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Abstract: Independent component analysis (ICA) is a data-driven approach that has exhibited great
utility for functional magnetic resonance imaging (fMRI). Standard ICA implementations, however, do
not provide the number and relative importance of the resulting components. In addition, ICA algo-
rithms utilizing gradient-based optimization give decompositions that are dependent on initialization
values, which can lead to dramatically different results. In this work, a new method, RAICAR (Ranking
and Averaging Independent Component Analysis by Reproducibility), is introduced to address these
issues for spatial ICA applied to fMRI. RAICAR utilizes repeated ICA realizations and relies on the
reproducibility between them to rank and select components. Different realizations are aligned based
on correlations, leading to aligned components. Each component is ranked and thresholded based on
between-realization correlations. Furthermore, different realizations of each aligned component are
selectively averaged to generate the final estimate of the given component. Reliability and accuracy of
this method are demonstrated with both simulated and experimental fMRI data. Hum Brain Mapp
29:711–725, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Independent Component Analysis (ICA) is a data-driven
approach that is widely used in functional magnetic reso-
nance imaging (fMRI) [Calhoun et al., 2006; McKeown et al.,
1998; Van de Ven et al., 2004]. The commonly used spatial
ICA (sICA) considers the fMRI dataset as a linear mixture of
spatially independent components that are ‘‘mixed’’ by their
respective time courses. ICA has the advantage of being able
to detect spatially distributed networks and temporal dy-
namics in the brain without assuming a known response
[De Luca et al., 2006; McKeown et al., 1998]. It is thus suita-
ble for exploratory analysis of fMRI data, where the general
linear model (GLM) might be hampered by the lack of an
appropriate a priori response model.
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Despite its advantages, ICA has several theoretical and
practical limitations, including its inability to determine
the number of components and to order these components
[Hyvarinen et al., 2001]. In standard ICA, the number of
components is assumed to be equal to the rank of the
voxel 3 time data matrix (this is usually the number of
time points collected since it is the smaller of the two
dimensions). This assumption is generally not appropriate
in fMRI, where the number of signal sources is usually
much less than the length of the fMRI time series [Beck-
mann and Smith et al., 2004]. Even though some ICA
decomposition algorithms permit fewer components, the
number of components generally needs to be specified
before the decomposition, making the results user-depend-
ent (e.g. [Kiviniemi et al., 2003; Van de Ven et al., 2004]).
Another limitation is that there is no standard approach
for ordering components, which may necessitate manual
inspection of hundreds of components and make compari-
son of different ICA results problematic. Algorithmically,
ICA decompositions utilizing gradient-based optimization
are stochastic and are based on iteratively updating the
‘‘unmixing matrix’’ whose initial values are usually gener-
ated randomly [Himberg et al., 2004]. The randomness of
the initialization introduces randomness into the ICA
decomposition; consequently, a single decomposition is
not reliable.
Several groups have attempted to address the above

issues. McKeown and Sejnowski [1998] used an observa-
tion maximum likelihood method to estimate the number
of components. Their method does not extract the actual
number of components but can be used as a means to
make comparisons across methods [Esposito et al., 2002;
Formisano et al., 2004]. Beckmann and Smith [2004] have
developed a probabilistic ICA method implemented in the
MELODIC package that estimates the number of compo-
nents using probabilistic PCA. Others [Esposito et al.,
2001; Gu et al., 2001] introduced methods for ordering the
ICA components—for example by spatial characteristics
such as the number of voxels and connection properties.
Moritz et al. [2003] proposed ranking the independent
components by the relationship between their power spec-
trum and the stimulus frequency. Lu and Rajapakse [2003]
developed a constrained ICA algorithm and ordered com-
ponents by the kurtosis of their probability density distri-
butions. LaConte et al. [2001] ordered components based
upon their reproducibility across different epochs in event-
related experiments.
Himberg et al. [2004] proposed an approach for ‘‘assessing

both the algorithmic and statistical reliability of estimated
independent components’’, via clustering of repeated ICA
realizations and visualization of the clusters. In the present
work, a similar philosophy is utilized to develop an
approach, RAICAR (Ranking and Averaging Independent
Component Analysis by Reproducibility), for ranking the
components, determining the number of reliable compo-
nents, and improving their estimates through averaging.
RAICAR is a framework that makes use of spatial reprodu-

cibility to evaluate ICA components; it can be used to deal
with algorithmic variability arising from the optimization
and/or data variability arising from measurement noise.
Although not the focus of the present work, data variability
can be examined by studying the reproducibility of ICA
components with resampled data. In this paper, we focus on
algorithmic variability by investigating the reproducibility
of the component maps with repeated applications of ICA
using different initialization values. To deal with algorith-
mic variability, RAICAR aligns the components of individ-
ual ICAs and ranks and selects the number of components
based on their reproducibility. The underlying assumption
is that spurious components exhibit greater fluctuation
across realizations than stable ones. Therefore, the reprodu-
cibility of each component (i.e. the resilience against the
influence of randomness) reflects its relative reliability, and
also allows estimation of how many components are of suffi-
cient stability to be retained. The final estimation of the
retained spatial sources is obtained by selectively averaging
them across the realizations, improving their quality and
decreasing their stochastic nature. Application to simulated
and experimental data demonstrates that this approach
leads to interpretable and reliable results.

METHODS

RAICAR Algorithm

The basic idea of ICA is to decompose a data matrix
into several independent sources that are linearly com-
bined. Based on this idea, the spatial ICA employed in
fMRI data analysis treats spatial pattern maps as the inde-
pendent components, which are mixed together according
to their corresponding time courses [McKeown et al.,
1998]. This notion can be expressed as X ¼ MS, where X is
the observed dataset, M is the mixing matrix of time
courses, and S represents the independent spatial maps.
Suppose an observed dataset X (with T time points and V
voxels) consists of C spatial sources. X is a T 3 V matrix;
M is T 3 C while S is C 3 V. The aim of ICA is to esti-
mate both M and S simultaneously.
The independence assumption is utilized in order to

perform the simultaneous estimation. That is, M and S are
determined by maximizing the independence of the com-
ponents. Nongaussianity can be used to quantitatively rep-
resent this independence, and several measures of non-
gaussianity have been proposed [Hyvarinen and Oja,
2000]. Algorithmically, the ICA model is often rewritten as
S ¼ WX, where W is a square full-rank unmixing matrix
and M ¼ W�1 [McKeown et al., 1998]. In most ICA algo-
rithms (e.g. FastICA [Hyvarinen, 1999]), W is iteratively
updated until maximum nongaussianity is achieved. With
the iterative procedure being a gradient-based optimiza-
tion, W is usually initialized with random numbers at the
beginning of the iteration, introducing randomness into
the decomposition [Himberg et al., 2004]. The implication
of having a random initialization is that different initial
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conditions can lead to different results in the gradient-
based optimization.
RAICAR performs the ICA decomposition K times (K

realizations). In our implementation we use the FastICA
algorithm with different initial conditions,1 yielding K mix-
ing matrices, M1, M2 � � � MK, and correspondingly K sets
of sources, S1, S2 � � � SK. The number of components, C, is
set to the estimated rank of the data matrix during the
decomposition (the default for FastICA is the number of
eigenvalues of X larger than 10�7—for fMRI C often equals
the smaller dimension of the data matrix, X) and is the
same for all realizations. Therefore, each realization leads
to C components, hereafter referred to as a realization-
component (RC) and indexed by a component number
(ranging from 1 to C) and a realization number (ranging
from 1 to K).
To examine the reproducibility of the RCs, the first step

is to construct a cross-realization correlation matrix
(CRCM). This matrix is C �K 3 C �K with the following
structure:
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The Rij
0sði ¼ 1; 2; . . . ;K; j ¼ 1; 2; . . . ;KÞ are C 3 C subma-

trices whose elements are the absolute value of the spatial
correlation coefficients (SCC) for all pairs of components
from realizations i and j. Thus, the SCC is defined as the
absolute value of the Pearson’s correlation coefficient
between component maps. Note that the CRCM is sym-
metric, and submatrices Rii are identity matrices and are
ignored in the subsequent algorithm.
After construction of the CRCM, the next step is to align

the realizations. Since there is no predetermined order for
the ICA components, a given component’s position may
appear in any of the C positions from realization to real-
ization. To align across realizations, the following proce-
dure is repeatedly applied (see Fig. 1). First, the global
maximum in the CRCM is identified. Let us assume that
the maximum is located at the mth row and the nth col-
umn (denoted as [m, n] hereafter) in submatrix Rab (there
is an identical value in Rba since the CRCM is symmetric).
This maximum allows us to establish correspondence
between component m in realization a and component n in
realization b, defining the starting point of an aligned com-
ponent, with realization components RCma and RCnb. In
the remaining realizations, the RCs having the maximum

correlation with these RCs are identified. Specifically, the
mth row of the submatrices Rai (i refers to all the realiza-
tions other than a or b) and the nth column of the subma-
trices Rib are searched, for respective maxima. The posi-
tions of the maxima are denoted [m, pi] in Rai and [qi, n] in
Rib, as shown in Figure 1. In many cases, the two maxima
for each realization correspond to the same RC (i.e. pi ¼ qi
for realization i); in this case, component pi of realization i
is assigned to the aligned component defined by [m, n] in
Rab. In the case that pi = qi, the SCCs of components pi and
qi of realization i are compared, and the one with the
larger SCC is assigned to the aligned component defined
above. The rows and columns that contain the entries and
their diagonal reflections are subsequently eliminated from
the CRCM before the next repetition starts. The procedure
is repeated C times until C aligned components are identi-
fied. Each aligned component entails K RCs, one for each
realization, and cross-correlation between these aligned
RCs produces K(K�1)/2 SCCs.
After the alignment, a histogram of the SCCs in the

CRCM (upper triangle) is generated.2 This histogram is bi-
modal, with modes near 0 and 1, representing a large
number of components that are not correlated and a small
number of components that are highly correlated, respec-

Figure 1.

Each submatrix in the cross-realization correlation matrix

(CRCM), Rij, is the spatial cross-correlation matrix between real-

izations i and j. The circled dot represents the global maximum

in the CRCM. After finding this maximum, the mth row in each

submatrix Rai and the nth column in each submatrix Rib are

searched for a corresponding submatrix-specific maximum.

These maxima are indicated by dots with their positions given in

parentheses.

1For the results reported here, the random initial conditions were
generated by using the computer’s system time to generate a ran-
dom seed. From this seed, a random matrix was generated, which
determined the initial conditions for each realization.

2Our implementation used 100 bins with SCC values ranging from
0 to 1 using default histogram function in MatlabTM (Mathworks,
Natick, USA).
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tively. To eliminate insignificant SCCs, an SCC threshold is
set at a point between the two modes. In this report, the
SCC threshold is found by smoothing the histogram and
searching for the minimum. A reproducibility index for
each aligned component is then generated by summing
the SCCs, among the aligned component’s RCs, that are
above the SCC threshold. Importantly, as our results dem-
onstrate, the ranking result is not sensitive to the exact
choice of SCC threshold, provided it lies in the valley of
the histogram between the two modes.
The reproducibility index is used to rank the aligned

components in descending order. If an aligned component
is consistent across ICA realizations, its reproducibility
index will be high and thus its ranking order will be high.
The reproducibility index is a measure of component reli-
ability and can be used to determine the number of repro-
ducible components. In fact, given that the SCCs exhibit a
bimodal distribution, most components will have a very
low reproducibility index, and a few components will
have a relatively high reproducibility index. As we show
in our results, the ordered reproducibility index generally
drops off sharply, allowing us to estimate the number of
components, by keeping those components whose repro-
ducibility index is above a cut-off point. Visual inspection
of the ordered reproducibility plot allows the selection of
the cut-off point ‘‘by eye’’ and is recommended in practice.
The choice of a cut-off is often required in many data
reduction techniques (e.g. in dimensionality reduction
using a plot of singular values) and is the responsibility of
the experimenter. In this work, to be consistent across
experiments, the cut-off point is set to 50% of the index’s
maximum possible value (KðK�1Þ

2 30:5). Another possibility
includes finding the maximum slope in the reproducibility
plot. And, even without selecting a cut-off, the number of
components is generally greatly reduced compared to C,
making it possible to examine all of these components.
To generate the final components, the spatial maps and

the corresponding mixing time courses of the RCs of each
aligned component are selectively averaged. That is, only
RCs that have at least one SCC higher than the threshold
for all of the other the RCs of the given aligned component
are included when generating the averaged components.

Simulation 1

A simulation study was conducted to evaluate the per-
formance of RAICAR. Six nonoverlapping spatial sources
with equal area were generated and mixed together
according to the mixing time courses indicated in Figure 2.
The mixing time courses had zero mean and consisted of
162 time points. A slowly varying global baseline was
added to all the pixels, and the resultant time course for
each pixel was further degraded by adding Gaussian white
noise. The SNR for each component was determined by
the variance of the mixing time courses, relative to that of
the Gaussian white noise. Specifically, the SNR of the six
mixing time courses were 0.35, 0.29, 0.24, 0.20, 0.16, and

0.14, respectively. The SNR of the slowly varying global
baseline was set to 0.11. With these values, the contrast-to-
noise ratio (CNR : DS=rnoise) of the mixing time courses
ranged from 0.92 to 3.87, consistent with CNR values
reported in the fMRI literature [Esposito et al., 2002; Huet-
tel et al., 2004].
No pre-processing was applied to the simulated data.

FastICA (http://www.cis.hut.fi/projects/) for MatlabTM

(Mathworks, Natick, USA) was used to carry out the ICA
decompositions. Thirty different ICA decompositions were
obtained with random initial conditions (K ¼ 30) to per-
form RAICAR. To examine the relevance of the resultant
components, they were matched to the true sources
according to their temporal correlations, and a receiver
operating characteristics (ROC) analysis was conducted
based on the spatial maps. To test reliability, we repeated
the above procedure 10 times.

Simulation 2

In Simulation 2, we superimposed the sources from Sim-
ulation 1 onto resting state fMRI time series. The resting
state data were acquired using a 3T Siemens Trio scanner
(Siemens Medical Solutions, Malvern, PA), with TR ¼ 2 s,
TE ¼ 34 ms, and flip angle ¼ 908. The resting state data

Figure 2.

Simulated spatial sources and their mixing time courses. A: Spa-

tial map of the numbered sources. All the sources are equal in

area. B: The corresponding mixing time courses of the sources.

The bottom panel shows the added global baseline.
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were corrected for motion and for physiological noise
using the AFNI RETROICOR plugin [Cox, 1996; Glover
et al., 2000]. We applied RAICAR to three combinations of
data: resting state data only, resting state data with low-
contrast simulated sources, and resting state data with
high-contrast simulated sources. Contrast was controlled
by scaling the magnitude of the simulated sources on a
pixel-by-pixel basis. For the low contrast case, the simu-
lated mixing time courses had the same CNRs as in Simu-
lation 1, and for the high contrast case, the CNRs of the
simulated mixing time courses were 2.7 times those in
Simulation 1.

Delayed Motor Task

The data were acquired on three healthy right-handed
participants using single shot T2*-weighted EPI on a GE
Signa 1.5T scanner (GE Medical Systems, Milwaukee, WI)

Figure 3.

Reproducibility ranking of the simulated data. A: Bimodal distri-

bution of the correlation coefficients. The majority of the corre-

lation coefficients lie in the lower range of 0–0.60, while the

remaining fall in the upper range of 0.80–1.00. These two ranges

are separated by a broad valley (roughly 0.60–0.80). The solid

red curve is the smoothed histogram used to determine the

threshold. The arrows indicate the three SCC thresholds used.

B: The reproducibility index plots generated using the three

SCC thresholds. The half-maximum cut-offs are shown with hor-

izontal green lines, indicating six components in each case. The

orders of the components derived with all three thresholds are

also the same.

Figure 4.

Detectability of RAICAR and individual ICA realizations using

the sixth simulated source (with lowest SNR). ROC curves of

the individual ICA realizations (black) and RAICAR results (red)

are shown. The light red region shows the spread of 10 RAI-

CAR repetitions and the red curve shows their mean. The indi-

vidual ICA realizations exhibit variable results, while the

repeated RAICAR results are all virtually identical and outper-

form the majority of individual ICA realizations.

TABLE I. The order of the components corresponds to

the descending order of their SNR

Order Reproducibility index SNR

1 425.6 0.35
2 425.3 0.29
3 419.8 0.24
4 413.3 0.20
5 407.7 0.16
6 261.8 0.14
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with the following imaging parameters: TR/TE ¼ 2,000/50
ms, flip angle ¼ 908, FOV ¼ 220 mm, matrix ¼ 64 3 64,
five oblique axial slices, starting from the top of the head,
slice thickness/gap ¼ 5/0 mm, and 126 volumes. The task
consisted of right-handed finger tapping in a delayed
movement paradigm. The participants were presented
with a visual cue indicating the finger tapping sequence,
but did not move their fingers until a ‘‘Go’’ command was
given [Catalan et al., 1998; Ogawa et al., 1998]. For each
trial, the visual ‘‘Cue’’ and ‘‘Go’’ stimuli lasted for 2 s each
and the interval between them was 12 s. The inter-trial
interval (ISI) was also 12 s. Each run consisted of nine
such trials, each lasting 28 s.
These data were motion corrected, baseline detrended

and masked to exclude the voxels outside the brain using
AFNI [Cox, 1996]. RAICAR was applied, with 30 repeti-
tions of randomly initialized ICA decompositions (K ¼ 30).
Identification of the task-related components was achieved
by correlating the mixing time course of the resulting com-
ponents to the stimulus sequence, convolved with an ideal
hemodynamic response function (HRF) generated by
AFNI. To examine the robustness of the reproducibility
method, it was applied three times, each time using three
different SCC thresholds.

Constant Force Grip Task

Subjects repeatedly gripped a water-filled bottle with
their right hand. The force of the grip was gauged by the
water pressure in real time and presented to the subject so
that he/she can adjust the force to meet a target level of
50% of his/her maximal voluntary contraction (MVC) level

[Liu et al., 2000, 2002], calculated based on the maximal
grip force measured at the beginning of the experiment.
Subjects performed the gripping by following visual cues
(generated by a waveform generator [Wavetek Datron, San
Diego, CA]) projected onto the screen above the subjects’
eyes in the magnet. Each visual cue was a rectangular
pulse that indicated (target amplitude for 50% MVC and
desired duration of 3.5 s) the desired contraction. The du-
ration of each contraction was 3.5 s, followed by a 6.5-s
resting interval [Peltier et al., 2005]. fMRI data were col-
lected on a 3T Siemens Trio scanner (Siemens Medical Sol-
utions, Malvern, PA), with 30 axial EPI slices (TR/TE ¼
2,000/30 ms, voxel ¼ 3.4 3 3.4 3 4 mm3, flip angle ¼ 908).
Motion correction and brain masking were applied as pre-
processing procedures, and RAICAR was preformed (K ¼
30). To examine the sensitivity to the SCC threshold for
these data, we repeated RAICAR with two additional SCC
threshold values.

Investigation of the Impact of K

The stability of the rank positions was studied as a func-
tion of K for Simulation 1. We also investigated the vari-
ability of the RAICAR results as a function of K (the num-
ber of individual ICA realizations used by RAICAR). For
Simulation 1 and both experimental datasets, RAICAR was
applied 20 times at different K values ranging from 5 to 55
in steps of 5. All component maps were matched to the
results reported for the above studies (which used K ¼
30). For each K value, the variance for each component in
the 20 RAICAR repetitions was calculated and averaged

Figure 5.

Reproducibility rankings obtained from simulation 2. A: resting-state data only. B: resting-state

data with low CNR sources. C: resting-state data with high CNR sources. The increased CNR

level shifts the components towards the left (increasing their rank).
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Figure 6.

Reproducibility ranking of the event-related, delayed motor data

in one subject. Columns correspond to different sets of ICA

realizations. The top row shows the histograms of the SCCs for

the three sets of ICA realizations. The correlation coefficients

are distributed in two modes, one near zero and the other near

one. The bottom three rows are ordered reproducibility index

plots for three different thresholds. It can be seen that the num-

ber of components passing the cut-off (shown as horizontal gray

lines) do not vary significantly with the SCC thresholds and dif-

ferent sets of ICA realizations.



over all voxels and all components. The average variance
as a function of K was used to measure convergence.

RESULTS AND DISCUSSION

Simulation 1

The simulation data were decomposed into 162 compo-
nents by FastICA (C ¼ 162). Figure 3 shows the histogram
of the SCCs and the plot of the ordered reproducibility
index. The SCC histogram (Fig. 3A) follows a bimodal dis-
tribution. The smoothed histogram is shown as the red
curve in Figure 3A, and has a minimum at 0.73, which
was used to threshold the SCCs. In addition to 0.73, two
other SCC thresholds, 0.60 and 0.80 (marked with arrows
in Fig. 3A), were also used to test the sensitivity of the
analysis to the SCC threshold. Out of 162, the number of
reliable components determined using the half-maximum
cut-off (217.5) was six for all SCC thresholds. Each of these
six components uniquely matches one of the original sour-
ces in terms of both spatial pattern and mixing time
course. As shown in Table I, the order in which they
appear in Figure 3 coincides with the order of decreasing
SNR of the sources. Therefore, the present method success-
fully extracted both the number and the order of the com-
ponents in the simulated data. While the rank-order may
not coincide with the SNR order in general, it does reflect
the ‘‘strength’’ of the component.
The ordered reproducibility indices generated from the

three SCC thresholds are plotted in Figure 3B. In these
plots, the first six components (those above the cut-off) ex-
hibit the same ranking and have reproducibility indices
that are essentially independent of the SCC threshold. In
other words, the SCC threshold has a negligible effect on
the ranking of the reproducible components and their
number.
The ROC curves generated for the sixth source in the

simulation are shown in Figure 4. RAICAR outperforms
nearly all the individual ICA realizations. The wide spread
in the detectability (area under the curve) among individ-
ual ICAs clearly indicates the stochastic nature of FastICA,
which can not be neglected. In contrast, the spread of the
10 repetitions of RAICAR is relatively small. The temporal
correlation coefficients between the original source and the
mixing time course estimated by different methods are
0.89 for the best individual ICA, 0.31 for the worst individ-
ual ICA, and 0.91 for RAICAR. Identical results were
obtained with two other repetitions of the ranking process.
It is important to note that the sources in our simulation

studies are not exactly independent since they are mutu-
ally exclusive (e.g. Source 1 does not spatially overlap
with any other source). This lack of complete independ-
ence may lead to difficulties in ICA decomposition but is
probably more reflective of real fMRI data where inde-
pendence is not guaranteed. Fortunately, our results show
that some dependence in the data did not prevent us from
obtaining good results.

Simulation 2

Ten reproducible components were obtained in the rest-
ing state data (see Fig. 5A), reflecting functional connectiv-
ity [Biswal et al., 1995] and structured noise. When the
simulated sources were added to the resting state data,
they were recovered by RAICAR and ranked in the order
of descending SNR. As shown in Fig. 5B,C, the increase of
contrast of the simulated sources shifted their position in
the rank. At low contrast, the simulated sources were
located away from the top ranks and dispersed among the
resting-state components, while at high contrast, they
became the top components. This may indicate that at the
high CNR levels, the simulated components have CNR
higher than or comparable to those of the resting compo-
nents. These observations indicate that RAICAR works
well in the presence of fMRI background noise and the
ranking provides a useful measure of the strength of the
components.

Delayed Motor Task

For the delayed motor data, the number of components
in each individual ICA realization was 123 for all three
subjects (C ¼ 123). The thresholds determined by the SCC
histograms were 0.73, 0.75, and 0.71, respectively, for the
three subjects. Figure 6 shows RAICAR result of one of the
subjects. Similar to the simulated data, the SCCs (top row)
are distributed in two modes, one near zero and the other
close to one. The bottom three rows show the reproducibil-
ity index plots, obtained using three different SCC thresh-
olds, with three different sets of ICA realizations. As
Table II shows, the number of components determined by
the cut-off index does not vary substantially with either
the SCC threshold or the set of ICA realizations. However,
there is a slight variation in the number of components
determined since the drop-off of the reproducibility index
is more gradual in these data than in the simulated data.
Table II also shows that ‘‘Go’’ and ‘‘Cue’’ components of
the delayed movement task have ranks that are not highly
dependent on the SCC threshold or the set of ICA realiza-
tions. Similar conclusions hold for the results for the other
two subjects. The insensitivity to the SCC threshold indi-
cates that it is a parameter that does not have to be care-
fully selected, and the insensitivity to the specific set of

TABLE II. The estimated number of components

(Num. IC) and the positions of the task-related

components (go, cue)

Thr.

ICA set 1 ICA set 2 ICA set 3

Go Cue Num. IC Go Cue Num. IC Go Cue Num. IC

0.60 19 14 21 20 14 23 19 15 23
0.73 19 13 21 19 14 21 19 15 22
0.80 19 14 21 18 13 20 19 15 22
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Figure 7.

Several components extracted by RAICAR in the delayed motor

dataset. Component maps are displayed on the transparent glass

brain with corresponding time courses shown in blue; the red

and black curves illustrate the ideal response of ‘‘Cue’’ and ‘‘Go’’

task, respectively. Components 1 and 2 are due to cardiac noise;

Component 10 is task-related activation in the sensory and eye

field regions; Component 12 shows the activations correspond-

ing to the visual motion control; Component 13 is related to

head motion; Component 14 corresponds to the ‘‘Cue’’ task;

Component 18 shows the activations in prefrontal cortex; Com-

ponent 19 is activated by the ‘‘Go’’ task.



ICA realizations minimizes the stochastic nature of an
individual ICA.
Figure 7 shows eight components extracted by RAICAR.

The two top-ranked components are related to cardiac
noise; Component 10 shows the task-related activations on
the sensory and the eye field regions; Component 12
shows the inferior parietal regions (BA40/7) and the pre-
cuneus, which are related to visual motion control; compo-
nent 13 clearly reflects artifacts due to head motion; com-
ponent 14 contains activations in posterior parietal and
prefrontal regions, which are related to motor preparation
[Hanakawa et al., 2003]; component 18 primarily shows
activation in bilateral prefrontal cortex, which is related to
motor preparation and spatial imagery; component 19 is
related to the motor execution task.
To compare the RAICAR ‘‘Go’’ map (component 19) and

the individual ICA maps, we calculated their spatial correla-
tion coefficients with the GLM activation map corresponding
to the ‘‘Go’’ task. As expected based on our simulated ROC
studies, the correlation of the RAICAR pattern of activation
was in the upper range of the individual ICA realizations,
even though in this case the range was relatively narrow.
Specifically, the 30 individual ICA realizations had a mean
correlation of 0.489 and standard deviation of 0.017 while
the RAICAR correlation was 0.516.

Constant Force Grip Task

For the constant force grip data, the number of compo-
nents in each individual ICA realization was 71 (C ¼ 71).

Using a threshold of 0.80, as determined by the SCC histo-
gram, the reproducibility rank was generated and the
number of components was determined as 17. Figure 8
shows the reproducibility rank, and Figure 9 presents 3D
views of all components extracted by RAICAR. The first
component reflects regions that have been implicated in
the default mode network [Raichle et al., 2001]. The second
component is task-related activation in the primary motor
area. Components 4 and 5 are also task-related, likely cor-
responding to motor control; interestingly, their mixing
time courses follow the behavioral paradigm but are
modulated by a slow variation. Component 11 reveals
some task-related artifacts at the base of the brain. Other
components are either artifacts or unexplained brain acti-
vation.
To make a visual comparison between RAICAR and

individual ICA maps, Figure 10 shows components from
both RAICAR and a randomly selected individual ICA.
For the top components in the reproducibility rank, RAI-
CAR maps and individual ICA maps do not exhibit great
differences. However, as the order approaches the end of
the reproducibility rank, individual ICA maps tend to be
noisier than the RAICAR maps.
Table III lists the reproducibility ranks with different

SCC thresholds. Although the total number of components
varies with different SCC thresholds, the number of repro-
ducible components (above the reproducibility cut-off)
dose not change substantially, again showing the insensi-
tivity to the SCC threshold.

Row and Column Equivalence of the CRCM

Our implementation handles the case that pi = qi, by
choosing the RC with the larger SCC in the alignment pro-
cess. To evaluate how frequent this case arises in practice,
we tracked its occurrence during the alignment for the
simulation 1 and the two experimental data sets. Table IV
shows the occurrence rate of pi ¼ qi averaged over the re-
producible components and 20 repeated applications of
RAICAR. For all three datasets, more than 99% of the cases
are pi ¼ qi, and the standard deviations across 20 repeti-
tions are rather small. This means that the pi = qi cases
are rare in the reproducible components.

Impact of K

Figure 11 shows the convergence characteristics of RAI-
CAR. Figure 11A gives the positions of the components
identified by RAICAR from data in Simulation 1 as a func-
tion of K. For K above 20, there is no change in the posi-
tions. Figure 11B displays the area under the ROC curve
as a function of K, generated from the lowest SNR source
in Simulation 1. The area under the ROC curve is constant
when K is larger than 20. Panels C, D, and E of Figure 11
show the average variance among 20 RAICAR repetitions
for Simulation 1, the delayed motor dataset, and the con-

Figure 8.

The reproducibility rank obtained from the constant force grip

dataset. 17 components were above the reproducibility cut-off.
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Figure 9.

The 17 components for the constant force grip dataset. The

component maps are shown on the transparent glass brain with

the corresponding time courses shown below. The ideal task

response is shown (red) for components that are highly corre-

lated with it. The first component may reflect the default mode

network; Components 2, 4, and 5 arise from task-related activa-

tions, which include functional areas for motor control and exe-

cution; Component 11 seems to be due to task-related artifacts

at the base of the brain. Other components are either artifacts

or unexplained brain activation.
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stant force grip dataset as functions of K. When K ¼ 30,
the average variance is no more than 0.005 in all three
datasets. This variance is negligible when compared with
the intensity of the component maps (mean ¼ 0, standard
deviation ¼ 1), indicating that a K of 30 is sufficient for
RAICAR applied to the three data sets examined. In prac-
tice, the proper choice of K can be data dependent. The
methods described here allow users to choose proper K
value for different datasets.

Figure 10.

Comparison of the component maps extracted by RAICAR and a randomly selected individual ICA

realization. The top row of each component shows the RAICAR map and the bottom row shows the

individual ICA map. For higher ranked components, both results tend to be similar. While for lower

ranked components the individual ICA maps tend to be noisier than the corresponding RAICAR maps.

TABLE III. The number of reproducible components

(using the half-max cutoff) is not sensitive to

different SCC thresholds

SCC threshold
Number total
components

Number reproducible
components

0.70 71 18
0.75 65 18
0.80 58 17
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General Discussion

RAICAR is an extension of AFRICA [LaConte et al.,
2001] and is unique compared to other methods for order-
ing independent components [Esposito et al., 2001; Gu
et al., 2001; Lu and Rajapakse, 2003; Moritz et al., 2003], in
that it relies upon reproducibility. Selective averaging of
RCs is used by RAICAR to generate the final components.

Other consensus methods, such as clustering or weighted
averaging, could be used to estimated the components
from repeated ICAs; similarly, it is possible to use meas-
ures other than correlation coefficient (e.g. Fisher trans-
form of the correlation coefficients or R2) to generate the
reproducibility index. Finally, other stochastic algorithms
beyond FastICA can also be incorporated. These possibil-
ities remain to be explored.
As mentioned before, RAICAR is demonstrated here

only with algorithmic variability. It is also possible to con-
sider data variability. Procedurally, the primary difference
would be to repeat ICAs with different data subsets
instead of or in addition to using different initialization
values.
Our results suggest that the number and order of RAI-

CAR components is important. In particular, the results of
Simulation 2 indicate that the number of components is
consistent with the ICA model of mixed sources and their

TABLE IV. Occurrence rate of the p = q cases

Data set Percentage of p ¼ q (mean 6 std)

Simulation1 (6 comps) (99.88 6 0.24)%
Delayed motor (21 comps) (99.93 6 0.20)%
Constant force grip (17 comps) (99.26 6 0.43)%

The means and standard deviations are generated based on 20
RAICAR repetitions.

Figure 11.

Convergence of RAICAR. A: The positions of the components

as a function of K, generated from simulation 1. The positions of

the components do not change when K is larger than 20. B: The

area under the ROC curves as a function of K, generated from

the lowest SNR source in Simulation 1. The estimation error of

the component maps does not change substantially when K is

larger than 20. C, D, and E: The average variance of the compo-

nent maps as a function of the number of ICA realizations (K),

generated from the six sources in simulation 1, the 21 sources

in the delayed motor dataset, and the 17 sources in the constant

force grip dataset. For all three datasets, these curves rapidly

approach asymptotic levels. When K ¼ 30 (as used for our

reported results), the average variance is no more than 0.005.
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positions can be manipulated by changing their CNR. Sim-
ilar observations can be made from our experimental
results. In the delayed motor task, the task-related compo-
nents were ranked between 10 and 19. This is likely due to
the low CNR event-related signals. In contrast, in the con-
stant force grip task, the task-related components resided
mainly at the top part of the reproducibility rank, consist-
ent with the high CNR in the continuous hand grip data.
These observations further support the notation that the
reproducibility rank is meaningful and the reproducibility
can be used as a measure of ‘‘strength.’’
The ICASSO method [Himberg et al., 2004] was devel-

oped to validate and visualize ICA results by clustering
the independent components. Their findings support the
premise taken here that randomness exists in gradient-
based ICA algorithms and can be reduced to produce bet-
ter results. Our approach bears similarity to ICASSO in
repeating the ICA decomposition and extracting compo-
nents from the multiple ICA realizations. Importantly,
though, there are substantial differences between RAICAR

and ICASSO. (1) In RAICAR, the matrix-based alignment
is much less demanding in terms of computational
requirements than the hierarchical clustering used in
ICASSO. In fact, ICASSO requires far more memory and
CPU operations, and its practical use often requires data
reduction with PCA as a preprocessing step. As pointed
out by McKeown et al. [1998], some ICA components of
interest may comprise only a few percent of the total var-
iance and be inadvertently eliminated by PCA. Note that
the significant reduction in computational burden makes
RAICAR practical for large datasets that may arise from
long time series or inter-session/subject data. (2), ICASSO
identifies the resultant component from each cluster using
the centrotype while RAICAR uses selective averaging of
the aligned components. This difference is expected to
lead to different spatial and temporal results. (3) The met-
rics for evaluating the quality of components for both
methods are different. ICASSO provides two metrics—the
quality index and R-index, whose interpretation requires
expert knowledge. RAICAR uses a spatial reproducibility
index which is intuitive to understand and use.
To provide a more direct comparison of the two meth-

ods, they were both applied to our simulated sources. In
Figure 12, the estimated numbers of components from the
two methods are shown for data generated with different
time lengths. The RAICAR results give a correct estimation
for all data lengths while ICASSO estimation is less accu-
rate, varying across the data lengths. Moreover, as shown
in Table V, ICASSO required much longer processing time,
and, for data with more than 440 time points, ICASSO
could not be successfully run (due to excessive memory
requirements) on a workstation with 6 GB RAM.
From a practical point of view, RAICAR does not

require difficult user decisions in terms of parameter selec-
tion. The parameters needed are (1) the number of ICA
realizations, (2) the SCC threshold, and (3) the reproduci-
bility index cut-off. We have demonstrated that RAICAR is
not sensitive to the first two parameters, allowing flexibil-
ity in their selection, and the cut-off can be chosen by vis-
ual inspection of the reproducibility ranking. Therefore,
we expect RAICAR to perform well for all users, regard-
less of experience level.

CONCLUSION

We have introduced an ICA method, RAICAR, based on
reproducibility to improve the decomposition and inter-

Figure 12.

Comparison of the estimated number of components for RAI-

CAR and ICASSO. The comparison was conducted using the

sources from Simulation 1 with different time series lengths.

RAICAR estimates the correct number of sources at all lengths,

while ICASSO results vary with data length. When the length

exceeds 440, ICASSO estimates could not be obtained due to

large memory requirements.

TABLE V. Comparison of computation time between RAICAR and ICASSO

162 240 360 440 520 600

Time length
RAICAR 3 min 5 min 40 s 11 min 15 min 36 s 21 min 26 min 22 s
ICASSO 52 min 2 h 43 min �9 h �14 h — —

The results are generated on a workstation with RedHatTM Enterprise Linux WS4, 3.6G hyper-
threading CPU, and 6 GB RAM.
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pretation of fMRI data with ICA. RAICAR effectively mini-
mizes the stochastic nature of individual ICA realizations.
As demonstrated with both simulated and experimental
data, RAICAR is insensitive to the choice of its parameters
and has three primary strengths. First, it estimates the
number of components. Second, it provides the order of
the components, based on component reproducibility.
Third, it leads to improved data decomposition by selec-
tively averaging across ICA realizations.
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