eλ(x−1) λ

K(λ)3
dλ.

For the evaluation of the remaining integral, we refer to Lindell and Holst [12]. The
transformation theorem �nishes the proof of the assertion, for h3(x).

The densities gn(x) and hn(x) for arbitrary n can also be obtained by calculus of
residues. These calculations are performed in the same way. More details on the
application of the Residue theorem are given in Lindell [13]. Appendix A gives values
for the 0s that are required in the formulae for the densities. Lindell [13] analyzes the
accuracy of the approximations when a limited number of terms are included in the
sum. Using only a few terms of the sums, the approximations are accurate for values
0 ≤ x ≤ 1/2.

5.2. Descriptive statistics and graphical illustrations

Using Corollaries 3.1, 5.1, 5.2, 5.3, it is possible to plot approximations of the density
functions for the three longest excursions of the Brownian bridge and Brownian motion,
in the unit interval. Equations (11), (15), give the exact densities for the longest
excursion of the Brownian bridge and Brownian motion respectively, for 1/2 ≤ x ≤ 1.

Approximations of the densities for the longest excursion of Brownian motion, h1(x),
and of the Brownian bridge, h∗1(x), are plotted in Figure 1. Only the �rst term of each
sum is used for 0 ≤ x ≤ 1/2, and the explicit expressions are used for 1/2 < x ≤ 1.
We see that h∗1(x) is shifted to the left relative to h1(x). Indeed, it is reasonable to
expect that, on average, the longest excursion of free Brownian motion exceeds the
longest excursion of the Brownian bridge, since the Brownian bridge is tied down at
t = 1. The density for h1(x) increases sharply just before t = 1 which indicates that
it is not unlikely that the longest excursion of free Brownian motion essentially covers
the whole interval.

The densities h2(x), h∗2(x), h3(x), h∗3(x), are plotted in Figures 2, 3. Since there
is a probability that the longest excursion, of free Brownian motion, covers the whole
interval, there is a probability that the second and third longest excursions are of

14
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Figure 1: Density functions of the longest excursion of free Brownian motion (thick line)
and the Brownian bridge (thin line).

length 0. It is interesting that all three densities for the Brownian bridge are smooth
and unimodal while the corresponding densities for the free Brownian motion are not
as smooth, and for some cases not even unimodal.

The expected values and variances of the variables L1, L2, L
∗
1, L

∗
2, are described by

the following table.

Variable Expected value Variance
L1

d= V1
S 0.626. . . 0.064. . .

L2
d= V2

S 0.139. . . 0.011. . .
L∗1

d= V ∗
1 0.483. . . 0.049. . .

L∗2
d= V ∗

2 0.156. . . 0.007. . .

6. Concluding remarks

Laplace transforms of the ranked increments of stable subordinators, with charac-
teristic exponent 0 < α < 1, are presented along with a straightforward proof. The
tied down situation is also studied. By inversion of the Laplace transforms, using
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Figure 2: Density functions of the second longest excursion of free Brownian motion (thick
line) and the Brownian bridge (thin line).
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Figure 3: Density functions of the third longest excursion of free Brownian motion (thick
line) and the Brownian bridge (thin line).
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calculus of residues, explicit formulae for the densities are calculated. The expressions
for the densities are described by in�nite sums involving a certain Kummer function.
In particular, the 0s are important. For the special case, α = 1/2, we obtain results
regarding ranked excursion lengths of free Brownian motion and the Brownian bridge.
Marginal distributions as well as joint distributions are explicit for the Brownian bridge.
Marginal densities are explicit for free Brownian motion. Thus, it is still an open issue
to obtain results concerning joint distributions for arbitrary α, including the special
case α = 1/2 for the free Brownian motion. Since joint densities have been derived for
the Brownian bridge, and since marginal densities for arbitrary α should be possible to
obtain by similar calculations as for the special case α = 1/2, we expect that explicit
formulae can be written down also for the general cases. As a �nal remark, we would
like to stress the fact that approximations using only a few terms of the in�nite sums
are su�cient for accurate results, for 0 ≤ x ≤ 1/2. Since there are exact formulae for
1/2 ≤ x ≤ 1, it is possible to obtain an accurate description of the densities for all
values.
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Appendix A. Properties of the Kummer function

The general Kummer (or con�uent hypergeometric) function, see Abramovitz and
Stegun [1] page 304, is de�ned as

M(a, b, s) = 1 +
∞∑

k=1

a(a + 1) · · · (a + k − 1)
b(b + 1) · · · (b + k − 1)

sk

k!
.

Note that M(a, b, s) = esM(b− a, b,−s). We consider in particular

K(s) = M

(
−1

2
,
1
2
,−s

)
= 1−

∞∑

k=1

1
2k − 1

(−s)k

k!

= e−sM

(
1,

1
2
, s

)
= e−s

(
1 +

∞∑

k=1

(2s)k

(2k − 1)!!

)
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with the derivatives

K ′(s) = (K(s)− e−s)/2s, K ′′(s) = (e−s −K ′(s))/2s.

Further derivatives are easy to obtain recursively. All 0s {sk}∞−∞ of K(s) lie in the left
complex plane. In fact

s−k = sk = −ak + ibk, k = 0, 1, 2, . . . ,

a0 < a1 < a2 < . . . ↗ +∞, b0 < b1 < b2 < . . . ↗ +∞.

The �rst �ve 0s are given in the following table. The numbers have been calculated
using Maple. See also plot of 0s in Figure 4.

k a±k bk b−k

0 0.8540326566. . . 0 0
1 4.248920779. . . 6.383124294. . . -6.383124294. . .
2 5.184114730. . . 12.88530517. . . -12.88530517. . .

−8 −7 −6 −5 −4 −3 −2 −1 0
−80

−60

−40

−20

0

20

40

60

80

Figure 4: The �rst 21 zeros of K(s) plotted in the complex plane.

According to Wendel [16],

ak ∼ 3 ln(k), bk ∼ 2πk, k →∞.
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The 0s are further investigated in Lindell [13].
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