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Ranked Set Sampling: An Approach to
More Efficient Data Collection
Douglas A. Wolfe

Abstract. This paper is intended to provide the reader with an introduction
to ranked set sampling, a statistical technique for data collection that gen-
erally leads to more efficient estimators than competitors based on simple
random samples. Methods for obtaining ranked set samples are described,
and the structural differences between ranked set samples and simple random
samples are discussed. Properties of the sample mean associated with a bal-
anced ranked set sample are developed. A nonparametric ranked set sample
estimator of the distribution function is discussed and properties of a ranked
set sample analog of the Mann–Whitney–Wilcoxon statistic are presented.
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1. INTRODUCTION

One of the keys to any statistical inference is that the
data involved be obtained via some formal mechanism
that enables the experimenter to make valid judge-
ments on the question(s) of interest. One of the most
common mechanisms for obtaining such data is that of
a simple random sample. Other more structured sam-
pling designs, such as stratified sampling or probability
sampling, are also available to help make sure that the
obtained data collection provides a good representation
of the population of interest. Any such additional struc-
ture of this type revolves around how the sample data
themselves should be collected to provide an informa-
tive image of the larger population. With any of these
approaches, once the sample items have been chosen,
the desired measurement(s) is collected fromeach of
the selected items.

The concept of ranked set sampling is a recent devel-
opment that enables more structure to be provided to
the collected sample items. The name is a bit of a mis-
nomer because it is not as much a sampling technique
as it is a data measurement technique. This approach to
data collection was first proposed by McIntyre (1952)
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for situations where taking the actual measurements
for sample observations is difficult (e.g., costly, de-
structive, time-consuming), but mechanisms for either
informally or formally ranking a set of sample units
is relatively easy and reliable. In particular, McIntyre
was interested in improving the precision in estima-
tion of average yield from large plots of arable crops
without a substantial increase in the number of fields
from which detailed expensive and tedious measure-
ments needed to be collected. For discussions of some
of the settings where ranked set sampling techniques
have found application, see Patil (1995) and Barnett
and Moore (1997).

Since its inception with the paper by McIntyre,
a good deal of attention has been devoted to the topic
in the statistical literature, particularly over the past
15 years. Some of this work has been geared toward
specific parametric families and some has been devel-
oped under minimal nonparametric distributional as-
sumptions. However, many of the important concepts
and features of the ranked set sampling methodology
transcend the parametric or nonparametric categories.
We structure this paper around these more general fea-
tures, but make a point to illustrate them with nonpara-
metric procedures. We begin with a description of the
basic structure, leading to collection of a ranked set
sample from a single population.
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2. OBTAINING A RANKED SET SAMPLE

When we select a simple random sampleX1, . . . ,Xn

from a fixed population of interest, what makes result-
ing statistical inference procedures appropriate is not
the fact that each individual measurement in the sam-
ple is likely to be representative of the population char-
acteristic, say mean or median, of interest. Rather it
is through the concept of sampling distributions of the
relevant statistics that we should, “on the average,” ob-
tain a set of sample observations that are truly repre-
sentative of the entire population. However, in practice
we obtain only a single random sample and the on-the-
average concept does not help much if the particular
population items selected for our sample are, in fact,
not really very representative of the entire population.
We are simply bound by the statistical inferences for
this particular sample that go with the on-the-average
concept unless we are willing to increase our sample
size and expand the number of sample observations.

There are a number of ways to address the problems
associated with obtaining an unrepresentative sample
from a population. One method for dealing with this
issue is to involve a more structured sampling scheme
than simple random sampling. Such approaches in-
clude stratified sampling schemes, proportional sam-
pling and the use of concomitant variables to help
select appropriate sampling units for measurement.
All of these approaches provide more structured sam-
ple data than that resulting from a simple random sam-
ple scheme. Note that this additional structure about
which items to collect and measure is imposed on our
data collection processprior to the actual decision and,
as such, is correctly viewed as a sampling technique.

On the other hand, despite the name, ranked set
sampling is more a data collection technique rather
than simply a more representative sampling scheme.
It utilizes the basic intuitive properties associated with
simple random samples, but it also takes advantage
of additional information available in the population
to provide an “artificially stratified” sample with more
structure that enables us to direct our attention toward
the actual measurement of more representative units in
the population. The net result is a collection of mea-
surements that are more likely to span the range of val-
ues in the population than can be guaranteed by virtue
of a simple random sample.

We now describe how this additional structure is
captured in a single ranked set sample ofk measured
observations. First, an initial simple random sample
of k units from the population is selected and subjected

to ordering on the attribute of interest via some rank-
ing process. This judgement ranking can result from
a variety of mechanisms, including expert opinion, vi-
sual comparisons or the use of easy-to-obtain auxiliary
variables, but it cannot involve actual measurements of
the attribute of interest on the sample units. Once this
judgement ranking of thek units in our initial random
sample has been accomplished, the item judged to be
the smallest is included as the first item in our ranked
set sample and the attribute of interest will be formally
measured on this unit. The remainingk − 1 unmea-
sured units in the first random sample are not con-
sidered further. We denote this measurement byX[1],
where a square bracket[1] is used instead of the usual
round bracket (1) for the smallest order statistic, be-
causeX[1] is only the smallest judgement ordered item.
It may or may not actually have the smallest attribute
measurement among ourk sampled units. Note that the
remaining (other thanX[1]) units in our first random
sample are not considered further in the selection of
our ranked set sample or eventual inference about the
population. The sole purpose of these otherk − 1 units
is to help select an item for measurement that repre-
sents the smaller attribute values in the population.

Following selection ofX[1], a second independent
random sample of sizek is selected from the popu-
lation and judgement ranked without formal measure-
ment on the attribute of interest. This time we select the
item judged to be the second smallest of thek units in
this second random sample and include it in our ranked
set sample for measurement of the attribute of interest.
This second measured observation is denoted byX[2].

From a third independent random sample we se-
lect the unit judgement ranked to be the third small-
est,X[3], for measurement and inclusion in the ranked
set sample. This process is continued until we have se-
lected the unit judgement ranked to be the largest of
thek units in thekth random sample, denoted byX[k],
for measurement and inclusion in our ranked set sam-
ple. This entire process is referred to as acycle and
the number of observations in each random sample,
k in our example, is called theset size. Thus to com-
plete a single ranked set cycle, we need to judgement
rankk independent random samples of sizek involving
a total ofk2 sample units to obtaink measured obser-
vationsX[1],X[2], . . . ,X[k]. Thesek observations rep-
resent abalanced ranked set sample with set size k,
where the descriptor “balanced” refers to the fact that
we have collected one judgement order statistic for
each of the ranksi = 1, . . . , k. To obtain a ranked set
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sample with a desired total number of measured obser-
vationskm, we repeat the entire cycle processm inde-
pendent times, yielding the dataX[1]j , . . . ,X[k]j , for
j = 1, . . . ,m.

3. STRUCTURE OF A RANKED SET SAMPLE

To understand what makes the ranked set sample
(RSS) different from a simple random sample (SRS)
of the same size, we consider the simple case of
a single cycle (m = 1) with set sizek and perfect
judgement ranking. In this case, the ranked set sam-
ple observations are also the respective order statis-
tics. LetX1, . . . ,Xk denote a simple random sample of
sizek from a continuous population with p.d.f.f (x)

and c.d.f.F(x), and letX∗
1, . . . ,X∗

k be a ranked set
sample of sizek obtained as described in Section 2
from k independent random samples ofk units each.

In the case of an SRS thek observations are inde-
pendent and each of them is viewed as representing a
typical value from the population. However, there is
no additional structure imposed on their relationship
to one another. LettingX(1) ≤ X(2) ≤ · · · ≤ X(k) be the
order statistics associated with these SRS observations,
we note that they are dependent random variables with
joint p.d.f. given by

gSRS
(
x(1), . . . , x(k)

)

= k!
k∏

i=1

f
(
x(i)

)

· I{−∞<x(1)≤x(2)≤···≤x(k)<∞}
(
x(1), . . . , x(k)

)
.

For the RSS setting, additional information and
structure have been provided through the judgement
ranking process involving a total ofk2 sample units.
Thek measurementsX∗

(1), . . . ,X
∗
(k) are also order sta-

tistics, but in this case they are independent observa-
tions and each of them provides information about a
different aspect of the population. The joint p.d.f. for
X∗

(1), . . . ,X
∗
(k) is given by

gRSS
(
x∗
(1), . . . , x

∗
(k)

) =
k∏

i=1

f(i)

(
x∗
(i)

)
,

where

f(i)(x
∗
(i)) = k!

(i − 1)!(k − i)!
· [

F
(
x∗
(i)

)]i−1[1− F
(
x∗
(i)

)]k−i
f

(
x∗
(i)

)
is the p.d.f. for theith order statistic for an SRS
of size k from the population with p.d.f.f (x) and

c.d.f. F(x). It is this extra structure provided by the
judgement ranking and the independence of the re-
sulting order statistics that enables procedures based
on RSS data to be more efficient than comparable
procedures based on an SRS with the same number
of measured observations. On the other hand, these
same features also make the theoretical development of
properties for RSS procedures more difficult than for
their SRS counterparts. In the next section, we illus-
trate both of these aspects via comparison of the RSS
and SRS sample means.

4. PROPERTIES OF THE SAMPLE MEAN

Let X̄ = ∑k
i=1 Xi/k and X̄∗ = ∑k

i=1 X∗
(i)/k be the

SRS and RSS sample means, respectively, for com-
mon measured number of observationsk. It is well
known thatX̄ is an unbiased estimator of the popula-
tion meanµ and that it has varianceσ 2/k, whereσ 2 is
the population variance. How doesX̄∗ compare? First,
we note that the mutual independence of theX∗

(i)’s,
i = 1, . . . , k, enables us to write

E[X̄∗] = 1

k

k∑
i=1

E
[
X∗

(i)

]
and

(1)

Var(X̄∗) = 1

k2

k∑
i=1

Var
(
X∗

(i)

)
.

Moreover, since we have assumed perfect rankings,
X∗

(i) is distributed like theith order statistic from a con-
tinuous distribution with p.d.f.f (x) and c.d.f.F(x).
Hence, we have

E
[
X∗

(i)

] =
∫ ∞
−∞

x
k!

(i − 1)!(k − i)! [F(x)]i−1

(2)
· [1− F(x)]k−if (x) dx

for i = 1, . . . , k. Combining equations (1) and (2), we
obtain

E[X̄∗] = 1

k

k∑
i=1

{∫ ∞
−∞

kx

(
k − 1
i − 1

)
[F(x)]i−1

· [1− F(x)]k−if (x) dx

}
(3)

=
∫ ∞
−∞

xf (x)

{
k∑

i=1

(
k − 1
i − 1

)
[F(x)]i−1

· [1− F(x)]k−i

}
dx.
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Lettingq = i − 1 in the summation in equation (3), we
see that

k∑
i=1

(
k − 1
i − 1

)
[F(x)]i−1[1− F(x)]k−i

=
k−1∑
q=0

(
k − 1

q

)
[F(x)]q[1− F(x)](k−1)−q

= 1,

since the latter sum is just the sum over the entire sam-
ple space of the probabilities for a binomial random
variable with parametersk − 1 andp = F(x).

Using this fact in equation (3), we obtain

E[X̄∗] =
∫ ∞
−∞

xf (x) dx = µ.

Thus,X̄∗ is also an unbiased estimator forµ.
Of course, there is certainly a difference between

these unbiased estimators̄X and X̄∗. The k compo-
nents of the SRS averagēX are mutually independent
and identically distributed, and each is itself an unbi-
ased estimator forµ. While thek components of the
RSS averagēX∗ are also mutually independent, they
are not identically distributed and none of them (except
for the middle order statistic whenk is odd and the
underlying distribution is symmetric aboutµ) is in-
dividually unbiased forµ. Yet the averaging process
leavesX̄∗ unbiased. Interestingly, it is the additional
structure associated with the nonidentical nature of the
distributions for the terms in̄X∗ that leads to the im-
provement in precision for̄X∗ relative toX̄, as we now
show.

Lettingµ∗
(i) = E[X∗

(i)] for i = 1, . . . , k, we note that

E
[(

X∗
(i) − µ

)2]
= E

[(
X∗

(i) − µ∗
(i) + µ∗

(i) − µ
)2](4)

= E
[(

X∗
(i) − µ∗

(i)

)2] + (
µ∗

(i) − µ
)2

,

since the cross-product terms are zero. Combining
equations (1) and (4) yields the expression

Var(X̄∗) = 1

k2

k∑
i=1

E
[(

X∗
(i) − µ

)2]
(5)

− 1

k2

k∑
i=1

(
µ∗

(i) − µ
)2

.

Now, proceeding as we did withE[X̄∗], we see that

k∑
i=1

E
[(

X∗
(i) − µ

)2]

=
k∑

i=1

{∫ ∞
−∞

k(x − µ)2
(

k − 1
i − 1

)
[F(x)]i−1

· [1− F(x)]k−if (x) dx

}

= k

∫ ∞
−∞

(x − µ)2f (x)

{
k∑

i=1

(
k − 1
i − 1

)
[F(x)]i−1

· [1− F(x)]k−i

}
dx.

Once again using the binomial distribution, the interior
sum is equal to 1 and we obtain

k∑
i=1

E
[(

X∗
(i) − µ

)2] = k

∫ ∞
−∞

(x − µ)2f (x) dx

(6)
= kσ 2.

Combining equations (5) and (6), it follows that

Var(X̄∗) = 1

k2

{
kσ 2 −

k∑
i=1

(
µ∗

(i) − µ
)2

}

= σ 2

k
− 1

k2

k∑
i=1

(
µ∗

(i) − µ
)2

= Var(X̄) − 1

k2

k∑
i=1

(
µ∗

(i) − µ
)2

≤ Var(X̄) since
k∑

i=1

(
µ∗

(i) − µ
)2 ≥ 0.

Hence, in the case of perfect rankings, not only isX̄∗
an unbiased estimator, its variance is always no larger
than the variance of the SRS estimatorX̄ based on the
same number of measured observations. In fact, this is
a strict inequality unlessµ∗

(i) = µ for all i = 1, . . . , k,
which is the case only if the judgement rankings are
purely random.

5. OTHER IMPORTANT ISSUES FOR RANKED
SET SAMPLES

All of the earlier discussion in this paper involved
a balanced ranked set sample with fixed set sizek

and perfect judgement rankings. Of course, these fac-
tors can clearly affect the performance of ranked set
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sample estimators and hypothesis tests. In particular,
they interact with one another in a variety of ways.
For example, remember that each measured ranked set
sample observation utilizes additional information ob-
tained from its ranking amongk − 1 other units from
the population. Clearly this additional information is an
increasing function ofk as long as there are no errors
in our judgement rankings. Thus, with perfect judge-
ment rankings, we would want to take our set sizek to
be as large as economically possible within available
funds. However, it is also clear that the likelihood of
errors in our judgement rankings is an increasing func-
tion of the set size as well; that is, the largerk is, the
more likely we are to experience errors in our judge-
ment rankings. Thus to select the set sizek optimally,
we need to be able both to model the probabilities of
imperfect judgement rankings and to assess their im-
pact on our RSS statistical procedures. Initial work in
modeling imperfect judgement rankings was provided
by Bohn and Wolfe (1994). For a nice general discus-
sion of modeling probabilities of imperfect judgement
rankings, the interested reader is referred to Presnell
and Bohn (1999).

Even under perfect judgement rankings, the costs
of the various components of ranked set sampling,
namely, identifying sampling units, ranking of sets of
sampling units and eventual measurement of units se-
lected for inclusion in the ranked set sample all affect
the choice of optimal set sizek. For a basic discus-
sion of these factors and optimal set size selection, the
reader is referred to Nahhas, Wolfe and Chen (2002).

We have thus far discussed only balanced ranked
set samples; that is, ranked set samples where each
judgement order statistic, ranging fromX∗[1] to X∗[k],
is represented once in each cycle. However, for some
situations it is quite reasonable to consider unbalanced
ranked set samples, where the various judgement or-
der statistics have differential representation in a given
cycle (but common from cycle to cycle).

For example, consider an underlying distribution
that is unimodal and symmetric about its medianθ .
Suppose we are interested only in making inferences
aboutθ using ranked set sample data based on an odd
set sizek. Among all the order statistics for a random
sample of set sizek, we know that the sample me-
dian X(k+1)/2 contains the most information aboutθ .
Thus, to estimateθ in this setting, it is natural to con-
sider using the drastically unbalanced ranked set sam-
ple where only a single judgement order statistic, the
judgement medianX∗[(k+1)/2], is represented in the RSS
and it is measured allk times in each of the cycles.

For discussion of the pros and cons of balanced versus
unbalanced RSS in this setting as well as others, see
Öztürk and Wolfe (2000a, b).

Finally, we note that it might be logically appealing
to collect more than a single judgement ordered item
from each ranked set of sizek. However, it is generally
not statistically optimal to do so unless the cost of the
judgement ranking is quite large relative to the cost of
actual unit measurement. For most settings where RSS
is appropriate in the first place, the optimal choice is to
collect only a single observation from each ranked set
of sizek. This is true regardless of whether it is better to
collect a balanced or an unbalanced ranked set sample.
For more details, see Öztürk and Wolfe (2000c).

6. NONPARAMETRIC RANKED SET
SAMPLE PROCEDURES

The previous discussion in this paper is broadly
applicable to both parametric and nonparametric me-
thodologies. For example, the general property of unbi-
asedness for the sample mean discussed in Section 4 is
not dependent on the assumption of any particular un-
derlying distribution. (The variance of the RSS mean
is, of course, dependent on the underlying distribution
throughµ, σ 2 and theµ(i)’s, i = 1, . . . , k.) For the re-
mainder of the paper, we concentrate solely on a num-
ber of important nonparametric RSS procedures.

6.1 Distribution Function Estimation and
Mann–Whitney–Wilcoxon Procedures

Utilization of information obtained from rankings is
clearly part and parcel of the ranked set sample con-
cept through the judgement ranking process used to
select the specific items for measurement. However, it
was not until the seminal paper by Stokes and Sager
(1988) that a nonparametric approach was considered
for analysis of the RSS measurements themselves. In
their paper, they considered the use of RSS data to es-
timate the distribution function of a population.

Let X∗[1]j , . . . ,X∗[k]j for j = 1, . . . ,m be the ranked
set sample (for set sizek andm cycles) from a distri-
bution with c.d.f.F(t). The natural RSS estimator for
F(t) considered by Stokes and Sager (1988) is the em-
pirical c.d.f. for the RSS data, namely,

F ∗(t) = 1

mk

k∑
i=1

m∑
j=1

I(−∞,t]
(
X∗[i]j

)
.

Stokes and Sager showed thatF ∗(t) is an unbiased es-
timator ofF(t) and that

Var(F ∗(t)) ≤ Var(F̂ (t)) for all t,(7)
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whereF̂ (t) is the usual empirical c.d.f. for an SRS of
equal sizemk. They also showed how to use the RSS
empirical c.d.f. in conjunction with the Kolmogorov–
Smirnov statistic to provide simultaneous confidence
bands for the distribution functionF(t).

Sparked by the Stokes and Sager (1988) paper,
Bohn and Wolfe (1992) initiated the development of
distribution-free inference procedures based on ranked
set samples. They used the Stokes and Sager RSS es-
timator of the distribution function to develop RSS
analogs of the Mann–Whitney version of the SRS
Mann–Whitney–Wilcoxon two-sample test and esti-
mation procedures.

Once again, letX∗[1]j , . . . ,X∗[k]j for j = 1, . . . ,m be
the ranked set sample (for set sizek and m cycles)
from a distribution with c.d.f.F(t). In addition, let
Y ∗[1]t , . . . , Y ∗[q]t for t = 1, . . . , n be the ranked set sam-
ple (for set sizeq andn cycles) from a second distribu-
tion with c.d.f.G(t) = F(t − �), with −∞ < � < ∞.
Here we assume that bothF andG represent continu-
ous distributions. LetF ∗

m,k(t) andG∗
n,q(t) be the em-

pirical distribution functions for theX andY ranked set
samples, respectively, and let�(t) = 1 if t ≥ 0 and= 0
if t < 0. The RSS version of the Mann–Whitney statis-
tic is given by

URSS= mnkq

∫ ∞
−∞

F ∗
m,k(t) dG∗

n,q(t)

=
q∑

s=1

n∑
t=1

k∑
i=1

m∑
j=1

�
(
Y ∗[s]t − X∗[i]j

)
(8)

= (#X’s ≤ Y ’s in the RSS data).

To conduct hypothesis tests of the null hypothesis
H0 :� = 0 against either one- or two-sided alterna-
tives, we need some properties of the null distribu-
tion of URSS. For this purpose, we assume that we
have perfect judgement rankings for bothX and Y

ranked set samples. Bohn and Wolfe showed that just
as for the SRS setting, the RSS Mann–Whitney sta-
tistic URSS (with perfect rankings) is distribution-free
underH0 over the entire class of continuous distrib-
utionsF . However, there is a major difference in the
null distributions and how critical values are obtained
for the two settings. For the SRS setting, themk + nq

combined sampleX andY observations are not only
mutually independent, but they are also identically dis-
tributed. Thus it suffices to look at each of the

(mk+nq
mk

)
distinct (i.e., unchanged by permutations within the
X’s andY ’s separately) ordered arrangements of these
combined sample observations; moreover, they are all

equally likely. This makes tabulation of the associated
null distribution for the SRS Mann–Whitney statistic
relatively straightforward. However, the equally likely
nature of these arrangements does not carry over to
the RSS setting, due to the fact that the ranked set
X’s andY ’s, while still mutually independent, are no
longer identically distributed. For example, even in the
case of perfect rankings, there is nothing to prevent the
smallest ordered item from one ranked set from being
larger than the largest item from a second ranked set.
While this probability will, generally, be small, it will
not be zero as in the case of SRS. This means that for
RSS data it is no longer sufficient to look at the

(mk+nq
mk

)
distinct (i.e., unchanged by permutations within the
X’s and Y ’s separately) ordered arrangements of the
combined sample observations. Instead, we need to
calculate the probability of each of the(mk +nq)! per-
mutations separately and then combine them to obtain
the null distribution forURSS. Fortunately, the proba-
bilities of these(mk + nq)! permutations under RSS
still do not depend on the form of the common, contin-
uousF ≡ G underH0, although the tabulation can be
tedious. We illustrate the necessary computations with
a small example.

EXAMPLE 1. For a singleX and Y cycle (i.e.,
m = n = 1) and commonX andY set sizek = q = 2,
we must obtain the null probabilities for the 4! = 24
different permutations. Under the assumption of per-
fect judgement rankings, the RSS observationsX(1)1,
X(2)1, Y(1)1 andY(2)1 are independent order statistics
with joint p.d.f. given by

gRSS
(
x(1), x(2), y(1), y(2)

)

=
{ 2∏

i=1

2!
(i − 1)!(2− i)!

[
F

(
x(i)

)]i−1

· [
1− F

(
x(i)

)]2−i
f

(
x(i)

)}

·
{ 2∏

s=1

2!
(s − 1)!(2− s)!

[
F

(
y(s)

)]s−1

· [
1− F

(
y(s)

)]2−s
f

(
y(s)

)}
,

which simplifies to

gRSS
(
x(1), x(2), y(1), y(2)

)
= 16

[
1− F

(
x(1)

)][
F

(
x(2)

)][
1− F

(
y(1)

)][
F

(
y(2)

)]

·
2∏

i=1

f
(
x(i)

) 2∏
s=1

f
(
y(s)

)
.
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Using this expression forgRSSand straightforward in-
tegration, the null probabilities for each of the 4! = 24
permutations ofX(1)1, X(2)1, Y(1)1 and Y(2)1 can
then be computed by integrating over the appropri-
ate region. Thus, for example, the four permutations
{X(1)1 < Y(1)1 < X(2)1 < Y(2)1}, {X(1)1 < Y(1)1 <

Y(2)1 < X(2)1}, {Y(1)1 < X(1)1 < Y(2)1 < X(2)1} and
{Y(1)1 < X(1)1 < X(2)1 < Y(2)1} all have the same null
probability of occurrence,p, given by

p =
∫ ∞
−∞

∫ y(2)

−∞

∫ x(2)

−∞

∫ y(1)

−∞
gRSS

(
x(1), x(2), y(1), y(2)

)
· dx(1) dy(1) dx(2) dy(2)

= 41/280.

Proceeding in this fashion for all 24 permutations
yields the set of null probabilities (independent of the
form of the continuous commonF ) and associated
values ofURSS given in Table 1. Combining the null
probabilities for the various permutations with the as-
sociated values forURSS, we see that the null distribu-
tion of URSSis given by

P0(URSS= 0) = P0(URSS= 4) = 1/10,

P0(URSS= 1) = P0(URSS= 3) = 17/90,

P0(URSS= 2) = 19/45.

Note that the null distribution is symmetric about its
meanE0(URSS) = mnkq/2 = 2. This symmetry prop-
erty holds for the null distribution ofURSS for any
(m, n, k, q) configuration.

Just as for the SRS setting, the theoretical proper-
ties of the RSS Mann–Whitney statisticURSS are ob-
tained by using standard results about the general class
of U statistics. (See Randles and Wolfe, 1979, for a
discussion ofU statistics.) Let

γ =
k∑

i=1

q∑
s=1

P
(
X(i)1 < Y(s)1

)
.

Then γ is a two-sample, multivariate, estimable pa-
rameter of degree(1,1) and URSS/mn is the multi-
variateU statistic estimator forγ . StandardU statistic
arguments can then be used to establish the following
result.

RESULT 1. Let N = m + n and set λ =
limN→∞(m/N). If 0 < λ < 1 and limN→∞(N/(m2 ·
n2))Var(URSS) > 0, then(

√
N/mn)(URSS−E[URSS])

has an asymptotic (N → ∞) normal distribution with
mean 0 and finite varianceσ 2∞. An expression forσ 2∞
can be found in equation (3.3) in Bohn and Wolfe

TABLE 1
Null probabilities and values of URSSfor the 24 permutations in a

RSS with m = n = 1 and k = q = 2

Permutation Null probability Value of URSS

y(2) < y(1) < x(2) < x(1) 17/2520 0
y(2) < y(1) < x(1) < x(2) 7/360 0
y(1) < y(2) < x(1) < x(2) 137/2520 0
y(1) < y(2) < x(2) < x(1) 7/360 0
y(1) < x(1) < y(2) < x(2) 41/280 1
y(1) < x(2) < y(2) < x(1) 7/360 1
y(2) < x(1) < y(1) < x(2) 7/360 1
y(2) < x(2) < y(1) < x(1) 1/280 1
x(1) < y(1) < y(2) < x(2) 41/280 2
x(1) < y(2) < y(1) < x(2) 137/2520 2
x(2) < y(1) < y(2) < x(1) 17/2520 2
x(2) < y(2) < y(1) < x(1) 1/280 2
y(1) < x(1) < x(2) < y(2) 41/280 2
y(1) < x(2) < x(1) < y(2) 137/2520 2
y(2) < x(1) < x(2) < y(1) 17/2520 2
y(2) < x(2) < x(1) < y(1) 1/280 2
x(1) < y(1) < x(2) < y(2) 41/280 3
x(1) < y(2) < x(2) < y(1) 7/360 3
x(2) < y(1) < x(1) < y(2) 7/360 3
x(2) < y(2) < x(1) < y(1) 1/280 3
x(1) < x(2) < y(1) < y(2) 137/2520 4
x(1) < x(2) < y(2) < y(1) 7/360 4
x(2) < x(1) < y(1) < y(2) 7/360 4
x(2) < x(1) < y(2) < y(1) 17/2520 4

(1992). Under the null hypothesisH0 :� = 0, we have
E[URSS] = mknq/2 and the asymptotic varianceσ 2∞
does not depend on the form of the underlying contin-
uousF .

For given values ofk and q, Result 1 can be
used to provide approximate critical values for the
test of H0 :� = 0 based onURSS. For example, in
the special case ofm = n (so that λ = 1/2) and
k = q = 2, it follows from Bohn and Wolfe (1992)
that σ 2∞ = 16/9, so that the asymptotic (N → ∞)

null distribution of (
√

N/mn)(URSS− E0[URSS]) =√
2n(URSS/n2 − 2) is N(0,16/9). Thus it follows that

P {√2n{(URSS/n2) − 2} ≥ z(α)} ≈ α, wherez(α) is the
upperαth percentile for the standard normal distribu-
tion. The approximate upperαth percentile for the null
distribution ofURSSis then given by(n3/2/

√
2)z(α) +

2n2 for the settingk = q = 2.
Bohn and Wolfe (1992) also provided a point esti-

mator, and confidence intervals and bounds for� as-
sociated with the RSS Mann–Whitney statisticURSS.
In addition, they studied the asymptotic (N → ∞) rel-
ative efficiency of inference procedures based onURSS
relative to the analogous procedures based on the SRS
Mann–Whitney statisticUSRS.
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In a followup paper, Bohn and Wolfe (1994) showed
that the statisticURSSis no longer distribution-free un-
der the null hypothesisH0 :� = 0 when the judge-
ment rankings are not perfect. Using an approximate
expected spacings model, they studied the effect that
imperfect rankings have on the properties of the infer-
ential procedures based onURSS.

6.2 Other Nonparametric Procedures

Similar properties have been developed for non-
parametric RSS procedures in a number of other set-
tings. Bohn (1996) provided a nice review article
that summarizes the early work on such methodology.
Specifically, Hettmansperger (1995) and Koti and Babu
(1996) discussed inferences associated with the RSS
analog of the sign statistic. Bohn (1998) provided sim-
ilar results for the RSS version of the signed rank sta-
tistic. As with the RSS version of the Mann–Whitney
statistic, much of the methodological development for
both the RSS sign and signed rank statistics relies
on multivariateU statistic theory. Presnell and Bohn
(1999) generalized these results to the entire class of
RSSU statistics.

7. APPLICATIONS OF RSS PROCEDURES

Applications of RSS methodology involve several
components. First, there is the initial process of obtain-
ing the sets of SRS’s for judgement ranking. Any stan-
dard approach for obtaining SRS’s can be used for this
step. Next there is the process of obtaining the judge-
ment rankings themselves within each of these SRS’s.
A variety of mechanisms have been proposed for this
purpose, ranging from totally subjective rankings by
experts in the field to the purely objective use of multi-
ple regression or logistic regression based on concomi-
tant variables. Standard software packages can be used
for these regressions. Finally, there is the analysis of
the RSS data once obtained. At least thus far in its
development, the statistical analysis of RSS data has
been consistently the same as that which is standard
for analogous SRS data. While this may change as RSS
methodology progresses, at this point in time standard
software packages are sufficient to analyze RSS data
once they have been collected.

An example where RSS methodology can be effec-
tively applied is the problem of estimation of bone min-
eral density (BMD) in a human population. Subjects
for such a study are plentiful, but measurement of
BMD via dual x-ray absorptiometry on the selected
subjects is expensive. Thus, it is important to mini-
mize the number of subjects required for such a study

without reducing the amount of reliable information
obtained about the BMD makeup of the population.
Nahhas, Wolfe and Chen (2002) discussed the se-
lection of an optimal RSS set size for such an ap-
plication in collaboration with Dr. Velimir Matkovic,
a researcher in the Bone and Mineral Metabolism
Laboratory at The Ohio State University.

ACKNOWLEDGMENT

The author thanks the referees for helpful comments
on an earlier draft of this article.

REFERENCES

BARNETT, V. and MOORE, K. (1997). Best linear unbiased esti-
mates in ranked-set sampling with particular reference to im-
perfect ordering.J. Appl. Statist. 24 697–710.

BOHN, L. L. (1996). A review of nonparametric ranked-set sam-
pling methodology.Comm. Statist. Theory Methods 25 2675–
2685.

BOHN, L. L. (1998). A ranked-set sample signed-rank statistic.
J. Nonparametr. Statist. 9 295–306.

BOHN, L. L. and WOLFE, D. A. (1992). Nonparametric two-
sample procedures for ranked-set samples data.J. Amer. Sta-
tist. Assoc. 87 552–561.

BOHN, L. L. and WOLFE, D. A. (1994). The effect of imperfect
judgment rankings on properties of procedures based on the
ranked-set samples analog of the Mann–Whitney–Wilcoxon
statistic.J. Amer. Statist. Assoc. 89 168–176.

HETTMANSPERGER, T. P. (1995). The ranked-set sample sign test.
J. Nonparametr. Statist. 4 263–270.

KOTI, K. M. and BABU, G. J. (1996). Sign test for ranked-set sam-
pling. Comm. Statist. Theory Methods 25 1617–1630.

MCINTYRE, G. A. (1952). A method for unbiased selective sam-
pling, using ranked sets.Australian J. Agricultural Research 3
385–390.

NAHHAS, R. W., WOLFE, D. A. and CHEN, H. (2002). Ranked set
sampling: Cost and optimal set size.Biometrics 58 964–971.

ÖZTÜRK, Ö. and WOLFE, D. A. (2000a). Optimal allocation proce-
dure in ranked set sampling for unimodal and multi-modal dis-
tributions.Environmental and Ecological Statistics 7 343–356.

ÖZTÜRK, Ö. and WOLFE, D. A. (2000b). An improved ranked set
two-sample Mann–Whitney–Wilcoxon test.Canad. J. Statist.
28 123–135.

ÖZTÜRK, Ö. and WOLFE, D. A. (2000c). Alternative ranked set
sampling protocols for the sign test.Statist. Probab. Lett. 47
15–23.

PATIL , G. P. (1995). Editorial: Ranked set sampling.Environmental
and Ecological Statistics 2 271–285.

PRESNELL, B. and BOHN, L. L. (1999). U -statistics and imper-
fect ranking in ranked set sampling.J. Nonparametr. Statist.
10 111–126.

RANDLES, R. H. and WOLFE, D. A. (1979).Introduction to the
Theory of Nonparametric Statistics. Wiley, New York.

STOKES, S. L. and SAGER, T. W. (1988). Characterization of a
ranked-set sample with application to estimating distribution
functions.J. Amer. Statist. Assoc. 83 374–381.


