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ABSTRACT

Existing work on similar sequence matching has focused on either

whole matching or range subsequence matching. In this paper,

we present novel methods for ranked subsequence matching un-

der time warping, which finds top-k subsequences most similar to a

query sequence from data sequences. To the best of our knowledge,

this is the first and most sophisticated subsequence matching solu-

tion mentioned in the literature. Specifically, we first provide a new

notion of the minimum-distance matching-window pair (MDMWP)

and formally define the mdmwp-distance, a lower bound between

a data subsequence and a query sequence. The mdmwp-distance

can be computed prior to accessing the actual subsequence. Based

on the mdmwp-distance, we then develop a ranked subsequence

matching algorithm to prune unnecessary subsequence accesses.

Next, to reduce random disk I/Os and bad buffer utilization, we de-

velop a method of deferred group subsequence retrieval. We then

derive another lower bound, the window-group distance, that can be

used to effectively prune unnecessary subsequence accesses during

deferred group-subsequence retrieval. Through extensive experi-

ments with many data sets, we showcase the superiority of the pro-

posed methods.

1. INTRODUCTION
Time-series data are of growing importance in many new database

applications such as data mining and data warehousing [13, 20]. A

time-series is a sequence of real numbers representing values at

specific points in time. Typical examples of time-series data in-

clude music data, stock prices and network traffic data. The time-

series data stored in a database are called data sequences.
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Various similarity models have been studied in similar sequence

matching (finding data sequences similar to the given query se-

quence from the database). In this paper, we use the similarity

model based on the dynamic time warping (DTW) distance [4, 24].

The DTW distance is one of the most robust and widely used mea-

sures for various applications such as query by humming [31], im-

age searching [5], and speech recognition [21].

We develop a fast ranked subsequence matching solution for

time-series databases using distances as the ranking method. Ranked

subsequence matching finds top-k similar subsequences to a query

sequence from data sequences. To the best of our knowledge, this

is the first and foremost approach for such a matching, as all the ex-

isting methods have been developed only for either whole matching

[1, 6, 11, 12, 15, 20, 31] or range subsequence matching [7, 16, 18,

19, 28, 29, 30]. Range subsequence matching finds all similar sub-

sequences to a query sequence where their distances are less than

or equal to the tolerance value ǫ. However, we argue that the range

subsequence matching is very cumbersome to use in practice since

it requires users to know the corresponding tolerance value in ad-

vance, in order to find top-k similar subsequences using the range

subsequence matching. Furthermore, range subsequence matching

first obtains candidate subsequences in the index level without ac-

cessing data sequences whereas ranked subsequence matching pro-

gressively accesses data sequences during index search. Thus, we

need to develop 1) tight lower bounds for efficient matching, and

2) a method to avoid random disk I/Os. Table 1 summarizes repre-

sentative research on similar sequence matching. As illustrated in

Table 1, the k-NN, i.e., ranked subsequence matching problem has

not been solved yet.

Table 1: Comparison of the proposed methods and related

work.
Category Range query k-NN query

Whole matching [1, 6, 11, 12, 15, 20, 31] [6, 11, 12]

Subsequence matching [7, 16, 17, 18, 19, 28] ×

To perform ranked subsequence matching, we exploit the win-

dow construction method of our earlier work, DualMatch [18], which

is both efficient and simple for range subsequence matching. That

is, we divide data sequences into disjoint windows and query se-
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quences into sliding windows1. We first propose a concept of the

minimum-distance matching-window pair and derive a lower bound,

called the mdmwp-distance, based on this concept. The minimum-

distance matching-window pair for a query sequence and a sub-

sequence is a matching window pair, where the distance between

the two windows in the pair is the minimum among all matching

window pairs. Thus, as soon as we obtain the minimum-distance

matching-window pair for a subsequence, we can derive the mdmwp-

distance for the subsequence. Then, we can aggressively prune

unnecessary subsequence access requests in the index level. We

also validate our algorithm by proving the lower-boundness of the

mdmwp-distance.

We then propose a novel optimization technique called deferred

group subsequence retrieval to avoid excessive random disk I/Os

and bad buffer utilization. Deferred group subsequence retrieval

1) delays a set of subsequence retrieval requests, 2) groups the re-

quests by their corresponding subsequences, and 3) enables batch

retrieval. Since we have accumulated many requests, we can access

subsequences in a sequential fashion. In addition, by exploiting

many delayed matching windows, we derive another lower bound,

called the window-group distance, that can be used together with

deferred group subsequence retrieval. Based on the window-group

distance, we then propose another ranked subsequence matching

algorithm. We also validate this algorithm by proving the lower-

bound property of the window-group distance.

We performed extensive experiments using various data sets:

a mixed data set containing 33 data sets of the UCR time-series

archive [14]; a random walk data set; a stock data set; and a music

data set. The results show that our algorithms outperform com-

peting algorithms considerably up to orders of magnitude. This

advantage is particularly large when the buffer size is small.

The remainder of this paper is organized as follows. Section 2

reviews DTW and existing work related to range sequence match-

ing and k-NN search in time-series databases. Section 3 presents

the mdmwp-distance and the ranked subsequence matching algo-

rithms based on the distance. Section 4 presents an optimization

technique to boost the ranked subsequence matching algorithm as

well as the window-group distance. Section 5 presents the results

of performance evaluation. Section 6 summarizes and concludes

our paper.

2. BACKGROUND
In Table 2, we summarize the notation to be used throughout the

paper. In Section 2.1 we present a review of DTW along with ex-

isting lower bounds for whole matching, and in Section 2.2 we de-

scribe presents a review of related work for similar sequence match-

ing.

2.1 Review of DTW
In this section, we describe three distances, DTW and its two

lower bounds, LB Keogh [12] and LB PAA [31]. LB Keogh and

LB PAA can be used at the sequence level and at the index level,

respectively.

Given two sequences S and Q of the same length, the DTW

distance is recursively defined as follows. Figure 1(a) shows how

DTW performs elastic alignments between two sequences.

1
Our method can be extended to exploit other subsequence matching meth-

ods [7, 19] by changing the window construction mechanism. (More on
DualMatch will appear in Section 2.2.1.)

Table 2: Summary of notation.

Symbols Definitions

Ssid A sequence whose identifier is sid

Len(S) Length of sequence S

S[i] The i-th entry of sequence S (1≤i≤Len(S))

S[i : j] A subsequence of S, including entries from the i-th

one to the j-th

ω Length of the sliding/disjoint window

si The i-th disjoint window of sequence S

(= S[(i − 1) ∗ ω + 1 : i ∗ ω], i ≥ 1)

〈〉 empty sequence

Rest(S) A subsequence of S, including entries from the second

one to the last (= S[2 : Len(S)])

DTW (〈〉, 〈〉) = 0
DTW (S, 〈〉) = DTW (〈〉, Q) = ∞

DTW (S, Q) = p

√

√

√

√

√|S[1] − Q[1]|p + min

⎧

⎨

⎩

DTW (Rest(S), Rest(Q))
DTW (Rest(S), Q)
DTW (S, Rest(Q))

The DTW distance is computed by dynamic programming with

a matrix as shown in Figure 1(b). The warping path is defined

as a sequence of matrix elements, representing the optimal align-

ment for the two sequences. A matrix element (i, j) in the warp-

ing path represents an alignment between a query point Q[i] and

a data point S[j]. To avoid pathological alignments and to reduce

the time complexity of DTW, global constraints such as the Sakoe-

Chiba band constraint [24] and the Itakura Parallelogram constraint

[10] are used to limit the scope of the warping path [12]. With the

Sakoe-Chiba band constraint, the (i, j) matrix element becomes ∞
if |i − j| > ρ, where ρ is the warping width. DTWρ denotes the

DTW distance with a warping width ρ. We note that, if ρ = 0, the

DTW distance becomes the Lp distance.

Q

S

(a) DTW comparison.

Q

S
ρ

(b) Matrix for DTW computation.

Figure 1: Illustration of DTW.

Before reviewing existing lower bounding techniques for whole

matching, we define the notions of the query envelope [31] and

piecewise aggregate approximation (PAA) [12, 30].

Definition 1. The query envelope of a query Q,E(Q), with the

warping width ρ consists of the upper and lower envelopes of Q

and represents the region defined between the upper envelope U
and the lower envelope L. The i-th element (L[i], U [i]) in E(Q) is

defined as follows:

L[i] = min
−ρ≤r≤ρ

(Q[i + r]), U [i] = max
−ρ≤r≤ρ

(Q[i + r])

PAA converts the original sequence of length N into f (f≪N )

equal sized segments, and then stores the mean values of the seg-

ments. Formally, PAA of a data sequence S of length N , P(S), is

represented as a time-series [S[1],...,S[f ]] of length f , where
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S[i] = f
N

N
f

i
∑

j= N
f

(i−1)+1

S[j].

We can calculate the PAA of a query envelope by applying PAA

to the original upper and lower query envelopes. The i (1 ≤ i ≤
f)-th element (L[i], U [i]) in P(E(Q)) is given by:

L[i] = f
N

N
f

i
∑

j= N
f

(i−1)+1

L[j], U [i] = f
N

N
f

i
∑

j= N
f

(i−1)+1

U [j].

Now we define the distance (called LB Keogh) between a query

envelope E(Q) and a data sequence S, which is the tightest lower

bound for DTW that is used at the sequence level.

LB Keogh(E(Q), S) = p

√

√

√

√

√

N
∑

i=1

⎧

⎨

⎩

|S[i] − U [i]|p if S[i] > U [i]
|S[i] − L[i]|p if S[i] < L[i]

0 otherwise

As a lower bound that can be used at the index level, LB PAA2

is defined as the distance between the PAA of the query envelope
P(E(Q)) and the PAA of the data sequence P(S).

LB PAA(P(E(Q)),P(S)) =

p

√

√

√

√

√

f
∑

i=1

N
f

⎧

⎨

⎩

|S[i] − U [i]|p if S[i] > U [i]

|S[i] − L[i]|p if S[i] < L[i]
0 otherwise

(1)

(Q)

LB_PAA( ((Q)), (S[i:j]))

Q

L, U

(L), (U)

S[i:j]

(S[i:j])

Figure 2: Illustration of LB PAA.

To guarantee no false dismissal under DTW, we have the follow-

ing lemma [31].

Lemma 1. Given two sequences Q and S of the same length
and a warping width ρ, the following equation holds:

DTWρ(Q, S) ≥ LB Keogh(E(Q), S) ≥ LB PAA(P(E(Q)),P(S))

2.2 Related Work

2.2.1 Range Sequence Matching

We first review Agrawal et al.’s whole matching solution [1],

from which many other similar sequence matching solutions in-

cluding our algorithms have evolved. Their whole matching solu-

tion consists of index building and similar sequence matching pro-

cesses. In the index building process, each data sequence is trans-

formed into low-dimensional points using lower-dimensional trans-

formation, and the transformed points are stored in an R∗-tree [2].

2
We use Zhu and Shasha’s LB PAA [31], which is an optimized version

of Keogh’s LB PAA [12].

The lower-dimensional transformation is used to avoid the high di-

mensionality problem [3, 27]. We can use DFT, DWT, PAA, or

SVD as the lower-dimensional transformation.

In the similar sequence matching process, a query sequence is

similarly transformed into a low-dimensional point, and a range

query is constructed using the point and the given tolerance. Then,

by evaluating the range query using the index, the candidates are

identified. This method guarantees there be no false dismissal. It

may, however, cause false alarms (i.e., candidates that do not qual-

ify). Thus, for each candidate sequence obtained, the actual data

sequence is accessed from the disk; the distance from the query se-

quence is computed; and the candidate is discarded whenever it is a

false alarm. Our algorithms largely differ from this Agrawal et al.’s

solution since they focused on whole matching with range queries,

but we focused on subsequence matching with k-NN queries.

Faloutsos et al. [7] proposed a range subsequence matching so-

lution (FRM in short) as a generalization of the whole matching

solution. FRM uses the window construction method of dividing

data sequences into sliding windows and a query sequence into dis-

joint windows. In the index building process, FRM divides data

sequences into sliding windows, transforms each window into a

low-dimensional point, and stores the point into the R∗-tree. In the

subsequence matching process, FRM divides a query sequence into

disjoint windows; transforms each window into a low-dimensional

point; makes a range query using that point and the given tolerance;

and constructs a candidate set by searching the R∗-tree. Finally, it

identifies similar subsequences by eliminating false alarms. Wong

and Wong [28] proposed a range subsequence matching under time

warping by exploiting sliding windows. Their method has several

problems: 1) their lower bound is loose in that only prefixes of all

possible subsequences are indexed; 2) they do not exploit any di-

mension reduction technique, only suitable for very short queries

due to dimensionality curse [3]; and 3) in their experiment, every

query they tested has only one window (same as whole matching).

DualMatch [18, 16] and GeneralMatch [19], improve performance

in range subsequence matching by using different window con-

struction methods from FRM. Introducing the notion of duality in

constructing windows, DualMatch, performs subsequence match-

ing by dividing the data sequences into disjoint windows and the

query sequence into sliding windows. GeneralMatch generalizes

the concept of sliding windows and disjoint windows, and defines

J-sliding windows and J-disjoint windows respectively, perform-

ing subsequence matching using these generalized windows. Ex-

cept for a difference in the window construction mechanism, index

building and subsequence matching algorithms of DualMatch and

GeneralMatch are similar to those of FRM.

The algorithms to be proposed in this paper adapts the win-

dow construction mechanism of DualMatch, defined under the Eu-

clidean distance metric, and extend it to work under time warp-

ing. We note that our ranked subsequence matching solutions differ

from the previous subsequence matching solutions in the following

two points: 1) we support ranked subsequence matching as opposed

to range subsequence matching; and 2) we use the DTW distance

as opposed to the Euclidean distance.

2.2.2 K-Nearest Neighbor Search

Hjaltason et al. [9] and Roussopoulos et al. [23] proposed the

traditional k-NN search algorithms that use a minimum priority

queue to find the k-nearest objects from a query object. In these

algorithms, we first assume the object is stored in the multidimen-

sional index as an MBR (minimum bounding rectangle). Each time,

we then maintain the topmost k nodes/objects, which have the k-

smallest distances from the query object, in the minimum priority

425



queue. That is, the minimum priority queue maintains k records

each of which consists of node/object O, its type, and the distance

D(Q, O) from the query object Q, and the records are sorted by

the distance values. In the k-NN algorithms, we repeatedly replace

the records of the queue with the new nearest ones, and eventually

identify k objects that are nearest from the query object.

In the case of similar sequence matching, Keogh et al. [11] and

Chan et al. [6] proposed k-NN search algorithms for the whole

matching problem. Keogh et al. proposed a novel dimension re-

duction technique, called APCA (adaptive piecewise constant ap-

proximation), and they describe a k-NN whole matching algorithm

based on the basic k-NN solutions [9, 23] in order to demonstrate

superiority of their reduction technique. Chan et al. proposed

another k-NN whole matching algorithm that first finds an upper

bound of search range using Roussopoulos et al.’s k-NN solution,

and then performs the range whole matching using the bound. These

k-NN solutions differ from ours in that they handle the whole match-

ing problem only, while our solutions focus on subsequence match-

ing which is generalization of whole matching [19].

Keogh [12] proposed LB Keogh and LB PAA, tight lower bounds

under time-warping, and a k-NN whole matching solution based on

these bounds. Zhu and Shasha [31] proposed another LB PAA, an

optimal version of Keogh’s LB PAA, and a range whole matching

solution based on LB PAA. As we explained in Section 3, our so-

lutions exploited these two lower bounds. However, our solutions

differ from both solutions: both solutions are for whole matching,

but ours for subsequence matching; and Zhu and Shasha’s solution

was for range whole matching, but ours for ranked subsequence

matching.

We summarized in Table 1 (in Section 1) representative research

works on similar sequence matching. As illustrated in Table 1, our

proposed algorithms are the first approach that solves the k-NN,

i.e., ranked, subsequence matching problem.

3. RANKED SUBSEQUENCE MATCHING
In this section, we propose ranked subsequence matching al-

gorithms. In Section 3.1, we introduce two algorithms that ex-

tend earlier range subsequence matching and k-NN algorithms to

ranked subsequence matching by exploiting the window construc-

tion mechanism in DualMatch. In Section 3.2, we provide no-

tions of minimum-distance matching-window pair and mdmwp-

distance, and propose a new ranked subsequence algorithm based

on these notions.

Before we present ranked subsequence matching algorithms, we

give a formal definition of our problem:

Problem Definition 1. Given n data sequences S1, ..., Sn of

variable lengths, a query sequence Q, a number k, and a warping

width ρ, find k-nearest data subsequences for Q by using DTWρ.

Here, we do not allow Q of length l1 to match with a subse-

quence S of length l2 where l1 �= l2. To match Q with subse-

quences of different lengths, we need to scale Q with reasonable

scale factors (to prevent pathological scaling). While this is out of

our scope, one can support such matching on top of our framework.

3.1 DualMatchTopK and RangeTopK
We propose two ranked subsequence matching algorithms that

can be devised by applying DualMatch [18] to ranked whole match-

ing algorithms [6, 12]. We first propose a ranked subsequence match-

ing algorithm DualMatchTopK that applies the window construc-

tion mechanism of DualMatch to Keogh et al.’s ranked whole match-

ing algorithm [12]. We then propose another algorithm RangeTopK

that applies DualMatchTopK to Chan et al.’s ranked whole match-

ing algorithm [6].

Like Keogh et al.’s ranked whole matching algorithm, DualMatch-

TopK uses the traditional k-NN solutions [9, 23, 25] for the ranked

subsequence matching. (For the detailed explanation on traditional

k-NN solutions, readers are referred to Section 2.2.2.) In Keogh et al.’s

algorithm, they first construct a multidimensional index using lower-

dimensional transformations of fixed-length data sequences, and

subsequently evaluate the traditional k-NN query over the index

for the given query sequence of the same length. In subsequence

matching, however, data and query sequences can have arbitrary

lengths. Thus, to adapt Keogh et al.’s whole matching algorithm

to subsequence matching, we need to exploit the window construc-

tion method in subsequence matching. For the window construc-

tion method, we exploit that of DualMatch, which minimizes the

index size. That is, we first divide data sequences into disjoint win-

dows and store the windows in the multidimensional index through

lower-dimensional transformations. Thereafter, to support DTW,

we construct the query envelope for a query sequence, and then di-

vide the query envelope into sliding windows, and find k-NN sub-

sequences from the index using the traditional k-NN algorithm.

Algorithm 1 shows a ranked subsequence matching algorithm

DualMatchTopK. In this algorithm, we use an in-memory minimum

priority queue3 whose entry is in the form of a quintuple <obj, d,

j, sid, off>. Here, obj is the object type, i.e., one of a subsequence,

a leaf entry, a leaf node, and a non-leaf node; d the distance be-

tween the object and the matching window in the subsequence; j

the matching window number, i.e., the sliding window number;

sid the corresponding sequence id; and off the offset of the cor-

responding subsequence. The inputs of the algorithm are a query

sequence Q, the number k of subsequences to be returned, and a

warping width ρ. According to the window construction method

of DualMatch, we construct a query envelope E(Q) from Q and

divide the query envelope E(Q) into sliding windows E(qi). We

then transform each sliding window E(qi) into a low-dimensional

window P(E(qi)), and push the transformed window P(E(qi))
into the priority queue (Lines 4-5). Next, we pop an entry from

the queue one by one and perform the procedure of finding k-NN

subsequences (Lines 6-23) as follows. 1) If obj is a subsequence,

we append it to result and return the result if it already con-

tains k-NN subsequences (Lines 8-11). 2) If obj is a leaf entry, we

compute the offset of the corresponding subsequence and push the

subsequence into the priority queue (Lines 12-15). Here, we call

SequenceRetrieval function to first retrieve the subsequence from a

data sequence, if it is not yet retrieved, and then push the candidate

subsequence into the queue if both the LB Keogh distance and

the DTW distance are less then δcur , which is the DTW distance

between Q and the top k-th subsequence obtained so far. 3) If obj
is a leaf node, we push every leaf entry contained in the node into

the queue (Lines 16-19). 4) If obj is a non-leaf node, we push every

child entry of the node into the queue again (Lines 20-23).

In DualMatchTopK, pruning is executed just before an entry is

pushed into the queue, i.e., just before Lines 19 and 23 of Algo-

rithm 1 and Line 5 in SequenceRetrieval function. This is because

entries whose lower bound distances are greater than δcur will not

be included in the top-k subsequences. We note that δcur con-

tinually decreases as the top-k entries are changed. We also note

3
We observe that the size of the priority queue can grow large. To tackle

this problem, we propose priority queue minimization methods in which
we group query points into several query MBRs (QMBRs) so that pairs of
data points and QMBRs (rather than query points themselves) remain in the
priority queue until they are popped. Due to space limit, we refer the reader
to the extended version of our paper [8].
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Algorithm 1 DualMatchTopK

Input: Q, k, ρ
Output: k-nearest data subsequences for Q
1: Variable queue : Minimum priority queue
2: Variable results : List
3: Variable δcur ← ∞; /*δcur is the DTWρ distance between the Q

and the top k-th subsequence obtained so far*/
4: for each i-th sliding window E(qi) in E(Q) do

5: queue.Push(〈RootNode,MINDIST(P(E(qi)),RootNode),i,−1,−1〉);
6: while not queue.IsEmpty() do

7: 〈obj, d, j, sid, off 〉 ← queue.Pop();
8: if obj is a subsequence then

9: add obj to results;
10: if |results| = k then
11: return results;
12: else if obj is a leaf entry then

13: soff ← off − j + 1; /*start offset*/
14: eoff ← soff + Len(Q) − 1; /*end offset*/
15: SequenceRetrieval(queue, soff, eoff, sid, δcur , ρ);
16: else if obj is a leaf node LN then

17: for each leaf entry E 〈Point P , SeqID sid2, offset off2〉 in LN do

18: if LB PAA(P(E(qj)),P ) < δcur then
19: queue.Push(〈E, LB PAA(P(E(qj)),P ), j, sid2, off2〉);
20: else

21: for each child node E 〈MBR M , Child ptr〉 in obj do
22: if MINDIST(P(E(qj)),M) < δcur then

23: queue.Push(〈E, MINDIST(P(E(qj)),M), j, −1, −1〉);

Function 2 SequenceRetrieval

Input: queue, soff, eoff, sid, δcur , ρ
1: if Sub(= Ssid[soff : eoff]) is not yet retrieved then

2: retrieve Sub from Ssid[soff : eoff];
3: if LB Keogh(E(Q),Sub) < δcur then
4: if DTWρ(Q,Sub) < δcur then

5: queue.Push(Sub, DTWρ(Q,Sub),−1, sid,soff );
6: update δcur;

that MINDIST is a lower bounding distance function between a

minimum bounding rectangle (MBR) M and an enveloped query

window P(E(qj)) [4].

Example 1. Figure 3 depicts how DualMatchTopK operates us-

ing an example. Figure 3(a) shows the objects, object types and

distances, and Figures 3(b)∼(d) show how the minimum priority

queue changes according to object types of entries popped from

the queue. Note that DualMatchTopK computes the distances us-

ing different distance functions (MINDIST, LB PAA, LB Keogh or

DTWρ) according to object types of entries popped.

• When a non-leaf node RootNode is popped (Figure 3(b)):

1. Pop 〈RootNode, 0, 1, -1, -1〉 from the queue (Line 7).

2. Compute the MINDIST distance between each child node

of RootNode and P(E(qi)); push 〈R1, 1.3, 1, -1, -1〉 and

〈R2, 3.2, 1, -1, -1〉 into the queue. Here, we do not prune

any entry since δcur is ∞ (Lines 21∼23).

• When a leaf node R1 is popped (Figure 3(c)): 1. Pop 〈R1,

d=1.3, j=1, -1, -1〉(Line 7). 2. Compute the LB PAA distance

for each leaf entry contained in R1 and P(E(qi)); prune

the leaf entry s1 since its LB PAA distance (=4.5) is greater

than δcur (=4.0); but push 〈s2, 2.2, 1, 3, 8〉 since its LB PAA

distance (=2.2) is less than δcur (Lines 17∼19).

• When a leaf entry s2 is popped (Figure 3(d)): 1. Pop 〈s2,

d=2.2, j=1, sid=3, off=8〉 from the queue (Line 7). 2.Com-

pute the start and end offsets of the matched subsequence and

retrieve the corresponding subsequence; compute LB Keogh

distance between the subsequence and the query envelope

E(Q) (we do not prune this subsequence since its LB Keogh

distance (=3.3) is less than δcur (=3.7)); compute DTWρ dis-

tance (=3.4) between the subsequence and query sequence

Q; and push 〈S3[8:8+Len(Q)-1], 3.4, -1, 3, 8〉 and update δcur

as 3.4 (Lines 12∼15).

-

-

-

sx, sy

s1, s2

R1, R2

contains

-

8

37

-

-

-

offset

3.4

-

-

-

-
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Figure 3: An example of DualMatchTopK.

As an alternative algorithm, we propose RangeTopK, which ob-

tains an upper bound ǫ first corresponding to the top-kth distance

at the index level, and then finds top-k subsequences using the

range subsequence matching algorithm with ǫ. Algorithm 3 shows

RangeTopK, which consists of two steps. First, it finds k-nearest

candidates in the index level (Lines 5-22). Second, it retrieves all

k candidate subsequences; sets the distance between the k-th sub-

sequence and the query sequence to the user-specified tolerance ǫ
as an upper bound; and extracts the actual k-NN subsequences by

evaluating the range subsequence matching algorithm (Lines 23-

24).

3.2 MinimumDistanceMatchingWindowPair
and Pruning Algorithm

We can optimize DualMatchTopK to prevent the retrieval of un-

necessary subsequences. Unlike whole matching, in DualMatch-

TopK we divide a long sequence into smaller windows and use the

windows rather than the sequence itself in constructing and search-

ing the index [18]. Likewise, since MBRs or points stored in the

index represent the windows rather than the sequences, we can-

not prune the index search space before retrieving the actual sub-

sequences. For this reason, many unnecessary subsequences are

likely to be retrieved. To solve this problem, we propose an ap-

proach that prunes much of the search space while searching the in-

dex, consequently reducing the number of subsequences retrieved.

In order to prune the index search space, we present the novel

notion of minimum-distance matching-window pair, MDMWP in

short. MDMWP is the window pair whose distance is the minimum

among all the window pairs when comparing two sequences by

dividing windows. We formally define MDMWP as follows.
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Algorithm 3 RangeTopK

Input: Q, k, ρ
Output: results (k-nearest data subsequences for Q)
1: Variable queue : Minimum priority queue;
2: Variable max queue : Maximum priority queue;
3: Variable candidates : List;
4: Variable ǫ;
5: for each i-th sliding window E(qi) in E(Q) do

6: queue.Push(〈RootNode,MINDIST(P(E(qi)),RootNode),i,−1,−1〉);
7: while not queue.IsEmpty() do

8: 〈obj, d, j, sid, off 〉 ← queue.Pop();
9: if obj is a leaf entry then

10: soff ← off − j + 1; /*start offset*/
11: eoff ← soff + Len(Q) − 1; /*end offset*/
12: max queue.Push(Sub, DTWρ(Q,Sub),−1, sid,soff );
13: if max queue.Size() = k then

14: 〈obj2, d2, j2, sid2, off2〉 ← max queue.Top();
15: ǫ ← d2;
16: break;
17: else if obj is a leaf node LN then

18: for each leaf entry E 〈Point P , SeqID sid2, offset off2〉 in LN do

19: queue.Push(〈E, LB PAA(P(E(qj)),P ), j, sid2, off2〉);
20: else if obj is a non-leaf node then

21: for each child node E 〈MBR M , Child ptr〉 in obj do

22: queue.Push(〈E, MINDIST(P(E(qj)),M), j, −1, −1〉);
23: candidates ← RangeScan(E(Q), ǫ);
24: results ← Refinement(candidates, k);

Definition 2. Given a query envelope E(Q) and a data subse-

quence S[i : j], a matching window pair is the pair of a disjoint

window in S[i : j] and the corresponding sliding window inE(Q).

MDMWP is a matching window pair, where the distance between

the two windows in the pair is the minimum among all matching

window pairs.

The MDMWP can be defined not only in the original window space

(i.e., in the high-dimensional space) but also in the transformed

window space (i.e., in the low-dimensional space). We note that

we use LB Keogh and LB PAA as distance functions in the original

window space and in the transformed window space, respectively.

Example 2 shows one MDMWP in the original window space and

another in the transformed window space.

Example 2. Figure 4 shows an example of MDMWP and match-

ing window pairs. As shown in the figure, a query envelope E(Q)
and the corresponding subsequence S[i : j] have four matching

window pairs, (E(q1), s1), · · ·, and (E(q4), s4). Here, the third

one (E(q3), s3) is the MDMWP ofE(Q) and S in the original win-

dow space since its distance LB Keogh(E(q3), s3) is the small-

est among (E(qi), si)’s. However, the MDMWP of P(E(Q)) and

P(S) in the transformed window space is the last one since the cor-

responding distance LB PAA(P(E(q4)), P(s4)) is the smallest

among (P(E(qi)),P(si))’s.

Using the concept of MDMWP, we can prune much of the index

search space of DualMatchTopK. If we know MDMWP, we can

then compute a lower bound of the distance between the query se-

quence and the corresponding subsequence in advance. To further

illustrate this concept, we provide Definition 3 and Lemma 3.

Definition 3. Given a query envelope E(Q) and a data sub-

sequence S[i : j], if MDMWP of P(E(Q)) and P(S[i : j]) is

(P(E(qm)), P(sm)), then the mdmwp-distance of P(E(Q)) and

P(S[i : j]) is defined as p
√

r× LB PAA(P(E(qm)),P(sm))
where r = ⌊(Len(Q) + 1)/ω⌋ − 1.

s1 s2 s3 s4

=12.0

ω

E(q1) E(q2) E(q3) E(q4)

� Matching window pairs = { (E(q1),s1), (E(q2),s2), (E(q3),s3), (E(q4),s4) }

� MDMWP of E (Q) and S = (E(q3),s3)

� MDMWP of P(E(Q)) and P(S) = (P(E(q4) ), P(s4))

S

Q

subsequence S[i:j]

LB_Keogh(E(qi),si) 

LB_PAA(P(E(qi) , P(si)) =9.2

=19.3

=11.2

=7.5

=7.1

=9.8

=6.9

U

L

Figure 4: An example of MDMWP.

Now, we need the following lemmas to guarantee the correctness

of our approach, i.e., no false dismissals.

Lemma 2. Given a query envelope E(Q) and a data subse-
quence S[i : j], the following Eq. (2) holds;

LB Keogh(E(Q), S[i : j]) ≥
LB PAA(P(E(q1 · · · qr)),P(s1 · · · sr)) (2)

where r = ⌊(Len(Q) + 1)/ω⌋ − 1, and (E(qi), si) is the i-th
matching window pair.

PROOF: By the window consruction method of DualMatch, the
data subsequence S[i : j] must include at least r disjoint windows
s1, ..., sr, and also (possibly null) subsequences sh(at the head) and
st(at the tail). Thus, S[i : j] can be represented as shs1 · · · srst.
Similarly, E(Q) can be represented as E(qhq1 · · · qrqt). Thus, we
have

LB PAA(P(E(Q)),P(S[i : j])) =

LB PAA(P(E(qhq1· · ·qrqt)),P(shs1· · ·srst)) (3)

Here, if we omit the two matching subsequences pairs (E(qh), sh)
and (E(qt), st) from Eq.(3), we have Eq.(4), since LB PAA is a
monotonic increasing function of the sequence length.

LB PAA(P(E(Q)),P(S[i : j])) ≥
LB PAA(P(E(q1· · ·qr)),P(s1· · ·sr)) (4)

By Lemma 1, Eq.(2) holds, and this completes the proof.

Lemma 3. Given a query envelope E(Q) and a data subse-
quence S[i : j], the following Eq. (5) holds:

DTWρ(Q, S[i : j]) ≥
mdmwp−distance(P(E(Q)),P(S[i : j])) (5)

PROOF: We obtain the following (in)equations using Lemmas 1
and 2.

DTWρ(Q, S[i : j])

≥ LB Keogh(E(Q), S[i : j]) (by Lemma 1)

≥ LB PAA(P(E(q1 · · · qr)),P(s1 · · · sr)) (by Lemma 2)

Since the length of s1 · · · sr is r×ω and the length of P(s1 · · · sr)

is r×f , we have Eq.(6). Here, ω is the length of a window; Lk and

Uk are the lower and upper envelopes of P(E(qk)), repectively;
and sk is P(sk).

LB PAA(P(E(q1 · · · qr)),P(s1 · · · sr))

= p

√

√

√

√

√

r
∑

k=1

f
∑

l=1

ω

f

⎧

⎨

⎩

|sk[l] − Uk[l]|p if sk[l] > Uk[l]

|sk[l] − Lk[l]|p if sk[l] < Lk[l]
0 otherwise

(6)

= p

√

√

√

√

r
∑

k=1

LB PAA(P(E(qk)),P(sk))p (by Eq. (1))
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Here, let MDMWP of (P(E(Q)),P(S[i : j])) be (P(E(qm)),P(sm)),
then LB PAA(P(E(qm)),P(sm)) is less than or equal to LB PAA
(P(E(qk)),P(sk)) for all k (≤ r).

LB PAA(P(E(q1 · · · qr)),P(s1 · · · sr))

≥ p

√

√

√

√

r
∑

k=1

LB PAA(P(E(qm)),P(sm))p

= p
√

r · LB PAA(P(E(qm)),P(sm))p

= mdmwp−distance(P(E(Q)),P(S[i : j])) (7)

Thus, Eq. (7) holds, and this completes the proof.

To prune the unnecessary index search space, we use Theorem 1,

which applies Lemma 3 to DualMatchTopK.

Theorem 1. Suppose that the current popped entry is given

by <obj, d, j, sid, off> in DualMatchTopK, where obj is a leaf

entry and the corresponding subsequence for obj is not yet re-

trieved. Let δcur be the DTWρ distance between the query se-

quence and the top k-th data subsequence obtained so far. If p
√

r
× LB LAA(P(E(qj)), P(Ssid [off : off + ω − 1])) is greater

than δcur , then the corresponding subsequence is not included in

the top-k subsequences. Here, qj is the j-th sliding window of Q,

and r = ⌊(Len(Q) + 1)/ω⌋ − 1.

PROOF: We first show by contradiction that the pair (P(E(qj)),

P(Ssid[off : off + ω − 1])) must be MDMWP. Assume that this

pair is not MDMWP and that the subsequence for this pair has not

already been retrieved. However, since the distances of all popped

entries are ordered by their distance values, MDMWP for the sub-

sequence must have been popped earlier than this pair, and thus,

the subsequence has already been retrieved. This contradicts the

assumption above. Therefore, the pair must be MDMWP. We then

prove the theorem using Lemma 3. According to Lemma 3, since

(P(E(qj)),P(Ssid[off : off + ω − 1])) is MDMWP, the DTWρ

distance between the corresponding subsequence and the query se-

quence, DTWρ(Q,Ssid[off − j + 1 : off − j + Len(Q)]),

is greater than or equal to the mdmwp-distance p
√

r× LB PAA
(P(E(qj)),P(S[off : off +ω−1])). Thus, if the mdmwp-distance

is greater than δcur , the DTWρ distance between the corresponding

subsequence and the query sequence is also greater than δcur , and

accordingly, that subsequence cannot be included in the results

of k-NN subsequences.

We present the AdvTopK algorithm, which incorporates the mdmwp-

distance based pruning technique in DualMatchTopK. We only need

one modification in DualMatchTopK. That is, we replace SequenceRe-

trieval with MDMWP-Retrieval. Function MDMWP-Retrieval in-

cludes an additional pruning step in Line 3. We can prune the sub-

sequence without retrieval if its mdmwp-distance is greater than

δcur (Line 3). We note that we still have to use a loose lower bound

not multiplying by p
√

r in Lines 18 and 22 in Algorithm 1 since we

cannot guarantee that a given MBR contains entries belonging to

MDMWPs.

Theorem 2. Algorithm AdvTopK correctly retrieves top-k sub-

sequences in order.

PROOF: AdvTopK is devised by applying MDMWP-based pruning

to DualMatchTopK. Note that we maintain a priority queue to keep

top-k subsequences in order. Thus, it is sufficient to show that The-

orem 1 is correctly applied to MDMWP-Retrieval of AdvTopK. We

add lines 2-3 in MDMWP-Retrieval for MDMWP-based pruning

according to Theorem 1. Let the current popped entry be <obj,

Function 4 MDMWP-Retrieval

Input: queue, d, j, soff, eoff, sid, δcur , ρ
1: if Sub(= Ssid[soff : eoff]) is not yet retrieved then
2: mdmwp-dist ← p

√
r × d; /*d = LB PAA(P(E(qj)), P(sj))*/

3: if mdmwp-dist ≤ δcur then

4: retrieve Sub from Ssid[soff : eoff];
5: if LB Keogh(E(Q),Sub) < δcur then
6: if DTWρ(Q,Sub) < δcur then

7: queue.Push(Sub, DTWρ(Q,Sub),−1, sid,soff );
8: update δcur;
9: else

10: mark Ssid[soff : eoff] as retrieved;

d, j, sid, off> in AdvTopK. To guarantee MDMWP-based prun-

ing by Theorem 1, we must satisfy the following conditions: c1)

obj is of a leaf entry; c2) the corresponding subsequence for obj
is not yet retrieved. To satisfy c1), MDMWP-Retrieval is called

only when obj is of a leaf entry. To satisfy c2), we have line 1 in

MDMWP-Retrieval. Additionally, to perform MDMWP-distance

computations only for MDMWPs, we have lines 9-10 in MDMWP-

Retrieval. That is, if an MDMWP is pruned in line 3, we mark the

corresponding subsequence as retrieved. Therefore, AdvTopK cor-

rectly retrieves top-k subsequences in order.

4. DEFERREDGROUPSUBSEQUENCERE-

TRIEVAL

4.1 Concept
Although we prune a considerable number of unnecessary sub-

sequence accesses at the index level, we still encounter two perfor-

mance problems: 1) excessive random disk I/Os and 2) bad buffer

utilization. When we retrieve subsequences one by one to refine

candidates, accesses to the data pages for the candidates are likely

to be unclustered, making each access incur a random disk I/O.

More seriously, if we have a limited buffer size (especially, in a

muti-user environment), these random access I/Os would result in

low locality, and thus, we might have to read same data pages re-

peatedly from disk. Suppose that we have two buffer pages and

six page accesses requested: p30, p10, p20, p30, p10, p20. In such

a case, sequential flooding [22] is bound to happen; all the pages

have to be read from disk since the pages already fetched (i.e., p30

and p10) are replaced before being reused.

To tackle this problem, we propose deferred group subsequence

retrieval that delays a fixed size set of subsequence retrieval re-

quests and enables batch retrieval. Since we have many requests

delayed, we can access our requests in a sequential fashion. How-

ever, since we change the original subsequence access order, δcur is

not reduced as fast as when we access the subsequences in the origi-

nal order. On the other hand, by exploiting many delayed matching

windows we can further tighten the lower bound for each subse-

quence.

For deferred group subsequence retrieval, we introduce a data

structure called the group subsequence access list for storing all

requests delayed for the next bulk access. Group subsequence ac-

cess list is a list of window request groups. Each window request

group Ga corresponds to one subsequence retrieval and consists of

up to r (= ⌊(Len(Q) + 1)/ω⌋ − 1) window access requests sa,b,

where sa,b represents a window access request for the b-th match-

ing window of Ga. That is, all requests delayed are grouped by

their starting offsets. Here, a hash-based technique is used for fast

grouping.
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Example 3. Figure 5 shows a group subsequence access list.

As depicted, all window accesses requested are grouped by their

starting addresses. The second group G2 has the three window

access requests (s2,1, s2,3, s2,4) and therefore waits for the second

disjoint window request (s2,2).

Group1 (offset:100)

Group2 (offset:400)

Groupm (offset:900)

starting offset of 
a subsequence

(P(E(q2)),P(s1,2))

(P(E(q2)),P(s1,1))

(P(E(q1)),P(s2,1))

(P(E(q3)),P(s2,3))

(P(E(q4)),P(s2,4))

(P(E(q2)),P(sm,2))

Groupi (offset:700)
(P(E(q2)),P(si,2))

(P(E(q3)),P(si,3))

…
…

hash table

Group1 (offset:100)

Group2 (offset:400)

Groupm (offset:900)

starting offset of 
a subsequence

(P(E(q2)),P(s1,2))

(P(E(q2)),P(s1,1))

(P(E(q1)),P(s2,1))

(P(E(q3)),P(s2,3))

(P(E(q4)),P(s2,4))

(P(E(q2)),P(sm,2))

Groupi (offset:700)
(P(E(q2)),P(si,2))

(P(E(q3)),P(si,3))

…
…

hash table

Figure 5: Example of a group subsequence access list.

In Definition 4, we formally define a new distance called the

window-group distance that can be used to effectively prune unnec-

essary subsequence accesses during deferred group-subsequence

retrieval. The window-group distance is derived by exploiting both

delayed matching windows in each group and the largest distance

in the group subsequence access list. Using the window-group dis-

tance, we can derive another lower bound in Theorem 3.

Definition 4. Suppose that a group Ga in the group subsequence
access list has m (≤ r) windows Wm and that the last inserted en-
try in the list is <P(E(qc)), P(sc)>. For each group correspond-
ing to a subsequence S[i : j] in the group subsequence access list,
the window-group dist (WG-dist in short) between the query enve-
lope E(Q) and the subsequence S[i : j] is defined as

p

√

∑

sb∈Wm
LB PAA(P(E(qb)),P(sb))

p

+LB PAA(P(E(qc)),P(sc))p × (r − m)

where r = ⌊(Len(Q) + 1)/ω⌋ − 1.

Theorem 3. Given a query envelope E(Q) and a data subse-
quence S[i : j], then the following Eq. (8) holds:

DTWρ(Q, S[i : j]) ≥ WG−dist(P(E(Q)),P(S[i : j])) (8)

PROOF: Here, the group Ga waits for r − m window requests for

this group. Since all window access requests popped from the pri-

ority queue are ordered by distance, the LB PAA distance for any

remaining window request is larger than the LB PAA distance be-

tween P(sc) and P(E(qc)). Thus, the equation preserves a lower

bound of the distance between the query and the subsequence cor-

responding to the group Ga.

Example 4. Recall G1 in Figure 5. In Figure 6, suppose that

the distances for the two requests are 11 and 27, respectively, and

that s2,4 in G2 is the last inserted window request in the group sub-

sequence access list, and its distance is 38. According to Theorem

3, the distances for the remaining window requests must be greater

than or equal to 38. Thus, WG−dist for G2(= p
√

11p + 27p + 38p

×(4 − 2)) can be derived as shown in Figure 6.

4.2 Putting It Altogether
We present the DeferredTopK algorithm, which incorporates the

deferred group subsequence retrieval technique in AdvTopK. We

need to modify two things in AdvTopK. 1) We replace MDMWP-

Retrieval with WGRetrieval. 2) At the terminating condition in

s1 s2 s3 s4

E(q1) E(q2) E(q3) E(q4)

S

Q

subsequence S[i:j]

=27 =11 ≥ 38 ≥ 38 

WG-dist(P(E(Q), P(S[i:j])) : ( )11 27 38 4 2p p pp + + × −

U

L

LB_PAA(P(E(qi) , P(si)) 

Figure 6: An example of WG-dist using Theorem 3.

Algorithm 1 (Line 10), if the size of a group sequence access list

(GSAL in short) is greater than zero, we retrieve data subsequences

resultGSAL corresponding to remaining entries in GSAL, and return

top-k subsequences among result and resultGSAL .

Function 5 shows the function WGRetrieval that uses a group

subsequence access list GSAL. It adds a subsequence request to

the corresponding group in the list until the size of GSAL reaches

the user-defined maximum size (=MAX GSAL SIZE) of the list

(Lines 1-3). Then, for each group corresponding to a subsequence,

we calculate its lower bound (Lines 4-10). Here, we prune any

subsequence request if its lower bound is greater than δcur (Line

11). Otherwise, we retrieve the subsequence in the data sequence,

and push the result to the priority queue if both its LB Keogh and

DTWρ distances are less than δcur (Lines 12-15).

Theorem 4. DeferredTopK correctly retrieves top-k subsequences

in order.

PROOF SKETCH: Similarly to Theorem 2, i.e., by using the lower

bounds and DualMatchTopK, we can prove correctness of Deferred-

TopK. We omit the detailed formal proof due to space limitation.

Function 5 WGRetrieval

Input: queue, d, soff, eoff, sid, δcur , ρ
1: Static Variable GSAL : Group subsequence access list
2: if Sub(= Ssid[soff : eoff]) is not yet retrieved then

3: GSAL[〈sid, soff 〉].Add(d);
4: if |GSAL| = MAX GSAL SIZE then

5: for each entry 〈〈sid2, soff2〉, winreqlist〉 do
6: eoff2 ← soff2 + Len(Q) − 1;
7: tmpDist ← (r − |winreqlist|) × dp;
8: for each win dist in winreqlist do

9: tmpDist ← tmpDist + win distp;
10: wg-dist ← p

√
tmpDist ;

11: if wg-dist ≤ δcur then

12: retrieve Sub2 from Ssid2[soff2 : eoff2];
13: if LB Keogh(E(Q),Sub2) < δcur then

14: if DTWρ(Q,Sub2) < δcur then

15: queue.Push(Sub2, DTWρ(Q,Sub2),−1, sid2, soff2);
16: update δcur ;
17: else

18: mark Ssid2[soff2 : eoff2] as retrieved;
19: GSAL.Clear();

5. PERFORMANCE EVALUATION
We evaluate the performance of a sequential scan algorithm Se-

qTopK exploiting LB Keogh and our four algorithms DualMatch-

TopK, RangeTopK, AdvTopK and DeferredTopK. We allocate mem-
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ory of only 0.5% of the database size for the group subsequence ac-

cess list in DeferredTopK. Our main objective in the experiments is

to see performance gains for various parameters such as the buffer

size and k. Section 5.1 describes the setup for the experiments, and

Section 5.2 presents analysis of the experimental results.

We do not report the quality of our experimental results since

our algorithms correctly find top-k subsequences in a ranked order

in terms of DTW distances under our model (i.e., 100% quality

guaranteed). However, in some applications the quality might be

different from DTW distances, e.g., some poorly hummed melodies

would match with unwanted melodies in databases. This issue is

interesting, but is application-dependent.

5.1 Experiment Setup
As a main experimental data set, we use 33 data sets of differ-

ent characteristics in the UCR time-series archive [14] used in [12,

31]. To evaluate the performance in subsequence matching, we

construct a long sequence of 1,055,525 entries by concatenating all

33 UCR data sets. We call this UCR data set UCR-DATA. We have

the following reasons to concatenate the datasets: 1) in order to an-

alyze and compare with results in other datasets, the UCR dataset

should be similar in size to the other datasets; 2) to show the ef-

fectiveness of our method regardless of heterogeneity of data and

queries. In addition, we use three more data sets: one synthetic

and two real data sets. The synthetic data set, used in FRM [7],

DualMatch [18], and GeneralMatch [19], contains random walk

data consisting of one million entries: the first entry is set to 1.5,

and subsequent entries are obtained by adding a random value in

the range (-0.001,0.001) to the previous one. We call this data set

WALK-DATA. The first real data set is a stock data set, also used

in [7, 18, 19], consisting of 329,112 entries. We call this data set

STOCK-DATA. The second real data set is a music data set con-

sisting of 2,373,120 entries. We construct this music data set by

extracting pitch data from 500 MIDI files. We call this data set

MUSIC-DATA.

We use the number of candidates, the number of page accesses,

and the wall clock time as the performance metrics. Table 3 sum-

marizes experimental parameters and their values. We generate

query sequences from the data sequence by taking subsequences of

length Len(Q) starting from random offsets as in [7, 18, 19]. We

select the query sequences that have more than 90% filtering effi-

ciency in searching the index, since the query sequences with lower

filtering efficiency (i.e., less than 90%) are known to be inadequate

to use the index [12]. However, DeferredTopK is as competitive

as SeqTopK even when filtering efficiency is low. For this pur-

pose, we perform another experiment for each of 33 queries hav-

ing different filtering efficiency for UCR-DATA (see the results of

Experiment 5). We omit results for this experiment due to space

limitation. The reader may refer to [8].

All the experiments are done on Linux Kernel 2.6 PC with 512

Mbytes RAM and Pentium IV 2.8 GHz CPU. We use LRU as the

buffer page replacement algorithm, and set the page size to 4096

bytes. To avoid the buffering effect of the OS file system and to

guarantee actual disk I/Os, we use the O DIRECT flag [26] when

we open data and index files. As the multidimensional index, we

use the R*-tree for all the index-based algorithms DualMatchTopK,

RangeTopK, AdvTopK, and DeferredTopK. As we explained in Sec-

tion 2, we use PAA as the feature extraction function and extract

eight features from each window. For each query sequence, we set

the warping width to 5% of length. We also performed experiments

for varying the warping width, but the performance trends are sim-

ilar, and thus we omit the results for brevity.

Table 3: Experimental parameters and their values.

Parameter Default Range

k 25 5 ∼ 50

Buffer size 5% 1% ∼ 10%

Len(Q) 384 256, 384, 512

ω (window size) 64 32, 64, 128

5.2 Experiments and Results
Experiment 1) (effect of k) Figure 7 shows the experimental re-

sults for UCR-DATA by varying k. Figure 7(a) shows the number

of candidates; Figure 7(b) the number of page accesses; and Figure

7(c) the wall clock time.

As shown in Figure 7(a), AdvTopK and DeferredTopK signifi-

cantly reduce the number of candidates by up to 163.8 times com-

pared with SeqTopK and by up to 69.8 times compared with Range-

TopK. AdvTopK and DeferredTopK also reduce the number of can-

didates by a factor of 2.1 compared with DualMatchTopK. This in-

dicates that LB PAA and our two lower bounds (mdmwp-distance

and window-group distance) are very effective in pruning unneces-

sary subsequence access requests. SeqTopK shows the highest and

most constant number of candidates, since it always scans the en-

tire database. RangeTopK also shows a relatively large number of

candidates. This means that the candidate set obtained in the index

level is not tight enough to identify real top k similar subsequences.

In terms of the number of page accesses, DeferredTopK provides

significant reduction by up to 25.2 times, 11.9 times, 10 times, and

4.3 times compared with DualMatchTopK, SeqTopK, RangeTopK,

and AdvTopK, respectively. This shows that the deferred group

subsequence retrieval is very effective in reducing the number of

page accesses. As shown in Figure 7(b), SeqTopK shows a constant

number of page accesses, since it sequentially retrieves all the data

subsequences. RangeTopK also shows a constant number of page

accesses, since it obtains a quite large number of candidates in the

index level and retrieves the corresponding data subsequences in

a sequential manner. DualMatchTopK and AdvTopK, however, re-

trieve the data subsequences that are not pruned in the index level,

and thus, their numbers of page accesses increase as k increases,

i.e., as the number of candidates increases. Due to this random

access, the numbers of page accesses of DualMatchTopK and Adv-

TopK become larger than that of SeqTopK if k is greater than 25 and

40, respectively. In contrast, using the group subsequence access

list, DeferredTopK retrieves the candidate subsequences as groups,

that is, it accesses data pages in a sequential manner. This group

access mechanism enables DeferredTopK to reduce the number of

page accesses compared with DualMatchTopK and AdvTopK.

As shown in Figure 7(c), DeferredTopK significantly reduces the

wall clock time compared with the other four algorithms (by up to

62.4 times, 52.3 times, 23.8 times, and 6.3 times compared with Se-

qTopK, RangeTopK, DualMatchTopK, and AdvTopK, respectively).

In subsequence matching, the wall clock time is determined by two

major factors: 1) the time for accessing disk pages and 2) the time

for computing distances between query and candidate sequences.

This means that the wall clock time is reflected by both the num-

ber of candidates and the number of page accesses. As shown in

Figures 7(a) and 7(b), since DeferredTopK shows the best result

in terms of both candidates and page accesses, it obviously out-

performs the other algorithms in the wall clock time. Comparing

Figure 7(c) with Figure 7(b), the increasing trend of AdvTopK and

DualMatchTopK in the wall clock time is slightly slower than that

in the number of page accesses. This is because these two algo-

rithms significantly reduce the distance computation time due to a

small number of candidates.
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Figure 7: Experimental results for UCR-DATA by varying k.

Experiment 2) (effect of the buffer size) Figure 8 shows the ex-

perimental results for UCR-DATA by varying the buffer size. Fig-

ures 8(a) and 8(b) show the number of page accesses, and the wall

clock time, respectively. We note that the number of candidates

does not change for any buffer size, and thus, we omit the graph

for the number of candidates. We note that the small buffer size

is very crucial for both large (hundreds of gigabytes to terabytes)

time-series data and multi-user environments.
DeferredTopK AdvTopK DualMatchTopK RangeTopK SeqTopKDeferredTopKDeferredTopK AdvTopKAdvTopK DualMatchTopKDualMatchTopK RangeTopKRangeTopK SeqTopKSeqTopK

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7  8  9  10

#
 o

f 
p
a
g
e
 a

c
c
e
s
s
e
s

buffer size / database size (%)

(a) Number of page accesses.

 1

 10

 100

 1  2  3  4  5  6  7  8  9  10

w
a
ll 

c
lo

c
k
 t
im

e
 (

s
e
c
o
n
d
s
)

buffer size / database size (%)

(b) Wall clock time.

Figure 8: Experimental results for UCR-DATA by varying the

buffer size.
As the buffer size increases, the number of page accesses de-

creases for all the index-based algorithms DualMatchTopK, Range-

TopK, AdvTopK, and DeferredTopK. This is obvious since, as the

buffer size increases, the buffer hit-ratio in accessing candidate sub-

sequences increases. We note that the DeferredTopK shows much

better performance with a very small buffer size. This is the most

desirable characteristic of the deferred group subsequence retrieval.

That is, many random subsequence requests are accumulated in the

group subsequence access list, being rescheduled to a sequential

scan. The trend for the wall clock time is similar to that of the

number of page accesses.

When the buffer size is small, DualMatchTopK is much worse

than the other algorithms including SeqTopK in terms of page ac-

cesses. For example, when the buffer size is less than 6% in Fig-

ure 8(a), DualMatchTopK shows the worst result in page accesses,

since it incurs the largest number of random accesses. However,

due to reduction in the distance computation time (i.e., the number

of candidates), in Figure 8(b), DualMatchTopK is better than Seq-

TopK and RangeTopK. On the other hand, DeferredTopK shows the

best result both in the wall clock time and in page accesses, since it

exploits both the pruning effect by lower bounds and the buffering

effect by the group sequential access list. Specifically, Deferred-

TopK reduces the wall clock time by up to 28.6 times, 26.9 times,

18.2 times, and 7.7 times compared with SeqTopK, RangeTopK,

DualMatchTopK, and AdvTopK, respectively.

Experiment 3) (effect of the window size) Figure 9 shows the

experimental results for UCR-DATA by varying the window size.

Like Experiments 1 and 2, SeqTopK shows constant values in all

three measures, since it fully scans the entire database and consid-

ers all possible subsequences, regardless of the window size. On

the other hand, the results of the other four algorithms are changed

according to the window size, since they use window construction

mechanism [7, 18, 19] of subsequence matching. We note that, as

the window size increases, all three measures of these four algo-

rithms decrease. This decreasing trend is well explained by the

window size effect [18]. That is, longer windows decrease the num-

ber of candidates, and accordingly, reducing the number of page

accesses and the wall clock time.

As shown in Figure 9(c), DeferredTopK still outperforms the

other four algorithms, regardless of the window size. It improves

matching performance by up to 27.0 times, 26.4 times, 24.1 times,

and 2.6 times compared with SeqTopK, DualMatchTopK, Range-

TopK, and AdvTopK, respectively.

Experiment 4) (effect of the query length) Figure 10 shows the

experimental results for UCR-DATA by varying the query length.

In the case of SeqTopK, the number of candidates and the number of

page accesses do not change according to the query length (actually,

the number of candidates is only slightly changed, since the number

of all possible subsequences is given by Len(S) − Len(Q) + 1).

The wall clock time of SeqTopK, however, increases according to

the query length, since the longer length requires more operations

in computing the DTW distance. RangeTopK shows a similar trend

to SeqTopK, since, as we explained in Experiment 1, it has sequen-

tial characteristics in accessing candidate subsequences.

In cases of DualMatchTopK, AdvTopK, and DeferredTopK, the

number of candidates slightly increases according to the query length.

This increasing trend is also explained by the window size effect.

That is, as the query length increases, the relative size of the cor-

responding window decreases, and thus, the more candidates occur

due to the window size effect. Due to the increase in the num-

ber of candidates, the number of page accesses and the wall clock

time also increase for the larger query length. We note that, in Fig-

ures 10(b) and 10(c), the increasing slope of DualMatchTopK is the

sharpest compared with AdvTopK and DeferredTopK, since it has

the least efficient buffer utilization. Like the previous experimental

results, we can see that DeferredTopK improves matching perfor-

mance by one or two orders of magnitude compared with the other

algorithms.

Experiment 5) (effect of different data sets) Figures 11 and 12

show the experimental results for WALK-DATA and MUSIC-DATA,

respectively. We omit the result for STOCK-DATA since the trend

in STOCK-DATA is similar to the one in WALK-DATA. We use

the same parameter values as in Experiment 1. Because the results

in the figures show such a similar tendency to those of UCR-DATA

in Figure 7, we omit the detailed description of the performance

results.
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Figure 9: Experimental results for UCR-DATA by varying the window size.
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Figure 10: Experimental results for UCR-DATA by varying the query length.
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Figure 11: Experimental results for WALK-DATA by varying k.
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Figure 12: Experimental results for MUSIC-DATA by varying k.
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6. CONCLUSIONS
In this paper, we presented novel ranked subsequence matching

methods for time-series databases. We showed that our advanced

algorithms reduce false alarms and improve performance signifi-

cantly compared with the competing algorithms.

We first proposed two ranked subsequence matching algorithms

DualMatchTopK and RangeTopK by adapting the window construc-

tion mechanism of DualMatch defined under Euclidean distance

metric to work under time warping, and applying it to the pre-

vious k-NN whole matching solutions. To improve the pruning

power in searching the index, we then proposed a novel notion of

the minimum-distance matching-window pair and derived a lower

bound mdmwp-distance based on the notion in Theorem 1. Us-

ing the mdmwp-distance, we proposed an advanced algorithm Ad-

vTopK and proved its correctness in Theorem 2. After then, we pro-

posed the deferred group subsequence retrieval to avoid excessive

random disk I/Os and bad buffer utilization. Deferred group sub-

sequence retrieval delayed a set of subsequence retrieval requests,

grouped the requests by their corresponding subsequences, and en-

abled batch retrieval. Since we accumulated many requests, we

could access subsequences in a sequential access fashion. In ad-

dition, by exploiting many delayed matching windows, we derived

another lower bound window-group distance in Theorem 3 that can

used together with deferred group subsequence retrieval. Using this

group access mechanism, we finally proposed a further advanced

algorithm DeferredTopK and proved its correctness in Theorem 4.

Through extensive experiments using both real and synthetic data

sets, we showed that a substantial number of candidates were pruned

out with the lower bounds in Theorems 1 and 3 and that many data

pages were sequentially accessed with the deferred group subse-

quence retrieval in DeferredTopK. Extensive experiments showed

that our advanced algorithms outperform competing algorithms in-

cluding the sequential scan algorithm exploiting LB Keogh by up

to orders of magnitude. This speedup has been achieved by us-

ing aggressive pruning techniques based on the lower bounds and

the deferred group subsequence retrieval. Overall, we believe our

ranked subsequence matching methods provide comprehensive in-

sight and a substantial framework for future research.
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