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Abstract After extending the theory of Rankin–Selberg local factors to pairs
of �-modular representations of Whittaker type, of general linear groups over a non-
Archimedean local field, we study the reduction modulo � of �-adic local factors and
their relation to these �-modular local factors. While the �-modular local γ -factor we
associate with such a pair turns out to always coincide with the reduction modulo � of
the �-adic γ -factor of anyWhittaker lifts of this pair, the local L-factor exhibits a more
interesting behaviour, always dividing the reduction modulo-� of the �-adic L-factor
of any Whittaker lifts, but with the possibility of a strict division occurring. We com-
pletely describe �-modular L-factors in the generic case and obtain two simple-to-state
nice formulae: Let π, π ′ be generic �-modular representations; then, writing πb, π

′
b

for their banal parts, we have

L(X, π, π ′) = L(X, πb, π
′
b).

Using this formula, we obtain the inductivity relations for local factors of generic
representations. Secondly, we show that

L(X, π, π ′) = GCD(r�(L(X, τ, τ ′))),
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where the divisor is over all integral generic �-adic representations τ and τ ′ which
contain π and π ′, respectively, as subquotients after reduction modulo �.

Mathematics Subject Classification Primary 11F70 (Representation-theoretic
methods; automorphic representations over local and global fields); Secondary 22E50
(Representations of Lie and linear algebraic groups over local fields)

1 Introduction

Let F be a (locally compact) non-Archimedean local field of residual characteristic p
and residual cardinality q, and let R be an algebraically closed field of characteristic �

prime to p or zero. In this article, following Jacquet–Piatetski-Shapiro–Shalika in [9]
for complex representations, we associate local Rankin–Selberg integrals with pairs
of R-representations ofWhittaker typeρ andρ′ ofGLn(F) andGLm(F) and show that
they define L-factors L(X, ρ, ρ′) and satisfy a functional equation defining local γ -
factors. The purpose of this article lies both in the future study of R-representations
by these invariants and in the relationship between �-modular local factors and the
reductions modulo � of �-adic local factors (we quote our main theorems towards this
goal at the end of this introduction).

The theory of �-modular representations of GLn(F) was developed by Vignéras
in [20], culminating in her �-modular local Langlands correspondence for GLn(F) in
[23], which is characterised initially on supercuspidal �-modular representations by
compatibility with the �-adic local Langlands correspondence. The possibility of char-
acterising such a correspondence with natural invariants forms part of the motivation
for this work. Indeed, already for GL2(F) this is an interesting question, an answer
given in this special case by Vignéras in [22].

We follow [9] to define local factors for R-representations of Whittaker type, after
understanding the splitting of R-Haar measures required for this approach in Sect. 2.2.
In Sect. 3, we show that an L-factor attached to �-adic representations of Whittaker
type is equal to the inverse of a polynomial with coefficients in Z�, allowing for a
natural reduction modulo � map on the set of �-adic L-factors. Furthermore, for �-
modular representations π and π ′ of Whittaker type of GLn(F) and GLm(F), there
exist �-adic representations τ and τ ′ ofWhittaker type of GLn(F) and GLm(F)which
stabilise natural Z�-lattices � and �′ in their respective Whittaker models such that
the �-modular representations induced on � ⊗

Z�
F� and �′ ⊗

Z�
F� are isomorphic

to the Whittaker models of π and π ′. Our first main result is a comparison between
the L-factors and local γ -factors defined by these two reduction modulo � maps.

Theorem 3.13 1. The �-modular L-factor L(X, π, π ′) divides the reduction mod-
ulo � of the �-adic L-factor L(X, τ, τ ′). Moreover, the division of L-factors may
not be an equality.

2. Let θ be an �-adic character of F. The local γ -factor associatedwithπ, π ′ andwith
the reduction modulo � of θ is equal to the reduction modulo � of the local γ -factor
associated with τ, τ ′ and θ .
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Due to their nice behaviour with reduction modulo �, we obtain the inductivity
relation of �-modular γ -factors of representations of Whittaker type (Theorem 4.1)
by choosing appropriate lifts and reducing the �-adic inductivity relation of γ -factors,
and from this we obtain a “division inductivity relation” for �-modular L-factors
(Lemma 4.4). The remainder of the article is concerned with �-modular L-factors and
their relation to �-adic L-factors. Our first main result in this direction is the complete
answer for cuspidal �-modular representations.

Theorem 4.9 Let π1 and π2 be two cuspidal �-modular representations of Gn1
and Gn2 . Then L(X, π1, π2) is equal to 1, except in the following case: π1 is banal
(hence supercuspidal), andπ2 � χπ∨

1 for some unramified characterχ of F× (in par-
ticular n1 = n2). When π1 is banal, and π2 � χπ∨

1 , let e be the common ramification
index of π1 and π2 and we have

L(X, π1, π2) = 1

1 − (χ(
F )X)n/e

and this factor is the reduction modulo � of the L-factor of any cuspidal lifts of π1
and π2.

The proof of this theorem is diverse and uses the main result of [13] on test vectors
for �-adic representations for the banal case, the division inductivity relation of L-
factors for the cuspidal non-supercuspidal case, and a separate examination of the
non-banal supercuspidal case by studying their lifts.

By restricting to pairs of banal generic representations, we obtain the inductivity
relation of L-factors in this setting, and an explicit formula analogous to the �-adic
case (Theorem4.17). Banal �-modular representationswere introduced and studied for
inner forms of GLn by Mínguez and Sécherre in [16]. In our Preliminaries (Sect. 2.5),
we show that a generic representation π of GLn(F) can be written as a product of its
nicely behaved banal part πb and its totally non-banal part πtnb. Our third main result
shows that for generic representations the L-factor depends only on the banal parts of
the representations.

Theorem 4.19 Let π = πb ×πtnb be a generic �-modular representation ofGLn(F),
and π ′ = π ′

b ×π ′
tnb be a generic �-modular representation ofGLm(F), then we have

L(X, π, π ′) = L(X, πb, π
′
b).

From this theorem and the banal inductivity relation, we obtain the inductivity
relation of L-factors for generic �-modular representations (Corollary 4.20).

Our fourth main result gives an equality between the local L-factor of a pair of
generic �-modular representations we have defined via �-modular Rankin–Selberg
integrals, and the greatest common divisor of the reductions modulo � of certain �-
adic L-factors.

Theorem 4.22 Let π and π ′ be two generic �-modular representations of GLn(F)

and GLm(F), then

L(X, π, π ′) = GCD(L(X, τ, τ ′)).
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where the divisor is over all integral generic �-adic representations τ of GLn(F) and
τ ′ of GLm(F) which contain π and π ′, respectively, as subquotients after reduction
modulo �.

As we do not have an �-modular Langlands quotient theorem, which would allow
us to associate with an irreducible representation of Gn , a unique representation with
an injective Whittaker model lying above it, we restrict our attention in this article to
representations of Whittaker type.

This work further develops the theory of �-modular local L-factors of Mínguez
in [15]. In particular, we use his results on Tate L-factors modulo �. Recently, using
our results from Sect. 2.2 on the splitting of Haar measures, Moss in [19] has studied
Rankin–Selberg γ -factors in families over more general rings extending his earlier
work on γ -factors for GLn ×GL1 convolutions [18].

2 Preliminaries

Before embarking on the study of local L-factors in positive characteristic, we intro-
duce background on representations of the general linear group and extend the general
theory. In particular, starting with results given in the standard reference [20], we show
how integration behaves with respect to group decompositions. Indeed, this deserves
checking as not all formulae follow from mimicking the proofs in the characteristic
zero setting, due to the presence of compact open subgroups of measure zero. Addi-
tionally, in Sect. 2.5, we review the theory of �-adic and �-modular representations of
Whittaker type and reduction modulo �, drawing on results originally in [21], while
our exposition will be influenced by the recent generalisation to inner forms of gen-
eral linear groups in [17]. In Theorem 2.26, we prove a technical result on lattices in
representations of Whittaker type, in preparation for our results in the next section on
the reduction modulo � of �-adic local factors. In Sect. 2.6, we specialise to generic
representations, and, in particular, notice that a generic �-modular representation has
a banal part and a totally non-banal part, and prove the commutation of derivatives
with reduction modulo �. Finally, in Sect. 2.7, we show that a non-banal supercuspi-
dal �-modular representation has two lifts which are in different inertial classes.

2.1 Notations

Let F be a locally compact non-Archimedean local field of residual characteristic p
with normalised absolute value | |. Let o denote the ring of integers in F , p = 
o the
unique maximal ideal of o, and q the cardinality of k = o/p.

Let R be a commutative ring with identity of characteristic � not equal to p. We
suppose that R contains a square root of q, we fix such a choice.

Let

Mn,m = Mat(n,m, F), Mn = Mat(n, n, F), Gn = GLn(F),



Rankin–Selberg local factors modulo � 771

and η be the row vector (0, . . . , 0, 1) ∈ M1,n . We write νR for the character | | ◦ det :
Gn → R×, although we will often more simply write ν for νR when the coefficient
ring is clear. For k ∈ Z, let

Gk
n = {g ∈ Gn : νC(g) = q−k},

and more generally Xk = X ∩ Gk
n , for any X ⊂ Gn . Let Bn be the Borel subgroup of

upper triangular matrices, An the diagonal torus, and Nn the unipotent radical of Bn .
We also set

Zn = {t In, t ∈ F∗},

the centre of Gn .
Wefix a non-trivial smooth character θ from (F,+) to R× and, by abuse of notation,

we will denote by θ the character x �→ θ(
∑n−1

i=1 ni,i+1) of Nn . Notice that if R = Q�,

this character in fact takes values in Z�
×
because F is a union of pro-p subgroups.

If λ is an ordered partition of n, we denote by Pλ the standard parabolic subgroup
of Gn attached to it, by Mλ the standard Levi factor of Pλ, and by Nλ its unipotent
radical. If t + r = n, we let

Ut,r =
{(

It x
y

)

: x ∈ Mt,r , y ∈ Nr

}

,

and Ht,r = GtUt,r . By restriction, θ defines a character of Ut,r . We let Pn = Hn−1,1
denote the mirabolic subgroup of Gn .

We denote by wn the antidiagonal matrix of Gn with ones on the antidiagonal, and
if n = r + t , we denote by wt,r the matrix diag(It , wr ). Notice that our notations are
different from those of [10] for Ut,r , Ht,r , and wt,r .

If � ∈ C∞
c (Fn), we denote by �̂ its Fourier transform with respect to the θ -self-

dual R-Haar measure dx on Fn satisfying dx(o) = q−l/2, where the integer l satisfies
that θ |pl is trivial, but θ |pl−1 is non-trivial.

For G a locally profinite group, we let RR(G) denote the abelian category of
smooth R-representations of G. All R-representations henceforth considered are
assumed to be smooth.

Let Q� be an algebraic closure of the �-adic numbers, Z� its ring of integers, and F�

its residue field, which is an algebraic closure of the finite field of � elements. By
an �-adic representation of G, we mean a representation of G on a Q�-vector space,
and by an �-modular representation of G, we mean a representation of G on a F�-
vector space. Suppose that G has a compact open subgroup of pro-order invertible
in R, then for any closed subgroup K of G, the modulus character δK is defined in
[20, I 2.6] (see also Sect. 2.2, where a different, but equivalent definition is given).
Suppose, moreover, that for H a closed subgroup of G, the modulus characters δH
and δG take values in qZ, and then we write IndGH for the functor of normalised smooth
induction fromRR(H) toRR(G) andwrite indGH for the functor of normalised smooth
induction with compact support. By definition, if σ is a smooth representation of H ,
then IndGH (σ ) is the usual induction applied to δ

1/2
H δ

−1/2
G σ where the square roots
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of the modulus characters are determined by the choice of q1/2. We have a similar
definition for indGH (σ ).

We assume that our choice of square roots of q in F� and Q� are compatible in the
sense that the former is the reduction modulo � of the latter, which is chosen in Z�.

Let Q be a parabolic subgroup of Gn with Levi factor M . We write iGn
Q for the

functor of normalised parabolic induction from RR(M) to RR(Gn). If τ = π1 ⊗
· · · ⊗ πr is a smooth R-representation of M(m1,...,mr ) with

∑
i mi = n, we will use

the product notation π1 × · · · × πr for the induced representation iGn
P(m1,...,mr )

(τ ). An

irreducible R-representation ofGn is called cuspidal if it is irreducible, and it does not
appear as a subrepresentation of any parabolically induced representation. It is called
supercuspidal, moreover, if it does not appear as a subquotient of any parabolically
induced representation. For π an R-representation with central character, for example
an R-representation ofGn parabolically induced from an irreducible R-representation,
we denote its central character by cπ .

2.2 R-Haar measures

Let R be a commutative ring with identity of characteristic �, and let G be a locally
profinite group which admits a compact open subgroup of pro-order invertible in R.
We let

C∞
c (G, R) = { f : G → R : f is locally constant and compactly supported},

(we sometimes write this, more simply, as C∞
c (G) according to the context). A left

(resp. right) R-Haar measure on G is a nonzero linear form on C∞
c (G, R) which

is invariant under left (resp. right) translation by G. If μ is a left (or right) R-Haar
measure on G and f ∈ C∞

c (G, R), we write

μ( f ) =
∫

G
f (g)μ.

By [20, I 2.4], for each compact open subgroup K of G of pro-order invertible in R
there exists a unique left R-Haarmeasureμ such thatμ(K ) = 1. The volumeμ(K ′) =
μ(1K ′) of a compact open subgroup K ′ ofG is equal to zero if and only if the pro-order
of K ′ is equal to zero in R. In the present work, the modulus character of G is the
unique character δG : G → R× such that, if μ is a left R-Haar measure on G, δGμ

is a right R-Haar measure on G. More generally, if H is a closed subgroup of G, we
let δ = δ−1

G |H δH , and

C∞
c (H\G, δ, R)

be the space of functions from G to R, fixed on the right by a compact open subgroup
of G, compactly supported modulo H , and which transform by δ under H on the left
(we sometimes write this as C∞

c (H\G, δ)). For f ∈ C∞
c (G, R), we denote by f H the

function in C∞
c (H\G, δ, R) defined by
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f H (g) =
∫

H
f (hg)δ−1(h)dh,

for dh a right R-Haar measure on H . It is proved in [20, I 2.8] that the map f �→
f H is surjective and that there is a unique, up to an invertible scalar, nonzero linear
form dH\Gg on C∞

c (H\G, δ, R), which is right invariant under G. We call such a
nonzero linear form on C∞

c (H\G, δ, R) a δ-quasi-invariant quotient measure on H\G
and, for f ∈ C∞

c (H\G, δ, R), we write

dH\Gg( f ) =
∫

H\G
f (g)dH\Gg.

We can then define dg to be such that, for all f ∈ C∞
c (G, R), we have

∫

G
f (g)dg =

∫

H\G
f H (g)dH\Gg.

Remark 2.1 Let H be a closed subgroup of G. Let C∞
c,e(H) denote the subspace of

functions in C∞
c (H, Q�) which take integral values. Up to a correct normalisation

of the Q�-Haar measure dh on H , for all f ∈ C∞
c,e(H), the integral

∫
H f (h)dh

belongs to Z�. Suppose K is a closed subgroup of H , for which there is a δ-quasi-
invariant quotient measure dK\Hh on K\H . We write C∞

c,e(K\H, δ) for the subspace
of functions in C∞

c (K\H, δ) which take integral values. Similarly, up to correct nor-
malisation of the quotient measure, the value of

∫
K\H f (h)dK\Hh belongs to Z�

when f ∈ C∞
c,e(K\H, δ). Moreover, for all f in C∞

c,e(K\H, δ), we have

r�

(∫

K\H
f (h)dK\Hh

)

=
∫

K\H
r�( f (h))dK\Hh.

We write C∞
c,e(F

n) for the subspace of functions in C∞
c (Fn) which take values in Z�.

Note that if � ∈ C∞
c,e(F

n), then �̂ ∈ C∞
c,e(F

n).

For the remainder of this section, letG denote a unimodular locally profinite group.
Suppose that B is a closed subgroup of G, and K is a compact open subgroup of G
such that G = BK .

Lemma 2.2 Let dg be an R-Haar measure on G. There exist a right R-Haar mea-
sure db on B and a right K -invariant measure dk on (K ∩ B)\K such that, for
all f ∈ C∞

c (G, R), we have

∫

G
f (g)dg =

∫

(K∩B)\K

∫

B
f (bk)δB(b)−1dbdk.

Proof We observe first that the map φ �→ φ |K is a vector space isomorphism
between C∞

c (B\G, δB, R) and C∞
c ((K ∩ B)\K , R). It is injective because G =

BK . To show surjectivity, we recall that the characteristic functions 1(K∩B)kU ,
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with U a compact subgroup of K of pro-order invertible in R and k ∈ K ,
span C∞

c ((K ∩ B)\K , R). Moreover, the function 1B
kU belongs to C∞

c (B\G, δB, R),
and a computation shows 1B

kU |K= db(B ∩ kUk−1)1(K∩B)kU . Surjectivity follows
as db(B ∩ kUk−1) is invertible in R. In particular, if dk is a right K -invariant measure
on C∞

c ((K ∩ B)\K , R), the map μ : φ �→ dk(φ |K ) is a right G-invariant measure
on B\G. The result follows from the formula

∫
G f (g)dg = μ( f B). ��

Remark 2.3 Let Kn = GLn(oF ). By the Iwasawa decomposition, we have Gn =
BnKn . Let μGn be an R-Haar measure on Gn . If � = 0, or more generally � � q − 1,
then, for all f ∈ C∞

c (Gn, R), we have

∫

Gn

f (g)dg =
∫

Bn

∫

Kn

f (bk)dbdk,

for good choices of a left R-Haar measure db on Bn and an R-Haar measure dk on Kn .
As noticed byMínguez in [15], this is no longer true in general.More precisely, it is not
truewhen � | q−1 as the restriction of an R-Haarmeasure on K to C∞

c ((Kn∩Bn)\Kn)

is zero. That is why we use a right invariant measure on K ∩ B\K in Lemma 2.2.

Let Q, L and N be closed subgroups of G such that Q = LN and L normalises N .
Suppose that there exists a compact open subgroup U ofG of pro-order invertible in R
such that Q ∩ U = (N ∩ U)(M ∩ U). Let dl be an R-Haar measure on L and dn be
an R-Haar measure on N .

Lemma 2.4 Let f ∈ C∞
c (Q, R). There exists a unique right R-Haar measure dq

on Q such that

∫

Q
f (q)dq =

∫

L

∫

N
f (nl)dldn.

Proof As L normalises N , we see that
∫
L

∫
N f (nl)dldn is a right Q-invariant lin-

ear form on C∞
c (Q, R). But as Q ∩ U = (N ∩ U)(M ∩ U), it is easy to see

that
∫
L

∫
N 1Q∩U (nl)dldn is nonzero. ��

Remark 2.5 A typical instance is when G = Gn , Q = LN is a standard parabolic
subgroup of Gn .

We have the following corollary to Lemmas 2.2 and 2.4.

Corollary 2.6 Let dg be an R-Haarmeasure onG. There exist an R-Haarmeasure da
on An, and a right Kn-invariant measure dk on (Kn ∩ Bn)\Kn such that, for all f ∈
C∞
c (Nn\Gn, R), we have

∫

Nn\Gn

f (g)dg =
∫

(Kn∩Bn)\Kn

∫

An

f (ak)δBn (a)−1dadk.
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Proof Let f ∈ C∞
c (Nn\Gn, R), then f = hNn for h ∈ C∞

c (Gn, R). By Lemmas 2.2
and 2.4,

∫

Gn

h(g)dg =
∫

Kn∩Bn\Kn

∫

An

∫

Nn

h(nak)δBn (a)−1dndadk,

However,

∫

Gn

h(g)dg =
∫

Nn\Gn

f (g)dg

and
∫

Nn

h(nak)dn = hNn (ak) = f (ak).

��
From the Iwasawa decomposition, we also have Gn = Pn ZnKn . We use the fol-

lowing integration formula, which is proved in a similar fashion.

Corollary 2.7 Let dg be an R-Haarmeasure on G. There exist an R-Haarmeasure dz
on Zn, a δ-quasi-invariant quotient measure dp on Nn\Pn, and a right Kn-invariant
measure dk on (Kn ∩ Bn)\Kn such that, for all f ∈ C∞

c (Nn\Gn, R),

∫

Nn\Gn

f (g)dg =
∫

(Kn∩Pn)\Kn

∫

Zn

∫

Nn\Pn
f (pzk) det(p)−1dpdzdk.

Henceforth, equalities involving integrals will be true only up to the correct nor-
malisation of measures.

2.3 Derivatives

Henceforth, we suppose that R is an algebraically closed field. Following [2], we
define the following exact functors:

1. �+ : RR(Gn−1) → RR(Pn), extension by the trivial representation twisted

by ν
1
2 .

2. �− : RR(Pn) → RR(Gn−1), the functor of Un−1-coinvariants twisted by ν− 1
2 .

3. �+ : RR(Pn−1) → RR(Pn), the functor �+(X) = indPnPn−1Un
(X ⊗ θ).

4. �− : RR(Pn) → RR(Pn−1), the functor of (Un−1, θ)-coinvariants twisted

by ν− 1
2 .

5. �+
nc : RR(Pn−1) → RR(Pn), the functor �+

nc(X) = IndPnPn−1Un
(X ⊗ θ).

Theorem 2.8 ([1,2] (cf. [20, III 1.3]))

1. We have �−�+ = �−�+
nc = �−�+ = 0, and �−, resp. �+, resp. �−, is left

adjoint to �+, resp. �−, resp. �+
nc.
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2. The identity functor 1 : RR(Pn) → RR(Pn) admits a filtration

0 = Tn ⊂ Tn−1 ⊂ · · · ⊂ T0 = 1

such that Tk = (�+)k(�−)k and Tk−1/Tk = (�+)k−1�+�−(�−)k−1.

Let τ be an R-representation of Pn . Let τ(k) = (�−)k−1(τ ). The kth derivative τ (k)

of τ is defined by τ (k) = �−(τ(k)). From the filtration property above, any smooth
representation of Pn has a highest nonzero derivative, we call it the highest derivative
of τ , it is a representation τ (h) of Gn−h for h ≥ 1. We recall the classification of
irreducible R-representations of Pn .

Lemma 2.9 ([1] (cf. [20, III 1.5])) Let τ be an irreducible R-representation of Pn.
There exists a unique nonzero derivative of τ . Furthermore, for k in {1, . . . , n},
if τ (k) �= 0 then τ = (�+)k�+(τ (k)). Conversely, if ρ is an irreducible R-
representation of Gn−k , then π = (�+)k�+(ρ) is irreducible and ρ is the kth
derivative of π .

Let π be an R-representation of Gn . The zeroth derivative π(0) of π is π . Let τ =
π |Pn and set π(k) = τ(k) for k = 0, 1, . . . , n. Define the kth derivative π(k) of π

by π(k) = τ (k), for k = 1, . . . , n.

Lemma 2.10 ([1]) Let π be an R-representation of finite length. Then the dimension
of π(n) is finite and equal to the dimension of HomNn (π, θ).

We remark once and for all that the functor

π �→ HomNn (π, θ)

is exact from RR(Gn) to the category of R-vector spaces, because the functor π �→
π(n) is exact and will use this fact a lot without mentioning it. We will also use several
times the following proposition.

Proposition 2.11 ([2, Proposition 3.7])Let ρ and ρ′ be R-representations of Gn and τ

and τ ′ be R-representations of Pm, we have

1. HomPn+1(�
+(ρ) ⊗ �+(ρ′), R) = HomGn (ρ ⊗ ρ′, R);

2. HomGn (�
+(τ ) ⊗ �+(τ ′), R) = HomPn (τ ⊗ τ ′, R);

3. HomGn (�
+(ρ) ⊗ �+(τ ), R) = {0}.

The derivatives of a product are given by the Leibniz rule.

Lemma 2.12 ([2] (cf. [20, III 1.10])) Suppose π is an R-representation of Gn and ρ

is an R-representation of Gm, then (π × ρ)(k) has a filtration with successive quo-
tients π(i) × ρ(k−i), for 0 � i � k.

It is well known to experts that the derivative functors commute with reduction
modulo �. However, it seems that no proof appears in the literature. We will use this
property in the sequel, but postpone its proof to Sect. 2.6.

Theorem 2.13 Let τ be an integral �-adic representation of finite length of Gn, then
for 0 ≤ k ≤ n, one has r�(τ (k)) = [r�(τ )(k)] (where the square brackets stand for the
semi-simplification again).

Proof See just after Corollary 2.29. ��
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2.4 Parabolic induction and restriction, integral structures, and reduction
modulo �

Let G be a direct product of the form Gm1 × · · · × Gmr , wi th mi ∈ Z. An �-adic
representation (π, V ) of G is called integral if it has finite length and if V contains
a G-stable Z�-lattice �. Such a lattice is called an integral structure, or lattice, in π .
A character is integral if and only if it takes values in Z�. By [20, II 4.12], a cuspidal
representation is integral if and only if its central character is integral.

If π is an integral �-adic representation with integral structure �, then π defines
an �-modular representation on the space � ⊗

Z�
F�. By the Brauer–Nesbitt principle

[24, Theorem 1], the semi-simplification, in the Grothendieck group of finite length �-
modular representations, of (π,� ⊗

Z�
F�) is independent of the choice of integral

structure in π and we call this semisimple representation r�(π) the modulo � of π .
We say that an �-modular representation π lifts to an integral �-adic representation τ

if r�(τ ) � π , and we will only really use this notion of lift when π is irreducible.
Let H be a closed subgroup ofG, σ be an integral �-adic representation of H , and�

be an integral structure in σ . By [20, I 9.3], indGH (�) is an integral structure in indGH (σ ).
Suppose Q is a parabolic subgroup of G with Levi decomposition Q = MN , σ is
an integral representation of M , � is an integral structure in σ . Then iGQ(�) is an

integral structure in iGQ(σ ). Moreover, we have iGQ(� ⊗
Z�

F�) � iGQ(�) ⊗
Z�

F�.
Hence, parabolic induction commutes with reduction modulo �, in the sense that

r�(iGQ(σ )) � [iGQ(r�(σ ))],

where the square brackets indicate we take the semi-simplification of iGQ(r�(σ )).
If π is an R-representation of G, and Q is a parabolic subgroup of G, then we

denote by rGQ(π) its normalised Jacquet module. In a similar way, if τ is an integral �-
adic representation of G of finite length, it is a consequence of [6, Proposition 1.4, (i)]
taking R = Z�, that the image of a G-stable lattice of τ via the natural surjection on
the Jacquet module rGQ(τ ) is a (Q-stable) lattice. Thanks to the exactness properties
of the Jacquet functor and [20, I 9.3], one then has the isomorphism

r�(rGQ(τ )) � [rGQ(r�(τ ))].

2.5 Representations of Whittaker type

We now recall facts originally from [21], with our exposition and notation following
[17, Section 7]. First, recall the following definition:

Definition 2.14 An irreducible R-representation of Gn satisfying HomNn (π, θ) �= 0
is called generic.

A segment � = [a, b]ρ is a sequence (νaρ, νa+1ρ, · · · , νbρ)with ρ a cuspidal R-
representation of Gm for some m � 1, and a, b ∈ Z with a � b. Its length is, by
definition, b − a + 1. Two segments � = [a, b]ρ and �′ = [a′, b′]ρ′ are said to be
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equivalent if they have the same length, and νaρ � νa
′
ρ′. Hence, as noticed in [17,

7.2], the segment [a, b]ρ identifies with the cuspidal pair

r� = (M(m,...,m), ν
aρ ⊗ νa+1ρ ⊗ · · · ⊗ νbρ),

and the equivalence relation on segments is the restriction of the classical isomorphism
equivalence relation on cuspidal pairs. To such a segment �, in [17, Definition 7.5]
the authors associate a certain quotient L(�) of I (�) = νaρ × νa+1ρ × · · · × νbρ.
The representation L(�) in fact determines �, as its normalised Jacquet module with
respect to the opposite of N(m,...,m) is equal to r� according to [17, Lemma 7.14].
The conclusion of this is that the objects �, L(�), and r� determine one another, and
hence we call L(�) a segment.

We say that � precedes �′ if we can extract from the sequence (νaρ, . . . , νbρ, νa
′

ρ′, . . . , νb′
ρ′) a subsequence which is a segment of length strictly larger than both the

length of � and the length of �′. We say � and �′ are linked if � precedes �′ or �′
precedes �.

Let ρ be a cuspidal R-representation of Gm , we denote by Zρ the cuspidal line
of ρ, that is the set

Zρ = {νrρ, r ∈ Z},

which when ν has finite order in R is perhaps more appropriately thought of as a circle.
We define an element o(ρ) in N ∪ {+∞} by the formula

o(ρ) = |Zρ |.

In [17, 5.2], a positive integer e(ρ) is attached to ρ,

e(ρ) =

⎧
⎪⎨

⎪⎩

+∞ if R = Q�;
|{νrρ, r ∈ Z}| if R = F� and o(ρ) > 1;
� if R = F� and o(ρ) = 1.

An integer f (ρ) is also defined in [17, 5.2] via type theory, the definition of which
we will recall later, and following this reference we set q(ρ) = q f (ρ). If o(ρ) = 1,
then e(ρ) is the order of q(ρ). For integers a � b, we denote by St (ρ, [a, b]) the
generalised Steinberg representation associated with � = [a, b]ρ , i.e. the unique
generic subquotient of

νaρ × νa+1ρ × · · · × νbρ.

By [17, Remarque 8.14], the representation St (ρ, [a, b]) is equal to the segmentL(�)

if and only if its length b − a + 1 < e(ρ). In this case, we say that L(�) is a generic
segment. As in [17], we will write St (ρ, k) for St (ρ, [0, k − 1]), for k � 1.

By [20, III 4.25 & 5.10], if ρ is a cuspidal �-modular representation of Gr , then it
is the reduction modulo � of an integral cuspidal �-adic representation σ of Gr , and
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the reduction modulo-� of any integral cuspidal �-adic representation is still cuspidal.

Definition 2.15 We recall from [17, Remarque 8.15] that an irreducible R-
representation π of Gn is called banal if no ρ in the cuspidal support of π is such
thatZρ is included in this cuspidal support. Let ρ be a R-cuspidal representation ofGn ,
take a � b in N, and set � = [a, b]ρ . The representation L(�) is then banal if and
only if the length b − a + 1 of � is strictly less than o(ρ), in which case we also say
that � is banal.

Let � = [a, b]ρ be a segment. We notice that if the representation L(�) is banal,
then it is generic, and that the generic segmentL(�) is non-banal if and only if o(ρ) =
1, i.e. if and only if ρ is non-banal in the sense of [16].

Proposition 2.16 Let L(�) be an �-modular generic segment, with � = [a, b]ρ
and ρ be a cuspidal representation of Gm (hence L(�) is a representation of Gn

with n = m(b + 1 − a)). Then its nonzero derivatives are of the form L(�)(km)

for k = 0, . . . , b − a + 1, and L(�)(km) = L([a + k, b]ρ). Moreover, if we denote
by σ a cuspidal lift of ρ, and set D = [a, b]σ , then L(�) is the reduction modulo �

of L(D).

Proof For the first statements, by definition, the lth derivative of a L(�) is a quotient
of its Jacquetmodulewith respect to the (unipotent subgroup of the) standard parabolic
subgroup of type (n − l, l); hence, according to [17, Proposition 7.25], the integer l is
a multiple of m. Moreover, still according to the same proposition, and by definition
of derivatives, we have

L(�)(km) = (�−)km(L([a, a + k − 1]ρ)) ⊗ L([a + k, b]ρ) = L([a + k, b]ρ)

because L([a, a + k − 1]ρ) is still generic. Notice that this results holds for �-adic
segments aswell by [25, Proposition 9.6].Nowwemoveon to the statement concerning
reduction modulo �. First, as reduction modulo � commutes with derivatives, we know
that r�(L(D)) contains a generic component. However, it must be a generic component
of r�(I (D)), which is the semi-simplification of I (�). As I (�) has a unique generic
subquotientwhich isL(�), we already know thatL(�) ⊆ r�(L(D)). Hence, it suffices
to prove that r�(L(D)) is irreducible. We do this by induction on the length of �. If �

is cuspidal (length 1), then there is nothing to prove. Now we do the induction step.
If r�(L(D)) was reducible, then it would contain another submodule τ (which is
degenerate, but it doesn’t matter), so we would have L(�) ⊕ τ ⊆ r�(L(D)). Notice
that τ has the same cuspidal support as L(�), in particular the integer h such that its
highest derivative is τ (h) is a multiple of m (we recall that m � 1). Set h = km, in
particular we have L(�)(h) ⊕ τ (h) ⊆ r�(L(D))(h). Recall once again that derivatives
commute with r�; hence, L([a + k, b]ρ) ⊕ τ (h) ⊆ r�(L(D(h))), but

r�(L(D(h))) = r�(L([a + k, b]σ )) = L([a + k, b]ρ),

the last equality by induction hypothesis. This implies that τ (h) = 0, a contradiction.
��
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Definition 2.17 An R-representation π of Gn is called of Whittaker type if it is par-
abolically induced from generic segments, i.e. if π = L(�1) × · · · × L(�t ) with �i

generic segments, for 1 � i � t .

Let π be a representation of Whittaker type. By Lemmas 2.10 and 2.12, the
space HomNn (π, θ) is of dimension 1, and we denote byW (π, θ) theWhittaker model
of π , i.e. W (π, θ) denotes the image of π in IndGn

Nn
(θ). Note that a representation of

Whittaker type may not be irreducible; however, it is of finite length. In fact, thanks
to the results of Zelevinsky (cf. [25]) in the �-adic setting, and by [21, Theorem 5.7]
(cf. [17, Theorem 9.10 and Corollary 9.12] for another proof) in the �-modular set-
ting, the irreducible representations of Whittaker type of Gn are exactly the generic
representations.

If π is a smooth representation of Gn , we denote by π̃ the representation g �→
π(tg−1) of Gn . Let τ be an �-adic irreducible representation of Gn , then τ̃ � τ∨, by
[7]. Hence, when L(�) is an �-modular generic segment of Gn , it lifts to an �-adic
segment L(D) according to Proposition 2.16, and as L̃(D) � L(D)∨, we deduce by
reduction modulo �, cf. [20, I 9.7], that L̃(�) � L(�)∨.
Remark 2.18 Though we will not use it, it is worth noticing that this equality can
be extended to all irreducible representations of Gn : both involutions π �→ π∨
and π �→ π̃ extend to the Grothendieck groups of �-adic and �-modular representa-
tions of finite length of Gn . Moreover, these involutions preserve integrality of �-adic
representations, commute with reduction modulo �, and agree on the Grothendieck
group of �-adic integral representations of finite length by [7]. Hence, they agree on
the Grothendieck group of �-modular representations of finite length by surjectivity
of the reduction modulo � map on Grothendieck groups [17, Théorème 9.40]. They
thus agree on all irreducible �-modular representations.

If π = L(�1) × · · · × L(�t ) is a representation of Gn of Whittaker type, we

have π̃ = L̃(�t ) × · · · × L̃(�1) = L(�t )
∨ × · · · × L(�1)

∨, and we deduce that
π̃ is also of Whittaker type. In order to state the functional equation for L-factors
of representations of Whittaker type, we will need the following lemma whose proof
follows from the discussion above and that˜is an involution.

Lemma 2.19 Let π be an �-modular representation of Whittaker type of Gn, then π̃ is
of Whittaker type and the map W �→ W̃ , where W̃ (g) = W (wn

tg−1), is an R-vector
space isomorphism between W (π, θ) and W (π̃ , θ−1).

For the proofs to come, it will be convenient to choose certain “lifts” of �-modular
representations of Whittaker type. Let us introduce the following notation first.

Definition 2.20 Let τ be an integral �-adic representation of Whittaker type. We
denote by We(τ, θ) the subset of all functions in W (τ, θ) which take integral values.

Nowwe define “Whittaker lifts” of representations ofWhittaker type. We will soon
see that they exist.

Definition 2.21 Letπ be an �-modular representationofWhittaker type.An integral �-
adic representation of Whittaker type τ is a Whittaker lift of π if We(τ, θ) contains a
sublattice W such that W (π, r�(θ)) = W ⊗

Z�
F�.
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Remark 2.22 Whittaker lifts are not strictly speaking lifts. However, if τ is aWhittaker
lift of π then we can lift functions in the Whittaker model of π to integral functions
in the Whittaker model of τ .

We will use the following lemma to obtain integrality results on �-adic local
factors.

Lemma 2.23 Let π be an �-modular representation of Gn, and let τ be a Whittaker
lift of π with associated sublattice W ⊂ We(τ, θ), then the Z�-module W̃ = {W̃ :
W ∈ W} is a sublattice of We (̃τ , θ−1) such that W (π̃, r�(θ)) = W̃ ⊗

Z�
F�.

Proof As W �→ W̃ is a vector space isomorphism between W (τ, θ) and W (̃τ , θ−1)

which restricts to a Z�-module isomorphism between We(τ, θ) and We (̃τ , θ−1), the
set W̃ is a sublattice of We (̃τ , θ−1). Moreover, as W �→ W̃ is also a vector space

isomorphism between W (π, r�(θ)) and W (π̃ , r�(θ−1)), and because r�(W̃ ) = r̃�(W )

for all W ∈ We(τ, θ), we deduce that r�(W) = W (π̃, r�(θ−1)). ��
We also introduce “standard lifts” of representations ofWhittaker type. We will see

in Theorem 2.26 that they are Whittaker lifts.

Definition 2.24 If π = L(�1) × · · · × L(�t ) is an �-modular representation of
Whittaker type, we will call a standard lift of π a representation τ = L(D1) × · · · ×
L(Dt ), where L(Di ) lifts L(�i ) as in Proposition 2.16.

Remark 2.25 Again, standard lifts are not strictly speaking lifts. However, as parabolic
induction commutes with reduction modulo �, if τ is a standard lift of an �-modular
representation π , then r�(τ ) is the semi-simplification of π .

We now show that standard lifts are Whittaker lifts.

Theorem 2.26 Let π = L(�1) × · · · × L(�t ) be an �-modular representation of
Whittaker type, and τ = L(D1) × · · · × L(Dt ) be a standard lift of π , then it is a
Whittaker lift.

Proof If τ is generic, it is shown in [24,Theorem2] thatWe(τ, θ) is an integral structure
inW (τ, θ), such thatW (π, r�(θ)) = We(τ, θ)⊗

Z�
F�. We use this result together with

the properties of parabolic inductionwith respect to lattices, and a result from [4] about
the explicit description of Whittaker functionals on induced representations.

For each 1 � i � t , each L(Di ) is generic and hence We(L(Di ), θ) is an integral
structure in W (L(Di ), θ). By [20, I 9.3], the lattice L = We(L(D1), θ) × · · · ×
We(L(Dt ), θ) is an integral structure in τ . The spaceL consists of all smooth functions
from G to L = We(L(D1), θ)⊗· · ·⊗We(L(Dt ), θ), with the tensor product over Z�,
which transform on the left by L(D1) ⊗ · · · ⊗ L(Dt ). We recall that W (L(D), θ) =
W (L(D1), θ) ⊗ · · · ⊗W (L(Dt ), θ), as well as W (L(�), θ) = W (L(�1), θ) ⊗ · · · ⊗
W (L(�t ), θ), is a representation of a standard parabolic subgroup Q = MU of Gn ,
trivial on U .

A function f in τ = W (L(D1), θ)×· · ·×W (L(Dt ), θ), by definition of parabolic
induction, is a map from Gn to W (L(D), θ), i.e. for g ∈ Gn , f (g) ∈ W (L(D), θ)
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identifies with a map from M to Q�, so we can view f as a map of two variables
from Gn × M to Q�, and similarly, we can view the elements in π = W (L(�1), θ) ×
· · · × W (L(�t ), θ) as maps from Gn × M to F�. In [4, Corollary 2.3], it is shown
(for minimal parabolics, but their method works for general parabolics), that there
is a Weyl element w in Gn , such that if one takes f ∈ τ , then there is a compact
open subgroup U f of U which satisfies that for any compact subgroup U ′ of U
containingU f , the integral

∫
U ′ f (wu, 1M )θ−1(u)du is independent fromU ′. We will

write λ( f ) = ∫
U f (wu, 1M )θ−1(u)du. This assertion is also true for π with the same

proof, for the same choice ofw, we writeμ(h) = ∫
U h(wu, 1M )r�(θ)−1(u)du for h ∈

π . Both λ and μ are nonzero Whittaker functionals on τ and π , respectively, and λ

sendsL toZ� for a correct normalisation of du.We can, moreover, suppose, for correct
normalisations of the �-adic and the �-modular Haar measures du, that μ = r�(λ).
The surjective map w : τ �→ W (τ, θ) which takes f to W f , defined by W f (g) =
λ(τ(g) f ), sends L into We(τ, θ). Similarly, for h ∈ π , if we set Wh(g) = μ(π(g)h),
then the map π �→ W (π, r�(θ)), taking h toWh , is surjective, and we have r�(W f ) =
Wr�( f ). From this, we obtain that W = w(L) is a sublattice of We(τ, θ) (see [20, I
9.3]), and r�(W) = W (π, θ). ��

2.6 Generic representations

It is stated (in different terms) in [23, 1.8.4] that if τ is an integral generic �-adic
representation of Gn , then r�(τ ) has a unique generic component J�(τ ), and that the
map τ �→ J�(τ ) is a surjection from the set of classes of �-adic generic representations
of Gn to the set of classes of �-modular generic representations of Gn . We recall why
this is true (it also follows at once from the fact that the derivatives commute with
reduction modulo �, but we shall go in the other direction and use this result to prove
that derivatives commute with reduction modulo �).

Lemma 2.27 Let τ be an �-adic integral generic representation of Gn, then r�(τ )

contains (with multiplicity one) a unique generic component J�(τ ). Moreover, if r1 ×
· · ·×rt is a product of integral cuspidal �-adic representations such that r1×· · ·×rt �
τ , then setting ρi = r�(ri ), the representation J�(τ ) is the unique generic subquotient
of ρ1 × · · · × ρt .

Proof To prove that r�(τ ) contains a unique generic component, as in the start of the
proof of Theorem 2.26 we call upon [24, Theorem 2], which tells us that We(τ, θ)

is an integral structure in τ . The representation We(τ, θ) ⊗
Z�

F� is a nonzero Gn-
submodule of C∞(Nn\Gn, r�(θ)), and this implies that r�(τ ) contains at least one
generic subquotient J�(π). Let p : σ = r1 × · · · × rt � τ be a surjection as in the
statement (provided by considering the cuspidal support of τ ), then by multiplicity
one of Whittaker functionals, p factors through a surjection s : W (σ, θ) � τ as τ is
generic. By Theorem 2.26, there is a lattice Wσ ⊂ We(σ, θ) such that if we set ρi =
r�(ri ), the F�-module λ = Wσ ⊗ F� is equal to W (ρ1 × · · · × ρt , r�(θ)). By [20, I
9.3 (vi)], the Z�-module L = s(Wσ ) ⊂ τ is a lattice in τ , and L ⊗ F� is a quotient
of λ. By hypothesis J�(π) is an irreducible subquotient of L ⊗ F�, hence of λ, i.e.
of W (ρ1 × · · · × ρt , r�(θ)), and hence of ρ1 × · · · × ρt . In particular J�(π) is the
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unique generic subquotient of ρ1 × · · · × ρt , and this implies that r�(τ ) contains a
unique generic subquotient. ��

Wenowprove that derivatives commutewith reductionmodulo �. Just as for Jacquet
modules, this fact is not obvious, because it is not clear that the derivative of an integral
structure is still free as a Z�-module. First we recall some basic facts. Let (τ, V ) be an
integral �-adic representation of finite length, with filtration 0 ⊂ V1 ⊂ · · · ⊂ Vn = V .
Then it is a consequence of [20, I 9.3], that the subquotients Vi+1/Vi are integral,
and r�(V ) = ⊕

i r�(Vi+1/Vi ).

Proposition 2.28 Let τ be an �-adic integral representation of Gn of finite length,
then we have (�−)nr�(τ ) = r�((�−)nτ).

Proof As �− is an exact functor, we can assume that τ is irreducible. In this
case, our assertion amounts, by multiplicity one of Whittaker functionals, to show
that (�−)nr�(τ ) � F� if τ is generic, and (�−)nr�(τ ) = {0} otherwise. If τ is
generic, this follows from Lemma 2.27. If not, then, considering cuspidal supports
again, one has τ ↪→ μ1 × · · · × μr , where the μi are cuspidal. We also have a sur-
jection s : μ1 × · · · × μr � W (μ1 × · · · × μr , θ), and denoting by τ ′ its kernel, we
have that τ is contained in τ ′. In particular, r�(τ ) is contained in r�(τ ′). Moreover,
we have r�(μ1 × · · · × μr ) = r�(τ ′) ⊕ r�(W (μ1 × · · · × μr , θ)). On the other hand,
setting ρi = r�(μi ), then r�(μ1×· · ·×μr ) is the semi-simplification of ρ1×· · ·×ρr ,
in particular, it contains a unique generic component. But, according to Theorem
2.26, r�(W (μ1×· · ·×μr , θ)) contains the semi-simplification ofW (ρ1×· · ·×ρr , θ),
and in particular it contains a generic component, namely the unique generic com-
ponent of r�(μ1 × · · · × μr ), so that r�(τ ′), hence r�(τ ), does not. Finally, we
have (�−)n(r�(τ )) = {0}. ��

As an immediate corollary, we obtain the following.

Corollary 2.29 Let π be an integral �-adic representation of Gn1 × Gn2 of finite
length. Then (Id⊗(�−)n2)r�(π) = r�((Id⊗(�−)n2)π).

From this corollary follows the proof of Theorem 2.13. Indeed, if we set G = Gn

and P = P(n−k,k), and τ as in the statement of Theorem 2.13, we have τ (k) =
(Id⊗(�−)k) ◦ rGP (τ ) (cf. for example the proof of [14, Proposition 2.5]). But rGP
commuteswith reductionmodulo �, aswe recalled in Sect. 2.4, and so does Id⊗(�−)k ,
according to Corollary 2.29, and this completes the proof of Theorem 2.13.

We now recall [21, Theorem V.7] (cf. also [17, Theorem 9.10], and [25, Theorem
9.7] for the original proof when R = C), which classifies generic representations.

Theorem 2.30 Let π = L(�1) × · · · ×L(�t ) be an �-modular (or �-adic) represen-
tation of Whittaker type of Gn, then π is irreducible if and only if the segments �i

and � j are unlinked, for all i, j ∈ {1, . . . , t} with i �= j . In this case, the product is
commutative and the set {�1, . . . ,�t } is determined by π .

First, we notice the following consequence.

Remark 2.31 Ifπ is an �-modular generic representation ofGn , as parabolic induction
commutes with reduction modulo �, it is easy to see that it admits standard lifts which
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are generic (i.e. irreducible). In this case, one has r�(τ ) = π (becauseπ is irreducible),
and τ is a true lift, which is generic. Any generic lift τ is such that r�(τ ) = J�(τ ) = π .
In fact, thanks to Theorem 2.13, any lift of π (which is necessarily irreducible), is
generic.

It can be shown that any irreducible �-modular representationπ ofGn can bewritten
uniquely as a product πb ×πtnb, where πb has a banal cuspidal support, whereas πtnb

has a non-banal cuspidal support. Notice that in general, the representationπb does not
need to be banal (for example a segment with banal cuspidal support, but the length of
which is too large). However, as a consequence of Theorem 2.30, we observe that for
a generic representation π of Gn , the representation πb is a product of banal segments
(and πtnb is obviously a product of non-banal segments). We claim that πb is a banal
representation in the sense of Definition 2.15. It is in fact the largest banal subproduct
of π , this claim following at once from the next proposition. Similarly πtnb is non-
banal, and has no non-trivial banal subproduct. For this reason we will call πb the
banal part of π , and we will call πtnb the totally non-banal part of π when π is
generic.

Proposition 2.32 Let ρ be a cuspidal �-modular representation of Gr , and π be a
generic representation of Gn whose cuspidal support is contained in Zρ . Then π is
banal if and only if ρ is banal.

Proof If o(ρ) = 1, then both π and ρ are non-banal, so we suppose that o(ρ) �= 1,
in which case e(ρ) = |Zρ | � 2. It is convenient to think of Zρ as a circle, with e(ρ)

vertices drawn on it. Ifρ is non-banal, then it is obvious thatπ is non-banal. Conversely
suppose that π is non-banal, but ρ is banal. As π is generic, it is a product of unlinked
generic segments. By hypothesis, the cuspidal support of π is a subset of Zρ , this
means that if one takes two segments occurring in π , they are either included in one
another, or disjoint and not juxtaposed. As π is non-banal, all the vertices on the
circle Zρ must be covered by the union of all segments occurring in π . This implies
that either one segment is of length � e(ρ), or that two segments are linked. Both
cases are impossible since π is generic, a contradiction. ��

2.7 Lifting supercuspidal representations

The aim of this subsection is to show that a non-banal supercuspidal �-modular rep-
resentation has two lifts which are not isomorphic after twisting by an unramified
character. A fact that we will use to compute L-factors of non-banal supercuspidal �-
modular representations. To prove this, we use the Bushnell–Kutzko construction to
reduce the problem to finite group theory.

We first recall the Green classification of all cuspidal �-adic representations
of GLm(kF ), where kF is a finite field of characteristic p, and the associated results
of James on reduction modulo �. Let kE be a finite extension of kF of degree m. The
group Hom(k×

E , Q�
×
) is cyclic of order |k×

E |, and is the direct product of its �-singular

part Hom(k×
E , Q�

×
)s and its �-regular part Hom(k×

E , Q�
×
)r . Themap r� is a surjective

morphism
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Hom(k×
E , Q�

×
) → Hom(k×

E , F�
×
)

with kernel Hom(k×
E , Q�

×
)s . Let R = Q� or F�, a character χ ∈ Hom(k×

E , R×) is
called (kE/kF )-regular if its Gal(kE/kF )-orbit is of cardinality |Gal(kE/kF )|, i.e.
if χ does not factor through the norm of any proper intermediate extension. If we
write Gχ for the fixator of χ in Gal(kE/kF ), it is equivalent to say that Gχ = {1}.
Theorem 2.33 ([8,12]) Let kF be a finite field, and kE be an extension of kF of
degree m.

1. There is a surjective map

μ �→ σ(μ)

from the set of (kE/kF )-regular characters of k×
E to the set isomorphism classes

of cuspidal �-adic representations of GLm(kF ), such that the preimage of σ(μ) is
the Gal(kE/kF )-orbit of μ.

2. The reduction r�(σ (μ)) is cuspidal, and r�(σ (μ)) = r�(σ (μ′)) if and only if
the �-regular parts of μ and μ′, as elements of the group Hom(k×

E , Q�
×
), are

conjugate under Gal(kE/kF ). Moreover, r�(σ (μ)) is supercuspidal if and only
if the �-regular part of μ is (kE/kF )-regular. Finally, any cuspidal �-modular
representation of GLm(kF ) lifts to a cuspidal �-adic representation σ(μ).

Let χ ∈ Hom(k×, Q�), χr be the �-regular part of χ , and χs be the singular part
which has order a power of �, so that we can write χ = χsχr uniquely. As Gχ =
Gχs ∩ Gχr , we notice the following obvious fact:

Lemma 2.34 The χ character is (kE/kF )-regular if and only if Gχs ∩ Gχr = {1}.
We now make a first step towards computing the L-factors of non-banal supercus-

pidal representations. We continue with the notations of Theorem 2.33.

Proposition 2.35 Let σ be a cuspidal �-modular representation of GLm(kF ),
and σ(χ) be a cuspidal lift of σ . Then if the generators of the cyclic �-
groupHom(k×

E , Q�
×
)s are not in the same Gχr -orbit, then σ has two non-isomorphic

cuspidal lifts. This implies that if � divides |k×
E | and σ is supercuspidal, then it has

two non-isomorphic lifts.

Proof Let σ(χ) be a cuspidal representation lifting σ and write χ = χsχr . As χ

is regular, one has Gχs ∩ Gχr = {1}. But if μ is any generator of Hom(k×
E , Q�

×
)s ,

one has Gμ ⊂ Gχs , so that μχr is regular as well. Moreover, σ(μχr ) lifts σ . But

if two generators μ and μ′ of Hom(k×
E , Q�

×
)s are in different Gχr -orbits, then

clearly χ1 = μχr and χ2 = μ′χr are in different Gal(kE/kF )-orbits, and σ(χ1)

and σ(χ2) are two non-isomorphic lifts of σ . Now if σ is supercuspidal, then the
character χr is (kE/kF )-regular, hence Gχr is trivial. Hence, our second assertion fol-

lows when |Hom(k×
E , Q�

×
)s | � 3, because in this case Hom(k×

E , Q�
×
)s has at least 2

generators. Now when |Hom(k×
E , Q�

×
)s | = 2, the generator μ of Hom(k×

E , Q�
×
)s is
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the only element of order 2 in Hom(k×
E , Q�

×
); hence, it is fixed by Gal(kE/kF ). In

particularμχr is regular as well, but in a different Gal(kE/kF )-orbit, and we conclude
as before. ��
Remark 2.36 Notice that in contrast to Proposition 2.35 a non-banal cuspidal non-
supercuspidal representation may only have one lift, for example for any � �= 2,
GL2(F2) has only one isomorphism class of cuspidal �-adic representation σ , which
corresponds to unique Gal(F4/F2)-orbit any non-trivial characters of F

×
4 � Z/3Z.

Hence, any cuspidal �-modular representation of GL2(F2) has exactly one lift. The
only � which divides F

×
4 is 3, in which case r3(σ ) is cuspidal non-supercuspidal.

In [20, Chapitre III], the Bushnell–Kutzko construction of all cuspidal �-adic repre-
sentations of Gn , is extended to �-modular representations. Let R = Q� or F�, and π

be a cuspidal R-representation of Gn .

1. By [3, Chapter 6], [20, Chapitre III], the representation π contains a maxi-
mal extended simple type (J,�), (J is a compact mod-centre open subgroup
of Gn and � is an irreducible R-representation of J of finite dimension) and we
have π � indGn

J (�). Moreover, any representation compactly induced from an
extendedmaximal simple type is cuspidal and a cuspidal representation determines
a maximal simple type (J,�) up to conjugation in Gn (the so-called intertwining
implies conjugacy property).

2. Let (J,�) be an extended maximal simple type for π . The group J is defined via a
field extension E = F[β] of F inMn such that J = E×

� J with J the maximal
compact subgroup of J. The restriction λ of � to J decomposes (non-uniquely)
as λ = κ⊗σ , with κ a β-extension, and σ an irreducible cuspidal R-representation
of J/J 1 � Gm(kE ). The pair (J, λ) is called a maximal simple type. By [17,
Lemmas 6.1 and 6.8], the representation π is supercuspidal if and only if σ is
supercuspidal.

3. The ramification index e of π , is the ramification index of the extension E/F
above, which is well defined as intertwining of extended maximal simple types
implies conjugacy.

4. Let π be a cuspidal �-modular representation and e be the ramification index
of π . By [17, Lemme 5.3 and Section 6], the representation π is banal if and
only if qn/e �≡ 1[�] and, a banal cuspidal �-modular representation is necessarily
supercuspidal.

5. Let π be a cuspidal �-modular representation. If π contains an extended maximal
simple type (J,�), then one can lift (J,�) to an integral �-adic maximal extended
type (J, �̃), so that the representation τ = indGn

J �̃ is a cuspidal lift of π and all
lifts are of this form.Moreover, if λ = � |J= κ ⊗σ , then κ lifts to a β-extension κ̃

and σ lifts to a cuspidal representation σ̃ , so that (J, κ̃ ⊗ σ̃ ) is a maximal simple
type in (J, �̃)

Remark 2.37 For a cuspidal R-representationπ ofGn , the integer f (π)wementioned
in Sect. 2.5, is defined by f (π) = n/e where e is the ramification index of π .

We can now prove the result on lifting supercuspidal �-modular representations
of Gn we need later:
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Proposition 2.38 Let π be a non-banal supercuspidal �-modular representation
of Gn. There exists two lifts of π which are not isomorphic by twisting by unram-
ified characters.

Proof Let (J, κ ⊗σ) be a simple type contained π , then σ is a supercuspidal represen-
tation of J/J 1 � GLm(kE ). By Proposition 2.35, it has two non-isomorphic cuspidal
lifts τ and τ ′. Let κ̃ be a β-extension lifting κ such that (J, κ̃ ⊗ τ) and (J, κ̃ ⊗ τ ′) are
simple types for two cuspidal lifts of π which wewrite as ρ and ρ′. It follows from [17,
Corollaire 5.5], that ρ and ρ′ are not isomorphic by twisting by unramified characters,
as [ibid.] gives an equivalent condition for cuspidal representations such as these to
be isomorphic after twisting by an unramified character: that K(ρ) = HomJ 1 (̃κ, ρ)

and K(ρ′) = HomJ 1 (̃κ, ρ′) are isomorphic as representations of Gm(kE ); and by [17,
Lemme 5.3] we have K(ρ) = τ and K(ρ′) = τ ′. ��

3 Rankin–Selberg local factors for representations of Whittaker type

The theory of derivatives [1,2] being valid in positive characteristic (see Sect. 2.3) and
equippedwith the theory of R-Haarmeasures (see Sect. 2.2), means we can now safely
follow [9] to define L-factors and γ -factors. However, asmentioned in the introduction
aswedonot have aLanglands quotient theoremat our disposal,we restrict our attention
to representations of Whittaker type (see Sect. 2.5). Of independent interest, we give
a different shorter proof than [ibid.] on multiplicity one of γ -factors in Proposition
3.7, relying on derivatives rather than invariant distributions. In the main result of the
section, Theorem3.13,we show that the �-modular γ -factor of a pair of representations
always equals the reduction modulo � of the �-adic γ -factor of any Whittaker lifts,
and that the L-factor of this pair divides the reduction modulo � of the �-adic L-factor
of any Whittaker lifts.

3.1 Definition of the L-factors

We first recall the asymptotics of Whittaker functions obtained in [10, Proposition
2.2]. For 1 � i � n, we write Zi for subgroup {diag(t Ii , In−i ), t ∈ F×} of Gn . The
diagonal torus An of Gn is the direct product Z1 × · · · × Zn .

Lemma 3.1 Let π be an R-representation of Whittaker type of Gn. For each 1 � i �
n − 1, there is a finite family Xi (π) of characters of Zi , such that if W is a Whittaker
function in W (π, θ), then its restriction W (z1, . . . , zn−1) to An−1 = Z1 ×· · ·× Zn−1
is a sum of functions of the form

�(z)
n−1∏

i=1

χi (zi )v(zi )
mi

for χi ∈ Xi (π), integers mi � 0, and � ∈ C∞
c (Fn−1).

The proof of Jacquet–Piatetski-Shapiro–Shalika in [ibid.] applies mutatis mutandis
for �-modular representations.
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Remark 3.2 For 1 � i � n − 1, we can take Xi (π) to be the family of central
characters (restricted to Zi ) of the irreducible components of the (non-normalised)
Jacquet module πNi,n−i . We denote by Xn(π) the singleton {ωπ }. We denote by Ei (π),
the family of central characters (restricted to Zi ) of the irreducible components of the
normalised Jacquet module πNi,n−i , for 1 � i � n − 1, and let En(π) = Xn(π). The
family Ei (π) is obtained from Xi (π) by multiplication by an unramified character
of Zi , in particular, if R = Q�, the characters in Ei (π) are integral if and only if those
in Xi (π) are integral.

Proposition 3.3 Let π be an R-representation of Whittaker type of Gn, and π ′ an R-
representation of Whittaker type of Gm, for m � n.

• The case n = m. Let W ∈ W (π, θ), W ′ ∈ W (π ′, θ−1), and � ∈ C∞
c (Fn). Then,

for every k ∈ Z, the coefficient

ck(W,W ′,�) =
∫

Nn\Gk
n

W (g)W ′(g)�(ηg)dg

is well defined, and vanishes for k << 0.
• The case m � n − 1. For 0 � j � n − m − 1, let W ∈ W (π, θ), and W ′ ∈

W (π ′, θ−1). Then for every k ∈ Z, the coefficient

ck(W,W ′; j) =
∫

M j,m

∫

Nm\Gk
m

W

⎛

⎝
g
x I j

In−m− j

⎞

⎠W ′(g)dgdx

is well defined, and vanishes for k << 0. When m = n − 1, we will simply
write ck(W,W ′) for ck(W,W ′; 0).

Proof The only thing to check is that the coefficients in the statement are well defined,
i.e. finite sums, and zero for k negative enough. This is a consequence of Iwasawa
decomposition together with Corollary 2.6, and Lemma 3.1 for the case m � n − 1,

and, in the case m � n − 2, that the map W

(
g
x I j

In−m− j

)

has compact support with

respect to x , independently of g, by [9, Lemma 6.2]. ��
Following Proposition 3.3, we now can define our Rankin–Selberg formal series.

Definition 3.4 • The case n = m. Under the same notation as Proposition 3.3, we
define the following formal Laurent series

I (X,W,W ′,�) =
∑

k∈Z
ck(W,W ′,�)Xk ∈ R((X)).

• The case m � n − 1. Under the same notation as Proposition 3.3, we define the
following formal Laurent series

I (X,W,W ′; j) =
∑

k∈Z
ck(W,W ′; j)qk(n−m)/2Xk ∈ R((X)).
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When m = n − 1, we will simply write I (X,W,W ′) for I (X,W,W ′; 0).
The L-factors we study are defined by the following theorem.

Theorem 3.5 Let π be an R-representation of Whittaker type of Gn, and π ′ an R-
representation of Whittaker type of Gm, for 1 � m � n.

• If n = m, the R-submodule spanned by the Laurent series I (X,W,W ′,�) as W
varies in W (π, θ), W ′ varies in W (π ′, θ−1), and � varies in C∞

c (Fn), is a
fractional ideal I (π, π ′) of R[X±1], and it has a unique generator which is an
Euler factor L(X, π, π ′).

• If 1 � m � n−1, fix j between 0 and n−m−1. The R-submodule spanned by the
Laurent series I (X,W,W ′; j) as W varies in W (π, θ), W ′ varies in W (π ′, θ−1),
is a fractional ideal I (π, π ′) of R[X±1], is independent of j , and it has a unique
generator which is an Euler factor L(X, π, π ′).

Proof We treat the case m � n − 2, the case m � n − 1 is totally similar. First
we want to prove that our formal series in fact belong to R(X). In this case, the
coefficient ck(W,W ′; j) is equal to

∫

(Km∩Bm )\Km

∫

Ak
m

∫

M j,m

W

⎛

⎝
ask
x I j

In−m− j

⎞

⎠W ′(ask)δBm (a)−1dxdadk,

which, by smoothness of W and W ′, we can write as a finite sum

∑

i

∫

Ak
m

Wi

(
a
In−m

)

W ′
i (a)δBm (a)−1da,

with functions Wi ∈ W (π, θ) and W ′
i ∈ W (π ′, θ−1). For W and W ′ in W (π, θ), let

bk(W,W ′) =
∫

Ak
m

W

(
a
In−m

)

W ′(a)δBm (a)−1da,

it is thus enough to check that

J (W,W ′) =
∑

k∈Z
bk(W,W ′)q(n−m)/2Xk

belongs to R(X). Following the proof of [9] we see that, by Lemma 3.1, they belong
to 1

P(X)
R[X±1], where P(X) is a suitable power of the product over the unramified

characters χi in Ei (π) for 1 � i � n and the unramified characters μ j in E j (π
′)

for 1 � j � m of the Tate L-factors L(X, χiμ j ). By [15], this factor is equal to 1
if R = F�, and q ≡ 1[�], and is equal to 1/(1 − χiμ j (
)X) otherwise. The other
properties follow immediately from [9]. ��

The proof of Theorem 3.5 implies the following corollary.
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Corollary 3.6 • If π and π ′ are �-adic representations of Whittaker type of Gn

and Gm, then 1/L(X, π, π ′) ∈ Z�[X ].
• If π and π ′ are �-modular representations of Whittaker type of Gn and Gm,
and q ≡ 1[�], then L(X, π, π ′) = 1.

Proof By our assertion at the end of the proof of Theorem 3.5, the polynomial Q =
1/L(X, π, π ′) divides (in R[X±1], hence in R[X ]) a power of the product P of
the polynomials 1/L(X, χiμ j ) over the set of unramified characters χi in Ei (π)

for 1 � i � n and unramified characters μ j in E j (π
′) for 1 � j � m. We already

noticed that P must be 1 if R = F� and q ≡ 1[�], which proves our assertion in this
case. In general, P belongs to Z�[X ], with constant term 1, as so do the polynomi-
als 1/L(X, χiμ j ). Let A be the quotient P/Q in R[X ]. We have P = AQ in R[X ],
with P(0) = Q(0) = 1 (notice that the constant term of Q is 1 by definition of an
Euler factor), and P ∈ Z�[X ]. This equality in fact takes place in K [X ], for K a finite
extension (spanned by the coefficients of P , A, and Q) of Q� such that P ∈ oK [X ]
(where oK = Z� ∩ K is the ring of integers of K ). As oK [X ] is a unique factorisation
domain, the fact that P(0) = Q(0) = A(0) = 1 implies that A and Q are in fact
in Z�[X ]. ��

3.2 The functional equation

We have defined Rankin–Selberg L-factors of pairs of representations of Whittaker
type, we now need to show that these satisfy a local functional equation. By iden-
tifying Fn with M1,n , the space C∞

c (Fn) provides a smooth representation Gn by
right translation, which we denote by ρ. We also denote by ρ the action by right
translation of Gn on any space of functions. For a ∈ R[X±1], we denote by χa the
character in Hom(Gn, R[X±1]×) defined by χa : g �→ av(det (g)). In particular, we
have ν = χq1/2 is the absolute value of the determinant.

Letπ be an R-representation ofWhittaker type ofGn , andπ ′ be an R-representation
of Whittaker type of Gm . If m = n, we write

D(π, π ′, C∞
c (Fn)) = HomGn (π ⊗ π ′ ⊗ C∞

c (Fn), χX ),

for the space of R-linear maps, L : π × π ′ × C∞
c (Fn) → R[X±1], satisfying

L(ρ(h)W, ρ(h)W ′, ρ(h)�) = XkL(W,W ′,�)

for all W ∈ W (π, θ), W ′ ∈ W (π ′, θ−1), � ∈ C∞
c (Fn), and h ∈ Gk

n . If m � n − 1,
we write

D(π, π ′) = HomGmUm+1,n−m−1(π ⊗ π ′, χq(n−m)/2X ⊗ θ),

for the space of R-linear maps, L : π × π → R[X±1], satisfying

L(ρ(h)W, ρ(h)W ′) = qk(n−m)/2XkL(W,W ′,�), L(ρ(u)W,W ′)=θ(u)L(W,W ′)
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for all W ∈ W (π, θ), W ′ ∈ W (π ′, θ−1), h ∈ Gk
m , and u ∈ Um+1,n−m−1. We denote

by C∞
c,0(F

n) the subspace of C∞
c (Fn) which is the kernel of the evaluation map Ev0 :

� �→ �(0).

Proposition 3.7 The spaces D(π, π ′, C∞
c (Fn)) and D(π, π ′) are free R[X±1]-

modules of rank 1.

The proof in the complex case of Jacquet–Piatetski-Shapiro–Shalika in [9] is long.
Some results obtained in the complex case [ibid.] using invariant distributions can be
obtained quicker using derivatives which is how we proceed.

Proof We start with the case n = m. The map

(W,W ′,�) �→ I (X,W,W ′,�)/L(X, π, π ′)

is a nonzero element of D(π, π ′, C∞
c (Fn)); hence, we only need to show that D(π, π ′,

C∞
c (Fn)) is a free R[X±1]-module of rank at most 1. ��
We have an exact sequence of representations of Gn

0 → C∞
c,0(F

n) → C∞
c (Fn) → 1 → 0.

We tensor this sequence by π ⊗ π ′ and, as π ⊗ π ′ is flat as an R-vector space, we
obtain

0 → π ⊗ π ′ ⊗ C∞
c,0(F

n) → π ⊗ π ′ ⊗ C∞
c (Fn) → π ⊗ π ′ → 0.

By considering central characters, it is clear that the space HomGn (π ⊗ π ′, χX ) =
0. Applying HomGn ( , χX ) which is left exact, we obtain that HomGn (π ⊗ π ′ ⊗
C∞
c (Fn), χX ) is a R[X±1]-submodule of HomGn (π ⊗ π ′ ⊗ C∞

c,0(F
n), χX ). Hence, it

is sufficient to check that HomGn (π ⊗ π ′ ⊗ C∞
c,0(F

n), χX ) is of rank at most 1.
Now,wehave an isomorphismbetweenC∞

c,0(F
n)withGn actingvia right translation

and indGn
Pn

(δ
1/2
Pn

); hence, we have

HomGn (π ⊗ π ′ ⊗ C∞
c,0(F

n), χX ) � HomGn (π ⊗ π ′, χX IndGn
Pn

(δ
−1/2
Pn

)),

� HomPn (π ⊗ π ′, χXδ−1
Pn

)

by Frobenius reciprocity. Now, by the theory of derivatives (see Sect. 2.3), π

and π ′, as Pn-modules, are of finite length, with irreducible subquotients of the form
(�+)k�+(ρ), forρ an irreducible representation ofGn−k−1 and k between 0 and n−1.
Moreover, (�+)n−1�+(1) appears with multiplicity 1, as a submodule. By Proposi-
tion 2.11, the space

HomPn ((�
+)k�+(ρ) ⊗ (�+) j�+(ρ′), χXδ−1

Pn
)

= HomPn ((�
+)k�+(ρ) ⊗ (�+) j�+(χ−1

X δPnρ
′), 1)
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is zero, except when j = k, in which case it is isomorphic to HomGk (ρ⊗ρ′, χXν−1)).
If ρ and ρ′ are irreducible and k � 1, by considering central characters, the
space HomGk (ρ ⊗ ρ′, χXν−1) is zero. Thus HomPn (π ⊗ π ′, χXδ−1

Pn
) is a R[X±1]-

submodule of HomG0(1 ⊗ 1, χX ) � R[X±1]. This ends the proof in the case n = m,
as R[X±1] is principal.

We now consider the case m � n − 1. Again, the space D(π, π ′) is nonzero as it
contains the map (W,W ′) �→ I (X,W,W ′)/L(X, π, π ′), we will show that it injects
into R[X±1], which will prove the statement. Let L be in D(π, π ′), by definition, the
map L-factors through τ × π ′, where τ is the quotient of π by its subspace spanned
by π(u)W − θ(u)W for u ∈ Um+1,n−m−1 and W ∈ W (π, θ). Hence, τ is nothing
other than the space of (�+)n−m−1(π). Taking into account the normalisation in the
definition of the derivatives, we obtain the following injection:

HomGmUm+1,n−m−1(π ⊗ π ′, χq(n−m)/2X ⊗ θ) ↪→ HomGm ((�−)n−m−1(π) ⊗ π ′, χq1/2X ).

We next prove the following lemma.

Lemma 3.8 If σ is an irreducible R-representation of Pm, then

HomGm (�+(σ ) ⊗ π ′, χq1/2X ) � HomPm (σ ⊗ π ′, χX ).

If σ is an irreducible R-representation of Gm, then

HomGm (�+(σ ) ⊗ π ′, χq1/2X ) � HomGm (σ ⊗ π ′, χX ) = {0}.

Proof of the Lemma We first prove the second assertion. By definition of �+,
the R[X±1]-module HomGm (�+(σ ) ⊗ π ′, χq1/2X ) is equal to HomPm+1(�

+(σ ) ⊗
�+(π ′), χX )), which is itself isomorphic to HomGm (σ ⊗ π ′, χX ) by Proposition
2.11. As σ is irreducible, it has a central character, and thus HomGm (σ, χX ) = {0}.

For the first assertion, as Pm+1 = Gm(PmUm+1), we have an isomorphism �+(σ )

|Gm� indGm
Pm

(σ ) by Mackey theory (cf. [2, Theorem 5.2]). Hence, we obtain

HomGm (�+(σ ) ⊗ π ′, χq1/2X )

� HomGm (indGm
Pm

(σ ) ⊗ π ′, χq1/2X ) � HomPm (σ ⊗ π ′, χX ),

the last isomorphism by Frobenius reciprocity. ��
Now, (�−)n−m−1(π) is a Pm+1-module of finite length, and as π is of Whittaker

type, it contains (�+)m−1�+(1) as a submodule, the latter’s multiplicity being 1
as a composition factor. By the theory of derivatives, all of the other irreducible
subquotients are either of the form �+(σ ), with σ an irreducible representation
of Gm , or of the form �+(σ ), with σ an irreducible representation of Pm of the
form (�+)m− j−1�+(σ ′), with σ ′ a representation of G j , for some j � 1. By Lemma
3.8, HomGm (�+(σ ) ⊗ π ′, χX ) is zero. For all subquotients of the form �+(σ ), we
have HomGm (�+(σ ) ⊗ π ′, χq1/2X ) � HomPm (σ ⊗ π ′, χX ) by Lemma 3.8.
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Lemma 3.9 The R[X±1]-moduleHomPm (σ ⊗π ′, χX ) is zero if σ is an irreducible R-
representation of Pm of the form (�+)m− j−1�+(σ ′), with σ ′ an R-representation
of G j , for some j � 1, whereas HomPm ((�+)m−1�+(1) ⊗ π ′, χX ) ↪→ R[X±1].
Proof of the Lemma As π ′ is of Whittaker type, its restriction to Pm is of finite
length, with irreducible subquotients of the form (�+)m−k−1�+(μ), for μ an
irreducible representation of Gk . Moreover, the representation (�+)m−k−1�+(1)

occurs with multiplicity 1, and is a submodule. If σ is an irreducible representa-
tion of Pm of the form (�+)m− j−1�+(σ ′), with σ ′ a representation of G j , for
some j � 1, then HomPm ((�+)m−h−1�+(σ ′) ⊗ (�+)m−k−1�+(μ), χX ) is zero
by Proposition 2.11 if j �= k (in particular if k = 1). Moreover, if k = j , by the
same Proposition, we have HomPm ((�+)m− j−1�+(σ ′)⊗ (�+)m−k−1�+(μ), χX ) is
isomorphic to HomG j (σ

′ ⊗ μ, χX ), which is zero, by considering central characters.
Hence, we have proved the first part of the lemma. If σ = (�+)m−1�+(1), rea-
soning as above, we see at once that HomPm ((�+)m−1�+(1) ⊗ π ′, χX ) injects into
HomPm ((�+)m−1�+(1) ⊗ (�+)m−1�+(1), χX ) � HomG0(1 ⊗ 1, χX ), the latter
space being isomorphic to R[X±1], and this completes the proof of the lemma. ��

All in all,wededuce thatHomGm ((�−)n−m−1(π)⊗π ′, χq1/2X ) injects as a R[X±1]-
submodule into HomPm ((�+)m−1�+(1)⊗π ′, χX ), which itself injects into R[X±1],
and this ends the proof of the proposition. ��
Remark 3.10 Notice that all the injections defined in the proof of Proposition 3.7 are
in fact isomorphisms. This could be viewed directly, or we can simply see that after
composing all of them we obtain an isomorphism.

We are now in a position to state the local functional equation and define the
Rankin–Selberg ε-factor of a pair of representations of Whittaker type. We recall that
an invertible element of R[X±1] is an element of the form cXk , for c in R×, and k
in Z.

Corollary 3.11 Let π be an R-representation of Whittaker type of Gn, and π ′ be a
representation of Whittaker type of Gm.

1. If m = n, there is an invertible element ε(X, π, π ′, θ) of the ring R[X±1] such
that for any W ∈ W (π, θ), any W ′ ∈ W (π ′, θ−1), and any � in C∞

c (Fn), we
have:

I (q−1X−1, W̃ , W̃ ′, �̂)

L(q−1X−1, π̃ , π̃ ′)
= cπ ′(−1)m−1ε(X, π, π ′, θ)

I (X,W,W ′,�)

L(X, π, π ′)
.

2. If m � n−1, there is an invertible element ε(X, π, π ′, θ) of the ring R[X±1] such
that, for any W ∈ W (π, θ), any W ′ ∈ W (π ′, θ−1), and any 0 � j � n − m − 1,
we have:

I (q−1X−1, ρ(wm,n−m)W̃ , W̃ ′; n − m − 1 − j)

L(q−1X−1, π̃ , π̃ ′)

= cπ ′(−1)m−1ε(X, π, π ′, θ)
I (X,W,W ′; j)
L(X, π, π ′)

.
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Proof It is a consequence of Proposition 3.7 if n = m, and ifm � n−1 with j = 0, as
the functionals on both sides of the equality belong, respectively, to D(π, π ′, C∞

c (Fn))

and D(π, π ′). For j �= 0, it follows from the case j = 0 as in the complex setting, cf.
[10]. ��

We call ε(X, π, π ′, θ) the local ε-factor associated with π, π ′, and θ , and we write

γ (X, π, π ′, θ) = ε(X, π, π ′, θ)L(q−1X−1, π̃ , π̃ ′)
L(X, π, π ′)

,

for the localγ -factor associated with π, π ′, and θ .

3.3 Compatibility with reduction modulo �

Let π and π ′ are integral �-adic representations of Whittaker type of Gn and Gm .
By Corollary 3.6, we already know that L(X, π, π ′) is the inverse of a polynomial
with integral coefficients, even without the integrality assumption.With the integrality
assumption, we now consider the associated ε-factor.

Lemma 3.12 The factor ε(X, π, π ′, θ) is of the form cXk, for c a unit in Z�.

Proof We only do the case n = m, the case m � n − 1 follows mutatis mutan-
dis. By Remark 2.1, whenever W , W ′ and � have integral values, the Laurent
series I (X,W,W ′,�) and I (q−1X−1, W̃ , W̃ ′, �̂) belong, respectively, to Z�((X))

and Z�((X−1)). As the factors L(X, π, π ′) and L(q−1X−1, π̃ , π̃ ′) are the inverse of
polynomials in Z�[X±1] with constant term 1, the quotient

I (q−1X−1, W̃ , W̃ ′, �̂)/L(q−1X−1, π̃ , π̃ ′)

which belongs to R[X±1], in fact belongs to R[X±1] ∩ Z�((X−1)) = Z�[X±1], and
similarly for the quotient I (X,W,W ′,�)/L(X, π, π ′). The functional equation then
implies that the scalar c is in Z�, and applying it twice shows that it is in Z�

×
. ��

If P is an element of Z�[X ] with nonzero reduction modulo �, we write r�(P−1)

for (r�(P))−1. We now prove our first main result.
Let π and π ′ be �-modular representations of Whittaker type of Gn and Gm . Let τ

and τ ′ be Whittaker lifts of π and π ′ (respectively).

Theorem 3.13 We have

L(X, π, π ′) | r�(L(X, τ, τ ′)),

and

γ (X, π, π ′, r�(θ)) = r�(γ (X, τ, τ ′, θ)).

Proof We give the proof for m � n − 1, and j = 0, the other cases being sim-
ilar. By definition, one can write L(X, π, π ′) as a finite sum

∑
i I (X,Wi ,W ′

i ),
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for Wi ∈ W (π, θ) and W ′
i ∈ W (π ′, θ−1). By Lemma 2.23, there are Whittaker

functions Wi,e ∈ We(τ, μ) and W ′
i,e ∈ We(τ

′, μ−1) such that W̃i,e ∈ We (̃τ , μ−1)

and W̃ ′
i,e ∈ We(τ̃ ′, μ) , and such that Wi = r�(Wi,e), and W ′

i = r�(W ′
i,e). By Remark

2.1, we have L(X, π, π ′) = r�(
∑

i I (X,Wi,e,W ′
i,e)). As the sum

∑
i I (X,Wi,e,W ′

i,e)

belongs to

L(X, τ, τ ′)Q�[X±1] ∩ Z�((X)) = L(X, τ, τ ′)Z�[X±1],

we obtain that L(X, π, π ′) belongs to r�(L(X, τ, τ ′))F�[X±1]. This proves the first
assertion. The equality for γ -factors follows the functional equation, and Remark 2.1.

��
As an immediate corollary of Theorem 3.13, of [9, Proposition 2.13] and of [11,

Proposition 4.1, Remark 5.2], we obtain the stability of the local factors. We recall
that the level l(χ) of a character χ of F× is either zero if it is trivial on o×, or the
smallest integer n � 1 such that χ trivial on 1 + pn .

Corollary 3.14 Let π and π ′ be a pair of �-modular representations of Whittaker
type of Gn and Gm, respectively, then there exists lπ,π ′ ∈ N such that

L(X, π ⊗ χ, π ′) = 1,

whenever l(χ) � lπ,π ′ .Moreover, ifπ1, π2 are �-modular representations ofWhittaker
type of Gn with equal central characters, there exists lπ ′ ∈ N such that

γ (X, π1 ⊗ χ, π ′, θ) = γ (X, π2 ⊗ χ, π ′, θ),

whenever l(χ) � lπ ′ .

Remark 3.15 As for the Godement–Jacquet L-functions (see [15]), we do not always
have an equality between r�(L(X, τ, τ ′)) and L(X, π, π ′). For instance when q ≡
1[�], we always have L(X, π, π ′) = 1. But already, for unramified �-adic characters τ

and τ ′ of G1, we have

r�(L(X, τ, τ ′)) = 1/(1 − X).

This will become completely transparent in the generic case by the end of the next
section.

4 The inductivity relation and explicit computations

In Sect. 4.1, we obtain the inductivity relation of γ -factors of representations of
Whittaker type by reduction modulo �. For L-factors, we restrict to pairs of generic
representations and obtain again the inductivity relation, and an explicit formula, dif-
fering from the �-adic case due to the presence of non-banal representations. In fact, for
generic representationswe show that the L-factor only depends on the banal parts of the
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representations in Theorem 4.19. We also discuss precisely the relation with reduction
modulo �, and obtain in Theorem 4.22 a nice interpretation of the �-modular L-factor
of a pair of generic representations as the greatest common divisor of the L-factors of
the pairs of generic �-adic representations containing our generic pair as subquotients
on reduction modulo �. This also provides a coherent way of defining L-factors of
pairs of irreducible �-modular representations.

4.1 Gamma factors of representations of Whittaker type

Let R be either Q� or F�. Let π1, π2 be �-modular representations of Whittaker type
and τ1, τ2 be standard lifts of π1, π2, respectively. For i = 1, 2, let τ ′

i be a subquotient
of τi ofWhittaker type, and π ′

i be a subquotient of πi ofWhittaker type. As the functor

π �→ HomNn (π, θ)

is exact from RR(Gn) to the category of R-vector spaces, by multiplicity one of the
Whittaker functional for Whittaker representations, we deduce that the (unique up to
scaling) Whittaker functional on π ′

1 is the restriction of that on π1 (and similarly for
the pairs (π ′

2, π2), (τ ′
1, τ1), and (τ ′

2, τ2)).
This implies immediately the following inclusions of Whittaker models:

W (τ ′
1, θ) ⊆ W (τ1, θ), W (τ ′

2, θ
−1) ⊆ W (τ2, θ

−1),

W (π ′
1, r�(θ)) ⊆ W (π1, r�(θ)), W (π ′

2, r�(θ
−1)) ⊆ W (π2, r�(θ

−1)).

These inclusions being equalities whenever the respective subquotients are actually
quotients.

Applying W �→ W̃ (in C∞(Nni \Gni )) to the above inclusions, we obtain the
inclusions:

W (τ̃1
′, θ−1) ⊆ W (τ̃1, θ

−1), W (τ̃2
′, θ) ⊆ W (τ̃2, θ),

W (π̃1
′, r�(θ−1)) ⊆ W (π̃1, r�(θ

−1)), W (π̃2
′, r�(θ)) ⊆ W (π̃2, r�(θ)).

Thanks to all of the above inclusions of Whittaker models, the functional equation
gives the equalities of gamma factors:

γ (X, π ′
1, π

′
2) = γ (X, π1, π2), γ (X, τ ′

1, τ
′
2) = γ (X, τ1, τ2).

Now, by Theorem 3.13, we have

r�(γ (X, τ1, τ2)) = γ (X, π1, π2),

hence

r�(γ (X, τ ′
1, τ

′
2)) = γ (X, π ′

1, π
′
2).
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In particular, we can take τ ′
i (resp. π ′

i ) to be the unique generic subquotient of τi
(resp. πi ) for i = 1, 2.

The following theorem follows by reductionmodulo � (Theorem 3.13) of the induc-
tivity relation of �-adic gamma factors in [9, 3.1].

Theorem 4.1 Let π1 and π2 and π3 be �-modular representations of Whittaker type,
of Gn1 , Gn2 and Gn3 , respectively. Then

γ (X, π1, π2 × π3) = γ (X, π1, π2)γ (X, π1, π3).

Together with the discussion above, it has the following corollary:

Corollary 4.2 Let ρ and ρ′ be cuspidal �-modular representations of Gr and Gr ′ ,
respectively, and a � b and c � d in Z. Then one has

γ (X, St (ρ, [a, b]), St (ρ′, [c, d])) =
b∏

i=a

d∏

j=c

γ (X, νiρ, ν jρ′).

Proof As St (ρ, [a, b]) and St (ρ, [c, d]) are the unique generic quotients of the
induced representations νaρ × · · · × νbρ and νcρ′ × · · · × νdρ′, respectively, the
assertion follows from Theorem 4.1 and the discussion preceding it. ��

4.2 Divisibility relations between L-factors of induced representations

In this subsection R can be Q� or F�. We first start with a simple observation, which
follows from the inclusions between Whittaker models discussed in the beginning of
Sect. 4.1.

Lemma 4.3 Letπ (resp. τ ) be an R-representation ofWhittaker type of Gn (resp. Gm),
and π ′ (resp. τ ′) be a subquotient of Whittaker type (for example the unique generic
subquotient) of π (resp. τ ), then L(X, π ′, τ ′) divides L(X, π, τ ), and it is equal to it
if both π ′ and τ ′ are quotients of π and τ .

We also observe, as in [9, Section 7] (their proof being valid for R = F�), thanks
to the stability of L-factors under highly ramified twists (Corollary 3.14), that the
inductivity relation of γ -factors (Theorem 4.1) implies the following result.

Lemma 4.4 Let π1, π2 and π3 be R-representations of Whittaker type of Gn1 , Gn2
and Gn3 , respectively, then L(X, π1 × π2, π3) divides L(X, π1, π3)L(X, π2, π3).

We now recall [9, Proposition 9.1]. A small part of the proof of [ibid.] is given in
a particular (but in fact very general) case, we give the very slight changes here, to
obtain the general proof. We shall also give some useful corollaries.

Lemma 4.5 Letπ1 andπ2 be two R-representations ofWhittaker type of Gn1 andGn2 ,
respectively, and let π = π1 × π2. Then for any pair (W2,�) ∈ W (π2, θ) ×
C∞
c (Fn2 , R), there is W ∈ W (π, θ) such that for g ∈ Gn2 , we have

W (diag(g, In1)) = W2(g)�(ηg)ν(g)n1/2.
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Proof BecauseW (π1×π2, θ) is equal toW (W (π1, θ)×W (π2, θ), θ), we can replace
π byπ ′ = W (π1, θ)×W (π2, θ) to prove the statement.Wewrite P for P(n1,n2), andU
for its unipotent radical. The group U is isomorphic to M = M(n1, n2, F) via the
map

u : x �→
(
In1 x

In2

)

.

We can considerW (π1, θ)⊗W (π2, θ) as a P-module (withU acting trivially). We
first recall the following standard fact on induced representations of locally profinite
groups: the linear map I : C∞

c (Gn, R) ⊗ W (π1, θ) ⊗ W (π2, θ) → π ′, defined by the
formula

I (F ⊗ W1 ⊗ W2)(g) =
∫

P
F(pg)δ−1/2

P (p)ρ(p)−1W1 ⊗ W2dp,

for F ∈ C∞
c (Gn, R),W1 ∈ W (π1, θ) andW2 ∈ W (π2, θ), is awell-defined surjection.

Taking F with support in PwU , of the form F(pwu(x)) = β(p)�(x) with β the
characteristic function of a small enough compact open subgroup of P (so that this
subgroup has a nonzero volume, and fixes W1 ⊗ W2), and with � any function in
Cc(M, R), we obtain the map f = I (F) in π ′, which satisfies, up to nonzero scaling
the relation:

f (wu(x)) = �(x)W1 ⊗ W2.

Now the end of the proof is that of [9, Proposition 9.1]. ��
The following result also follows from the results of [9].

Lemma 4.6 Let m, n be positive integers, with m � n. If π and π ′ are two R-
representations of Gn of Whittaker type, and if W and W ′ belong, respectively,
to W (π, θ) and W (π ′, θ−1), the integral

I(n−m−1)(X,W,W ′)

=
∑

k∈Z

(∫

Nn\Gk
n

W (diag(g, In−m))W ′(diag(g, In−m))dg

)

qk(n−m)Xk

belongs to the fractional ideal I (π, π ′) (see Theorem 3.5).

Proof Thanks to [9, Lemma 9.2], the proof of which is valid over R, we see that
there are W0 ∈ W (π, θ) and W ′

0 ∈ W (π ′, θ−1) such that I(n−m−1)(X,W,W ′) =
I(0)(X,W0,W ′

0). Hence, it suffices to prove the lemma when m = n − 1. In this case,
for any � in C∞

c (Fn), we denote by f� the function on F defined as f� : t �→
�(0, . . . , 0, t). Using the integration formula of Corollary 2.7, we can write

I (X,W,W ′,�) =
∫

(Kn∩Pn)\Kn

I(0)(X, ρ(k)W, ρ(k)W ′)I (Xn, cπ , cπ ′ , fρ(k)�)dk,

where ρ denotes right translation. Writing Kn,r = 1 + 
 rM(n, o), and taking � =
1Kn,r for r large enough forW andW ′ to be invariant under Kn,r , our integral reduces
to a nonzero multiple of I(0)(X,W,W ′), and the result follows. ��
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We now deduce from Lemmas 4.5 and 4.6, the following proposition, for the proof
of which we refer to [5, Proposition 4.4].

Proposition 4.7 Let π1 and π2 be two R-representations of Whittaker type of Gn1
and Gn2 , respectively, letπ = π1×π2, and put n = n1+n2. Letπ ′ be a representation
of Whittaker type of Gn. Then L(X, π2, π

′)−1 divides L(X, π, π ′)−1 in R[X ].
It has the following corollary, which we will use several times.

Corollary 4.8 Let ρ be a cuspidal R-representation of Gm (m � 1), and a < b � c
two positive integers such that c−a+1 < e(ρ), so that St (ρ, [a, b−1]), St (ρ, [b, c])
and St (ρ, [a, c]) are generic segments. Then, for any �-modular representations π

and π ′ of Whittaker type of Gn and Gn′ , respectively, we have

L(X, St (ρ, [b, c]) × π, π ′) | L(X, St (ρ, [a, c]) × π, π ′).

Proof Because St (ρ, [a, c]) × π is the generic quotient (remember that c − a + 1 <

e(ρ)) of St (ρ, [a, b − 1]) × St (ρ, [b, c]) × π , Lemma 4.3 gives us the relation

L(X, St (ρ, [a, c]) × π, π ′) = L(X, St (ρ, [a, b − 1]) × St (ρ, [b, c]) × π, π ′).

The result now follows from Proposition 4.7. ��

4.3 L-factors of cuspidal representations

We are now going to give the classification of all cuspidal �-modular L-factors. We
thus recall that according to [17, Theorem 6.14] (cf. [20, III 5.14]), any cuspidal
representation π of Gn is of the form π = Str (ρ) = St (ρ, e(ρ)�r ) for ρ a super-
cuspidal representation. In particular a banal cuspidal representation of Gn is always
supercuspidal.

Theorem 4.9 Let π1 and π2 be two cuspidal �-modular (or �-adic) representations
of Gn1 and Gn2 . Then L(X, π1, π2) is equal to 1, except in the following case: π1 is
banal (hence supercuspidal), and π2 � χπ∨

1 for some unramified character χ of F×
(in particular n1 = n2). When π1 is banal, and π2 � χπ∨

1 , let f = f (π1) = f (π2),
we have

L(X, π1, π2) = 1

1 − (χ(
F )X) f

and this factor is the reduction modulo � of the L-factor of any cuspidal lifts of π1
and π2.

Proof The case when π1 banal andπ2 � χπ∨
1 for some unramified character χ of F×

is a consequence of [13, Corollary 6.1]. Thus, it remains to consider the case where
one of the representations is non-banal. By choosing lifts of π1 and π2, by Theorem
3.13, we are done if π2 �� χπ∨

1 , for some unramified character χ of F×. Assume first
that π2 is non-banal and supercuspidal. Thus, by Proposition 2.38 there are cuspidal
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lifts ρ2, ρ
′
2 of π2 which are not isomorphic by twisting by an unramified character.

In particular, if we let ρ1 be a cuspidal lift of π1, one of the L-factors L(X, ρ1, ρ2)

or L(X, ρ1, ρ
′
2) is trivial. But as L(X, π1, π2) divides the reduction of both of these

factors, the result follows.
Thus we can assume that π2 is cuspidal non-supercuspidal and, as π2 � χπ∨

1 for
some unramified character χ of F×, both ofπ1 andπ2 are cuspidal non-supercuspidal.
We write π1 = Str1(ρ1) and π2 = Str2(ρ2). We assume that n1 = m1e(ρ1)�r1 ≥
n2 = m2e(ρ2)�r2 , where ρ1 is a supercuspidal representation of Gm1 and ρ2 is a
supercuspidal representation of Gm2 . Moreover, as neither of Str1(ρ1) or Str2(ρ2) is
supercuspidal, we have e(ρ1)�r1 > 1 and e(ρ2)�r2 > 1 (and, in fact, we only really
need to assume one of the two for the remainder of the proof). In this case, we have

L(X, Str1(ρ1), Str2(ρ2)) | L(X, Str1(ρ1), ρ2 × · · · × νe(ρ2)�
r2−1ρ2)

because Str2(ρ2) is the generic subquotient of

ρ2 × · · · × νe(ρ2)�
r2−1ρ2,

by Lemmas 4.3 and 4.4, we deduce that

L(X, Str1(ρ1), Str2(ρ2)) |
e(ρ2)lr2−1∏

i=0

L(X, Str1(ρ1), ν
iρ2)).

But each factor L(X, Str1(ρ1), ν
iρ2)) is equal to 1 because n1 > m2, hence the

result. ��

4.4 L-factors of generic segments

By the definition of the ramification index and the lifting of cuspidal �-modular rep-
resentations recalled in Sect. 2.7 we have the following proposition, which will allow
us to study reduction modulo � of banal L-factors of cuspidal representations.

Proposition 4.10 Let τ be an �-adic cuspidal representation of Gn and ρ be the
reduction modulo � of τ , then q(τ ) = q(ρ) and f (τ ) = f (ρ).

We now move on to the case of generic segments. We notice that if ρ is a cuspidal
representation of Gr , the condition k < e(ρ) implies that St (ρ, k) is non-banal if and
only if ρ is non-banal. Let D1 = St (τ1, k1) and D2 = St (τ2, k2) be generic segments
of Gn1 and Gn2 , with n1 � n2. When R = Q�, the following formula was proved in
[9, Theorem 8.2]:

L(X, D1, D2) =
k2−1∏

j=0

L(X, νk1−1τ1, ν
jτ2). (1)

As a consequence, we obtain the following useful Lemma.
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Lemma 4.11 Letρ be a cuspidal �-modular representation, and St (ρ, k1) and St (ρ∨,

k2) be generic segments, with k1 � k2. Write P the set of poles of L(X, St (ρ, k1), St
(ρ∨, k2)). Then P f (ρ) = {x f (ρ), x ∈ P} is a subset of {q(ρ)k1−1, . . . , q(ρ)k1+k2−2}.
Proof Let τ be a cuspidal �-adic lift of ρ, so in particular f (ρ) = f (τ ) and q(τ ) =
q(ρ) according to Proposition 4.10. We recall that L(X, St (ρ, k1), St (ρ∨, k2))
divides r�(L(X, St (τ, k1), St (τ∨, k2))) according to Theorem 3.13, and this last fac-
tor is equal to

∏k2−1
j=0 r�(L(q−k1− j−1X, τ, τ∨)), according to Eq. (1). Now, thanks to

Theorem 4.9, we have

r�(L(q−k1− j−1X, τ, τ∨)) = 1

1 − q(ρ)−k1− j−1X f
,

and the result follows. ��
We now completely describe the �-modular L-factors for generic segments.

Theorem 4.12 Let L(�1) = St (ρ1, k1) and L(�2) = St (ρ2, k2) be two �-modular
generic segments of Gn1 and Gn2 , respectively, with n1 � n2, then:

1. If L(�1) or L(�2) is non-banal, then

L(X,L(�1),L(�2)) = 1.

2. If L(�1) and L(�2) are both banal, then

L(X,L(�1),L(�2)) =
k2−1∏

i=0

L(X, νk1−1ρ1, ν
iρ2).

In this case, if τ1 and τ2 are cuspidal lifts of ρ1 and ρ2, so thatL(D1) = St (τ1, k1)
and L(D2) = St (τ2, k2) are generic segments lifting L(�1) and L(�2), then

L(X,L(�1),L(�2)) = r�(L(X,L(D1),L(D2)).

Proof First we notice that the last formula concerning reduction modulo � follows
from Part 2, Eq. (1) and the last part of Theorem 4.9. We also notice that according to
Proposition 2.32, the segment L(�i ) is banal if and only if ρi is banal, for i = 1, 2.
In either case, according to Lemmas 4.3 and 4.4, we have

L(X,L(�1),L(�2)) |
∏

i, j

L(X, νiρ1, ν
jρ2).

If either segment is non-banal, each factor L(X, νiρ1, ν
jρ2) is equal to 1 according

to Theorem 4.9, and the first assertion follows. In fact, the same argument in the non-
banal case shows that if ρ∨

1 and ρ2 are not isomorphic up to twisting by an unramified
character, then L(X,�1,�2) = 1.
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Hence, we are left with Part 2, and moreover, we can assume ρ2 = χρ∨
1

for some unramified character χ of F×. Thanks to the relation L(X, π, χπ ′) =
L(χ(wF )X, π, π ′) for any representations π and π ′ of Whittaker type, it is enough
to prove the result when ρ2 = ρ∨

1 . We thus set ρ = ρ1 and ρ∨ = ρ2 = ρ∨
1 . From

now on, as we are dealing with banal representations, it is possible to follow the main
idea of the proof of [9, Theorem 8.2] up to necessary adjustments (as some of the
arguments in this reference depend on poles being in right and left half planes of C).
In particular we proceed by induction on k2. We recall that because L(�1) and L(�2)

are generic, we have the inequalities ki < e(ρ) for i = 1, 2, and because they are
banal, we have e(ρ) = o(ρ) � 2.

If k2 = 1, then k1 � 1. In this case, we proceed by induction on k1. If k1 = 1, our
assertion follows from Theorem 4.9. If k1 > 1, as St (ρ, k1) is the generic subquotient
of ρ × St (νρ, k1 − 1), we have

L(X, St (ρ, k1), ρ
∨) | L(X, St (νρ, k1 − 1), ρ∨)L(X, ρ, ρ∨)

by Lemmas 4.3 and Proposition 4.4. Hence, there is R ∈ F�[X±1], such that

L(X, St (ρ, k1), ρ
∨) = R(X)L(X, St (νρ, k1 − 1), ρ∨)L(X, ρ, ρ∨). (2)

We let e = e(ρ) = o(ρ), f = f (ρ), P1 be the set of poles of L(X, ρ, ρ∨), and P2 be
the set of poles of L(X, St (ρ, k1), ρ∨). By Lemma 4.11, one has P f

1 ⊆ {1}, whereas

P f
2 ⊆ {q(ρ)k1} ⊆ {q(ρ), . . . , q(ρ)e−1},

and, in particular, P f
1 ∩ P f

2 , hence P1 ∩ P2, is empty. Thus if we set P(X) =
R(X)L(X, ρ, ρ∨), then P must belong to F�[X±1]. By our induction hypothesis,
we have

L(X, St (νρ, k1 − 1), ρ∨) = L(X, νk1−1ρ, ρ∨),

and we record the equation

L(X, St (ρ, k1), ρ
∨) = P(X)L(q1−k1X, ρ, ρ∨). (3)

For the same reason, there is Q ∈ F�[X±1] such that

L(q−1X−1, St (ρ∨, [1 − k1, 0]), ρ) = Q(X)L(q−1X−1, ρ∨, ρ). (4)

Now, the relation

γ (X, St (ρ, k1), ρ
∨) =

k1−1∏

i=0

γ (q−i X, ρ, ρ∨)
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implies that, up to units in F�[X±1], we have

L(q−1X−1, St (ρ∨, [1 − k1, 0]), ρ))

L(X, St (ρ, k1), ρ∨)
=

k1−1∏

i=0

L(qi−1X−1, ρ∨, ρ)

L(q−i X, ρ, ρ∨)
. (5)

But, up to units in F�[X±1] again, we have

L(qi−1X−1, ρ∨, ρ) = L(q1−i X, ρ∨, ρ),

hence, up to units, Eq. (5) becomes

L(q−1X−1, St (ρ∨, [1 − k1, 0]), ρ))

L(X, St (ρ, k1), ρ∨)
= L(qX, ρ∨, ρ)

L(q1−k1X, ρ, ρ∨)
= L(q−1X−1, ρ∨, ρ)

L(q1−k1X, ρ, ρ∨)
.

(6)
Comparing with Eqs. (3) and (4), we deduce that P = Q up to units, and thus that

P divides both polynomials

L(q−1X−1, ρ∨, ρ)−1 = q(ρ)−1X− f − 1, and L(q1−k1 X, ρ∨, ρ)−1 = q(ρ)1−k1 X f − 1.

Hence, P divides q(ρ)X f − 1 and q(ρ)X f − q(ρ)k1 in F�[X±1]. As q(ρ)k1 �= 1,
because k1 < e(ρ), the polynomials q(ρ)X f − 1 and q(ρ)X f − q(ρ)k1 are coprime;
hence, P is a unit in F�[X±1] which must be equal to 1 as it is the quotient of two
Euler factors, and the equality

L(X, St (ρ, k1), ρ
∨) = L(q1−k1X, ρ, ρ∨) (7)

follows from Eq. (3).
Now we do the induction step, and suppose that k2 > 1. By Lemmas 4.3 and 4.4

again, we know that there is P ∈ F�[X±1] such that

L(X,L(�1),L(�2)) = P(X)

k2−1∏

i=0

L(X,L(�1), ν
iρ∨),

which by the previous case, gives the relation

L(X,L(�1),L(�2)) = P(X)

k2−1∏

i=0

L(X, νk1−1ρ, νiρ∨) (8)

By the same argument, we obtain the existence of Q ∈ F�[X±1] such that

L(q−1X−1,L(�1)
∨,L(�2)

∨) = Q(X)

k2−1∏

i=0

L(q−1X−1, ρ∨, ν−iρ). (9)
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Up to units in F�[X±1], we have:

γ (X,L(�1),L(�2)) =
k2−1∏

i=0

γ (X,L(�1), ν
iρ∨) =

k2−1∏

i=0

L(q−1X−1,L(�1)
∨, ν−iρ)

L(X,L(�1), νiρ∨)

=
k2−1∏

i=0

L(q−1X−1, ρ∨, ν−iρ)

L(X, νk1−1ρ, νiρ∨)
. (10)

ByEqs. (8) and (9),wededuce that P = Q up tounits inF�[X±1], and in fact P = Q
as both must belong to F�[X ] with constant term 1. On the other hand, by Lemma 4.8,
we know that L(X,L(�1), St (ρ, k2 − 1)) divides L(X,L(�1),L(�2)), and

L(X,L(�1), St (ρ, [1, k2 − 1])) =
k2−1∏

i=1

L(X, νk1−1ρ, νiρ∨)

by our induction hypothesis. This implies, by Eq. (8), that P divides L(X, νk1−1ρ,

ρ∨)−1. Similarly, we find that P divides L(q−1X−1, ρ∨, ρ)−1. As we have already
proved in the case k2 = 1 that L(X, νk1−1ρ, ρ∨)−1 and L(q−1X−1, ρ∨, ρ)−1 are
coprime, we deduce that P = 1, and Eq. (8) gives the desired equality. ��

4.5 L-factors of banal generic representations

We recall the following fact. If ρ is an �-adic cuspidal representation of Gn , with f =
f (ρ), then by [3, 6.2.5], the integer f is the order of the cyclic group of unramified
characters of F× fixing ρ. Notice that there is then only one subgroup of the group of
unramified characters of F× which has order f ; hence, the condition μ f = 1 for an
unramified character μ of F× exactly means that μ fixes ρ.

Proposition 4.13 Let R be Q� or F�, and let ρ, ρ′ and ρ′′ be cuspidal R-
representations of Gn, such that L(X, ρ, ρ′) and L(X, ρ, ρ′′) have a common pole,
then ρ′ � ρ′′.

Proof First, this implies that there are unramified characters χ ′ and χ ′′ of F× such
that ρ′ � χ ′ρ∨ and ρ′′ � χ ′′ρ∨, so f (ρ) = f (ρ′) = f (ρ′′) = f . Now if x is this
common pole, which is necessarily in R×, we have 1 = x f χ ′′(
) f = x f χ ′(
) f ,
i.e. χ ′′(
) f = χ ′(
) f . Calling μ the character χ ′′χ ′−1, this implies that μ f = 1,
hence μρ′ � ρ′ and the result follows. ��
Corollary 4.14 Let ρ be a cuspidal R-representation of Gm, and π1 and π2 two R-
representations of Whittaker type supported on two different cuspidal lines Zρ1

and Zρ2 . Then L(X, ρ, π1) and L(X, ρ, π2) have no common pole.

Proof It follows at once from Proposition 4.13 and Lemma 4.4. ��
Corollary 4.15 Let ρ be a cuspidal R-representation of Gm, and π1 and π2 two R-
representations of Whittaker type supported on two different cuspidal lines Zρ1

and Zρ2 . Then L(X, ρ, π1) and L(q−1X−1, ρ∨, π∨
2 ) have no common pole.
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Proof If L(q−1X−1, ρ∨, π∨
2 ) has a pole, by Lemma 4.4, it occurs as a pole of

L(q−1X−1, ρ∨, νkρ∨
2 ) for some k ∈ Z. But, up to a unit of R[X±1], the rational

map L(q−1X−1, ρ∨, νkρ∨
2 ) is equal to L(qX, ρ, ν−kρ2) = L(X, ρ, ν−1−kρ2). The

result now follows from Corollary 4.14. ��
Lemma 4.16 Let ρ be a cuspidal �-modular representation of Gm, and let π =
L(�1) × L(�2) be a banal generic �-modular representation of Gn. If �1 =
[a1, b1]ρ1 and �2 = [a2, b2]ρ2 , then if 0 � k � min(b1 − a1, b2 − a2), the fac-
tors L(X, ρ,L(�1)) and L(q−1X−1, ν−kρ∨,L(�2)

∨) have no common pole.

Proof Suppose there is a common pole x . First by Corollary 4.15, ρ2 and ρ1 are on
the same cuspidal line, in particular we can take ρ1 = ρ2 = τ . If τ is not equal to ρ∨
up to twisting by an unramified character or ρ is non-banal, then both factors would be
equal to 1 and we are done. Hence, ρ is banal, τ = χρ∨ for χ an unramified character
of F×, and we set f = f (ρ). Now

L(X, ρ,L(�1)) = 1/(1 − (q−b1χ(
)X) f )

and

L(q−1X−1, ρ∨, ν−kL(�2)
∨) = 1/(1 − (qa2+k−1χ(
)−1X−1) f ),

setting y = χ(
)x , we get the relation y f = q f (a2+k−1) = qb1 f , i.e.

q(ρ)a2 = q(ρ)b1+1−k . (11)

As π is banal, we can always choose a1 � b1 and a2 � b2 such that, if c =
max(b1, b2): either a1 � a2 and 0 � c−a1 < e−1, or a2 � a1 and 0 � c−a2 < e−1.
In the first case, Eq. (11) implies q(ρ)a2−a1 = q(ρ)b1−a1+1−k , but as 0 � a2 − a1 <

e − 1 and

1 � b1 − a1 + 1 − k � b1 − a1 + 1 < e,

we deduce that a2 −a1 = b1 −a1 +1− k, i.e. a2 = b1 +1− k. In this case one would
have a1 � a2 � b1+1 and b2 = b1+1−k+b2−a2 � b1+1, which is absurd as�1
and�2 would then be linked. In the second case, Eq. (11) implies q(ρ)1−k+b1−a2 = 1.
As 1 � 1 + [(b1 − a1) − k] � 1 + b1 − a2 − k � 1 + b1 − a2 < e, we deduce the
equality b1 − a2 = k − 1, which is absurd as k � b1 − a1 � b1 − a2. This ends the
proof. ��

We now prove the inductivity relation for banal generic representations.

Theorem 4.17 Let π = L(�1) × · · · × L(�r ) and π ′ = L(�′
1) × · · · × L(�′

r ′) be
two banal generic �-modular representations of Gn and Gn′ , respectively, then

L(X, π, π ′) =
∏

i, j

L(X,L(�i ),L(�′
j )).
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Proof We proceed by induction on n+n′. If n+n′ = 0, then both sides of the equality
are equal to 1. We now do the induction step. Thanks to Lemma 4.4, there is P and Q
in R[X ], with P(0) = Q(0) = 1, such that

L(X, π, π ′) = P
∏

i, j

L(X,L(�i ),L(�′
j )), (12)

and
L(q−1X−1, π∨, π ′∨) = Q

∏

i, j

L(q−1X−1,L(�i )
∨,L(� j )

∨). (13)

The inductivity relation of γ -factors (Theorem 4.1) gives, up to units of R[X±1],
the relation:

L(q−1X−1, π∨, π ′∨)

L(X, π, π ′)
=

∏
i, j L(q−1X−1,L(�i )

∨,L(�′
j )

∨)
∏

k,l L(X,L(�k),L(�′
l))

. (14)

In particular, Eqs. (12), (13) and (14) give P = Q up to units of R[X±1], i.e. P = Q
(as they are in R[X ] with constant term equal to 1). It thus suffices to prove that they
are equal to 1, which will follow from the fact that they have no common root. Notice
that if r = r ′ = 1 there is nothing to prove and P and Q are obviously equal to 1. If
not, we can always assume that r � 2 as the L-function is by definition symmetric
with respect to its two last variables. So we suppose that r � 2. In this case, we
order the segments �1, . . . ,�r and �′

1, . . . ,�
′
r ′ so that �1 has minimal length (the

length being that of segments, not modules) amongst the �i and, similarly, �′
1 has

minimal length amongst the �′
i , which is possible as π and π ′ are generic. We

have L(�1) = St (ρ, k), where ρ is a cuspidal representation of Gl for some positive
integer l.We setL(�1)

(l) = St (ρ, [1, k−1]) (this is indeed the lth derivative ofL(�1)

by Proposition 2.16). Thanks to our ordering, the representation L(�1)
(l) ×L(�2) ×

· · · × L(�r ) is still generic. By induction hypothesis, we have

L(X,L(�1)
(l) × L(�2) × · · · × L(�r ),L(�′

1) × · · · × L(�′
r ′))

=
r ′

∏

i=1

L(X,L(�1)
(l),L(�′

i ))

r∏

j=2

r ′
∏

k=1

L(X,L(� j ),L(�′
k)). (15)

Now by Corollary 4.8, we also know that L(X,L(�1)
(l) × L(�2) × · · · ×

L(�r ),L(�′
1) × · · · × L(�′

r ′))−1 divides L(X, π, π ′)−1. Hence, Eqs. (12) and (15)
together imply that P divides

r ′
∏

i=1

L(X,L(�1)
(l),L(�′

i ))

L(X,L(�1),L(�′
i )

.

Write L(�′
i ) = St (ρ′

i , ki ), and let εi ∈ {0, 1}, be equal to 1 if and only if ρ′
i is

equal to ρ∨ up to unramified twist and k < ki . The above product, by Theorem 4.12,
is equal to
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r ′
∏

i=1

L(X, ρ,L(�′
i ))

−εi .

Similarly, we show that Q divides

r ′
∏

i=1

L(q−1X−1, ν−kρ,L(�′
i ))

−εi .

In particular, if P and Q have a common root, there would be i and j in {1, . . . , r ′},
with ki and k j both > k, such that L(X, ρ,L(�′

i )) and L(q−1X−1, ν−kρ,L(�′
j ))

would have a common pole x . This is absurd according to Lemma 4.16. This ends the
proof. ��

We obtain the following corollary.

Theorem 4.18 Let π and π ′ be two �-modular banal generic representations of Gn,
then π and π ′ admit generic lifts τ and τ ′, such that

L(X, π, π ′) = r�(L(X, τ, τ ′)).

Proof Take τ and τ ′ two standard lifts which are generic, and apply Theorems 4.17
and 4.12. ��

4.6 L-factors of generic representations

We now obtain the inductivity relation for all generic representations. It follows at
once from the results of the previous subsection and the following equality.

Theorem 4.19 Let π = πb × πtnb be a generic �-modular representation of Gn,
and π ′ = π ′

b × π ′
tnb be a generic �-modular representation of Gn′ , then we have

L(X, π, π ′) = L(X, πb, π
′
b).

Proof From Proposition 4.7, we know that L(X, πb, π
′
b) divides L(X, π, π ′). Now

from Lemma 4.4 we know that L(X, π, π ′) divides L(X, πb, π
′
b)L(X, πtnb, π

′
b)L(X,

πb, π
′
tnb)L(X, πtnb, π

′
tnb). Hence, we only need to see that each factor L(X, πtnb, π

′
b),

L(X, πb, π
′
tnb) and L(X, πtnb, π

′
tnb) is equal to one. This follows easily from Lemma

4.4 and Theorem 4.12. ��
An immediate corollary, which follows from the inductivity relation for L factors

of �-modular banal generic representations (Theorem 4.17), is the inductivity relation
for L factors of �-modular generic representations.

Corollary 4.20 Let π = L(�1) × · · · × L(�r ) and π ′ = L(�′
1) × · · · × L(�′

t ) be
two �-modular generic representations, then

L(X, π, π ′) =
∏

i, j

L(X,L(�i ),L(�′
j )).
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As a consequence, we get a nice result on congruences of �-adic L-factors. We start
with the particular case of segments.

Proposition 4.21 Let L(�) and L(�′) be two �-modular generic segments of Gn

and Gm, respectively. Then there are �-adic generic representations τ1, . . . , τu,
and τ ′

1, . . . , τ
′
v (with u and v at most 2) such that J�(τi ) = L(�) and J�(τ ′

i ) = L(�′),
such that

L(X,L(�),L(�′)) = GCD
i, j

(L(X, τi , τ
′
j )).

Proof We write � = [a, b]ρ and �′ = [a′, b′]ρ′ . In this case we already know
the result if both segments are banal by Theorem 4.12 (one only needs one lift). If
one segment is non-banal, for instance �, then ρ is non-banal as well (Proposition
2.32). We let L(D′) be a segment lifting L(�) in any case. If ρ is supercuspi-
dal, according to Proposition 2.38, ρ has two cuspidal lifts σ1 and σ2 which are
in different orbits under unramified twists. In particular, as the L factor of a pair of
cuspidal representations which are not contragredient of one another up to unram-
ified twist is equal to 1, using Lemmas 4.3 and 4.4 for L(X,L([a, b]σ1),L(D′))
and L(X,L([a, b]σ2),L(D′)), this implies that one of the factors is equal to 1, and
we are done in this case (with τi = L([a, b]σi ), and τ ′

1 = L(D′)). If ρ is not
supercuspidal, we can write it under the form Str (μ) for r ≥ 2 and some super-
cuspidal representation μ. Let t be the positive integer such that ρ is a representation
of Gt , then μ is a representation of Gd for d = t/r < t , the important point here
being d < t . Then ρ can be lifted to a cuspidal representation σ1 of Gt , but we also
have ρ = J�(Str (ν)), for ν a cuspidal lift of μ. We let τ1 = L([a, b]σ1), and τ2
be the generic subquotient of νa Str (ν) × · · · × νbStr (ν), then Lemma 2.27 implies
that � = J�(τ2) = J�(τ1). As the L factor of a pair of cuspidal representations which
are representations of different linear groups is equal to 1, by Lemmas 4.3 and 4.4
again, one of the factors L(X, τ1,L(D′)) and L(X, τ2,L(D′)) is equal to 1 and this
ends the proof (with τ ′

1 = L(D′)). ��

Theorem 4.22 Letπ andπ ′ be two generic �-modular representations of Gn and Gm,
then:

L(X, π, π ′) = GCD(r�(L(X, τ, τ ′))).

where the divisor is over all integral generic �-adic representations τ of Gn and τ ′
of Gm which contain π and π ′, respectively, as subquotients after reduction modulo �.

Proof We use notations of Lemma 2.27. Let τ and τ ′ be two �-adic generic represen-
tations of Gn , and let π = J�(τ ) and π ′ = J�(τ ′). We have a surjection p : σ � τ

(resp. p′ : σ ′ � τ ′ ), where σ = r1 × · · · × rt (resp. r ′
1 × · · · × r ′

s) is a product of
cuspidal representations, hence a representation ofWhittaker type. By Lemma 4.3, we
have L(X, τ, τ ′) = L(X, σ, σ ′). We set ρi = r�(ri ) and ρ′

i = r�(r ′
i ), so that Lemma

2.27 tells us that the representation π (resp. π ′) is the unique generic subquotient of
ρ1×· · ·×ρt (resp. ρ′

1×· · ·×ρ′
s). By Lemma 4.3 again, the factor L(X, π, π ′) divides
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L(X, ρ1 × · · · × ρt , ρ
′
1 × · · · × ρ′

s),

which in turn divides r�(L(X, σ, σ ′)) = r�(L(X, τ, τ ′)) according to Theorem 3.13.
This proves that L(X, π, π ′) divides the greatest common divisor considered in the
statement.

Wenowhave to show that this greatest commondivisor divides L(X, π, π ′).Wewill
thus find a finite number of �-adic generic representations τ1, . . . , τu and τ ′

1, . . . , τ
′
v ,

with π = J�(τi ) for all i and π ′ = J�(τ ′
j ) for all j , such thatGCDi, j (r�(L(X, τi , τ

′
j )))

divides L(X, π, π ′). We already know that this is true when π and π ′ are generic
segments according to Proposition 4.21. In general, we write

π = L(�1) × · · · × L(�r ), π ′ = L(�′
1) × · · · × L(�′

s).

According to Proposition 4.21, for each k between 1 and r (resp. each l between 1
and s) we can choose a finite number of generic representations τ kik

(resp. τ ljl
) such

that J�(τ kik ) = L(�k) (resp. J�(τ ′l
jl ) = L(�′

l)), and

L(X,L(�k),L(�′
l)) = GCD

ik , jl
(r�(L(X, τ kik , τ

′l
jl ))).

We denote by τi1,...,ir the unique generic subquotient of τ
1
i1

×· · ·×τ rir , and τ ′
j1,..., js

the unique generic subquotient of τ ′1
j1 × · · · × τ ′s

js , so that J�(τi1,...,ir ) = π ,
and J�(τ ′

i1,...,is
) = π ′. By Lemmas 4.3 and 4.4, we know that L(X, τi1,...,ir , τ

′
j1,..., js

)

divides the factor
∏r,s

k=1,l=1 L(X, τ kik
, τ ′l

il ). Hence

GCD
(i1,...,ir ),( j1,..., js )

(
L(X, τi1,...,ir , τ

′
j1,..., js )

)
| GCD

(i1,...,ir ),( j1,..., js )

⎛

⎝
r,s∏

k=1,l=1

r�(L(X, τ kik , τ
′l
il ))

⎞

⎠ .

This latter GCD is equal to

r,s∏

k=1,l=1

GCD
ik , jl

(
r�(L(X, τ kik , τ

′l
il ))

)
=

r,s∏

k=1,l=1

L(X,L(�k),L(�′
l)) = L(X, π, π ′),

the last equality according to Corollary 4.20. This ends the proof. ��
Remark 4.23 Taking the unique generic subquotient in the reduction modulo � of an
integral generic �-adic representation is an instance of Vignéras’ J� map (cf. [23,
1.8.4]). As this map is defined on all integral irreducible �-adic representations of Gn ,
and is surjective onto all irreducible �-modular representations of Gn [ibid.], it is
tempting to define the L-factor L(X, π, π ′), of pairs of irreducible (not necessarily
generic) �-modular representations π, π ′, by a GCD of the reductions modulo � of
the �-adic L-factors L(X, τ, τ ′) where τ, τ ′ vary over all integral �-adic represen-
tations such that J�(τ ) = π and J�(τ ′) = π ′. Interesting future questions revolve
around determining whether this is a natural definition, perhaps, by finding an integral
representation for this �-modular L-factor.
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