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RANKING AND EMPIRICAL MINIMIZATION OF U -STATISTICS

BY STÉPHAN CLÉMENÇON, GÁBOR LUGOSI1 AND NICOLAS VAYATIS

Ecole Nationale Supérieure des Télécommunications, ICREA and Universitat
Pompeu Fabra, and Ecole Normale Supérieure de Cachan and UniverSud

The problem of ranking/ordering instances, instead of simply classify-
ing them, has recently gained much attention in machine learning. In this
paper we formulate the ranking problem in a rigorous statistical framework.
The goal is to learn a ranking rule for deciding, among two instances, which
one is “better,” with minimum ranking risk. Since the natural estimates of
the risk are of the form of a U -statistic, results of the theory of U -processes
are required for investigating the consistency of empirical risk minimizers.
We establish, in particular, a tail inequality for degenerate U -processes, and
apply it for showing that fast rates of convergence may be achieved under spe-
cific noise assumptions, just like in classification. Convex risk minimization
methods are also studied.

1. Introduction. Motivated by various applications including problems re-
lated to document retrieval or credit-risk screening, the ranking problem has re-
ceived increasing attention both in the statistical and machine learning literature
(see, e.g., Agarwal et al. [2], Cao et al. [11], Cortes and Mohri [12], Cossock and
Zhang [13], Freund, Iyer, Schapire and Singer [17], Rudin [35], Usunier et al. [44]
and Vittaut and Gallinari [46]). In the ranking problem, one has to compare two
different observations and decide which one is “better.” For example, in an ap-
plication of document retrieval, one is concerned with comparing documents by
degree of relevance for a particular request, rather than simply classifying them as
relevant or not. Similarly, credit establishments collect and manage large databases
containing the socio-demographic and credit-history characteristics of their clients
to build a ranking rule which aims at indicating reliability.

In this paper we define a statistical framework for studying such ranking prob-
lems. The ranking problem defined here is closely related to the one studied by
Stute [40, 41]. Indeed, Stute’s results imply that certain nonparametric estimates
based on local U -statistics give universally consistent ranking rules. Our approach
here is different. Instead of local averages, we consider empirical minimizers of
U -statistics, more in the spirit of empirical risk minimization [45] popular in sta-
tistical learning theory, see, for example, Bartlett and Mendelson [6], Boucheron,
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Bousquet and Lugosi [8], Koltchinskii [26], Massart [32] for surveys and recent de-
velopment. The important feature of the ranking problem is that natural estimates
of the ranking risk involve U -statistics. Therefore, our methodology is based on
the theory of U -processes, and the key tools involve maximal and concentration
inequalities, symmetrization tricks and a contraction principle for U -processes.
For an excellent account of the theory of U -statistics and U -processes we refer to
the monograph of de la Peña and Giné [15].

We also provide a theoretical analysis of certain nonparametric ranking methods
that are based on an empirical minimization of convex cost functionals over convex
sets of scoring functions. The methods are inspired by boosting- and support vector
machine-type algorithms for classification. The main results of the paper prove
universal consistency of properly regularized versions of these methods, establish
a novel tail inequality for degenerate U -processes and, based on the latter result,
show that fast rates of convergence may be achieved for empirical risk minimizers
under suitable noise conditions.

We point out that under certain conditions, finding a good ranking rule amounts
to constructing a scoring function s. An important special case is the bipartite
ranking problem [2, 17] in which the available instances in the data are labeled by
binary labels (good and bad). In this case, the ranking criterion is closely related to
the so-called AUC [area under on ROC (receiver operating characteristic) curve]
criterion (see Appendix B for more details).

The rest of the paper is organized as follows. In Section 2, the basic model and
the two special cases of the ranking problem we consider are introduced. Section 3
provides some basic uniform convergence and consistency results for empirical
risk minimizers. Section 4 contains the main statistical results of the paper, es-
tablishing performance bounds for empirical risk minimization for ranking prob-
lems. In Section 5, we describe the noise assumptions which guarantee fast rates of
convergence in particular cases. In Section 6, a new exponential concentration in-
equality is established for U -processes which serves as a main tool in our analysis.
In Section 7, we discuss convex risk minimization for ranking problems, laying
down a theoretical framework for studying boosting and support vector machine-
type ranking methods. In the Appendix A, we summarize some basic properties of
U -statistics and highlight some connections of the ranking problem defined here
to properties of the so-called ROC curve, appearing in related problems.

2. The ranking problem. Let (X,Y ) be a pair of random variables taking
values in X × R where X is a measurable space. The random object X models
some observation and Y its real-valued label. Let (X′, Y ′) denote a pair of random
variables identically distributed with (X,Y ), and independent of it. Denote

Z = Y − Y ′

2
.

In the ranking problem one observes X and X′ but not their labels Y and Y ′. We
think about X being “better” than X′ if Y > Y ′, that is, if Z > 0. (The factor 1/2
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in the definition of Z is not significant, it is merely here as a convenient normal-
ization.) The goal is to rank X and X′ so that the probability that the better ranked
of them has a smaller label is as small as possible. Formally, a ranking rule is a
function r :X × X → {−1,1}. If r(x, x′) = 1 then the rule ranks x higher than x′.
The performance of a ranking rule is measured by the ranking risk

L(r) = P{Z · r(X,X′) < 0},
that is, the probability that r ranks two randomly drawn instances incorrectly. Ob-
serve that in this formalization, the ranking problem is equivalent to a binary classi-
fication problem in which the sign of the random variable Z is to be guessed based
upon the pair of observations (X,X′). Now it is easy to determine the ranking rule
with minimal risk. Introduce the notation

ρ+(X,X′) = P{Z > 0 | X,X′},
ρ−(X,X′) = P{Z < 0 | X,X′}.

Then we have the following simple fact:

PROPOSITION 1. Define

r∗(x, x′) = 2I[ρ+(x,x′)≥ρ−(x,x′)] − 1

and denote L∗ = L(r∗) = E{min(ρ+(X,X′), ρ−(X,X′))}. Then for any ranking
rule r ,

L∗ ≤ L(r).

PROOF. Let r be any ranking rule. Observe that, by conditioning first on
(X,X′), one may write

L(r) = E
(
I[r(X,X′)=1]ρ−(X,X′) + I[r(X,X′)=−1]ρ+(X,X′)

)
.

It is now easy to check that L(r) is minimal for r = r∗. �

Thus, r∗ minimizes the ranking risk over all possible ranking rules. In the defi-
nition of r∗ ties are broken in favor of ρ+ but obviously if ρ+(x, x′) = ρ−(x, x′),
an arbitrary value can be chosen for r∗ without altering its risk.

The purpose of this paper is to investigate the construction of ranking rules of
low risk based on training data. We assume that n independent, identically distrib-
uted copies of (X,Y ), are available: Dn = (X1, Y1), . . . , (Xn,Yn). Given a ranking
rule r , one may use the training data to estimate its risk L(r) = P{Z ·r(X,X′) < 0}.
The perhaps most natural estimate is the U -statistic

Ln(r) = 1

n(n − 1)

∑
i �=j

I[Zi,j ·r(Xi,Xj )<0],
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where Zi,j = (Yi − Yj )/2. In this paper we consider minimizers of the empirical
estimate Ln(r) over a class R of ranking rules and study the performance of such
empirically selected ranking rules. Before discussing empirical risk minimization
for ranking, a few remarks are in order.

REMARK 1. Note that the actual values of the Yi’s are never used in the rank-
ing rules discussed in this paper. It is sufficient to know the values of the Zi,j , or,
equivalently, the ordering of the Yi’s.

REMARK 2 (Ranking and scoring). In many interesting cases the ranking
problem may be reduced to finding an appropriate scoring function. These are
the cases when the joint distribution of X and Y is such that there exists a function
s∗ :X → R such that

r∗(x, x′) = 1 if and only if s∗(x) ≥ s∗(x′).

A function s∗ satisfying the assumption is called an optimal scoring function. Ob-
viously, any strictly increasing transformation of an optimal scoring function is
also an optimal scoring function. Below we describe some important special cases
when the ranking problem may be reduced to scoring.

REMARK 3 (Ranking more than two items). Throughout this paper we con-
sider the problem of ranking just two observations X,X′. However, one may be
interested in the more general problem of ranking m independent observations
X(1), . . . ,X(m). The problem of ranking pairs is considerably simpler and has
many practical applications (see, e.g., [12, 17, 46, 47], and the connection to the
AUC detailed in the Appendix B) but ranking more than two items has also been
considered in the literature (see Stute [40, 41], Cossock and Zhang [13]). In the
general problem the value of a ranking function r(X(1), . . . ,X(m)) is a permutation
π of {1, . . . ,m} and the goal is that π should coincide with (or at least resemble
to) the permutation π for which Y (π(1)) ≥ · · · ≥ Y (π(m)). Given a loss function �

that assigns a number in [0,1] to a pair of permutations, the ranking risk is defined
as

L(r) = E�
(
r
(
X(1), . . . ,X(m)), π)

.

In this general case, natural estimates of L(r) involve mth order U -statistics. Some
results of this paper (such as those of Sections 3 and 7) extend in a rather straight-
forward manner but some others require significant additional work. The moment
inequality of Theorem 11 should be possible to generalize by induction as all in-
gredients of the proof are available. In fact, the inequalities of Adamczak [1] and
Major [31] are stated for general U -statistics of m variables. The key question is
how the results of Section 4 can be generalized. In order to see this, one needs
to understand what the analog of Assumption 4 means and under what conditions
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such an assumption is satisfied. This depends in an essential way of how the qual-
ity of ranking is measured. This is an interesting and important problem for future
research.

We now introduce the two main examples of statistical models which will serve
to illustrate some of our results in Section 5.

EXAMPLE 1 (The bipartite ranking problem). In the bipartite ranking problem
the label Y is binary, it takes values in {−1,1}. Writing η(x) = P{Y = 1|X = x},
it is easy to see that the Bayes ranking risk equals

L∗ = E min
{
η(X)

(
1 − η(X′)

)
, η(X′)

(
1 − η(X)

)}
= E min{η(X), η(X′)} − (Eη(X))2

and also,

L∗ = Var
(

Y + 1

2

)
− 1

2
E|η(X) − η(X′)|.

In particular,

L∗ ≤ Var
(

Y + 1

2

)
≤ 1/4,

where the equality L∗ = Var(Y+1
2 ) holds if and only if X and Y are independent

and the maximum is attained when η ≡ 1/2. Observe that the difficulty of the
bipartite ranking problem depends on the concentration properties of the distrib-
ution of η(X) = P(Y = 1|X) through the quantity E(|η(X) − η(X′)|) which is a
classical measure of concentration, known as Gini’s mean difference. For given
p = E(η(X)), Gini’s mean difference ranges from a minimum value of zero, when
η(X) ≡ p, to a maximum value of 1

2p(1 −p) in the case when η(X) = (Y + 1)/2.
It is clear from the form of the Bayes ranking rule that the optimal ranking rule
is given by a scoring function s∗ where s∗ is any strictly increasing transforma-
tion of η. Then one may restrict the search to ranking rules defined by scoring
functions s, that is, ranking rules of form r(x, x′) = 2I[s(x)≥s(x′)] − 1. Writing

L(s)
def= L(r), one has

L(s) − L∗ = E
(|η(X′) − η(X)|I[(s(X)−s(X′))(η(X)−η(X′))<0]

)
.

We point out that the ranking risk in this case is closely related to the AUC criterion
which is a standard performance measure in the bipartite setting (see [17] and
Appendix B). More precisely, if P{s(X) = s(X′)} = 0, then we have

AUC(s) = P{s(X) ≥ s(X′)|Y = 1, Y ′ = −1} = 1 − 1

2p(1 − p)
L(s),

where p = P(Y = 1), so that maximizing the AUC criterion boils down to mini-
mizing the ranking error.
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EXAMPLE 2 (A regression model). Assume now that Y is real-valued and the
joint distribution of X and Y is such that Y = m(X) + ε, where m(x) = E(Y |X =
x) is the regression function, ε is independent of X and has a symmetric distrib-
ution around zero. Then clearly the optimal ranking rule r∗ may be obtained by a
scoring function s∗ where s∗ may be taken as any strictly increasing transforma-
tion of m.

3. Empirical risk minimization. Based on the empirical estimate Ln(r) of
the risk L(r) of a ranking rule defined above, one may consider choosing a ranking
rule by minimizing the empirical risk over a class R of ranking rules r :X×X →
{−1,1}. Define the empirical risk minimizer, over R, by

rn = arg min
r∈R

Ln(r).

(Ties are broken in an arbitrary way.) In a “first-order” approach, we may study
the performance L(rn) = P{Z · rn(X,X′) < 0|Dn} of the empirical risk minimizer
by the standard bound (see, e.g., [16])

L(rn) − inf
r∈R

L(r) ≤ 2 sup
r∈R

|Ln(r) − L(r)|.(3.1)

This inequality points out that bounding the performance of an empirical mini-
mizer of the ranking risk boils down to investigating the properties of U -processes,
that is, suprema of U -statistics indexed by a class of ranking rules. For a detailed
and modern account of U -process theory, we refer to the book of de la Peña and
Giné [15]. In a first-order approach we basically reduce the problem to the study
of ordinary empirical processes.

By using the simple Lemma A.1 given in Appendix A, we obtain the follow-
ing:

PROPOSITION 2. Define the Rademacher average

Rn = sup
r∈R

1


n/2�
∣∣∣∣∣

n/2�∑
i=1

εiI[Zi,
n/2�+i r(Xi,X
n/2�+i )<0]
∣∣∣∣∣,

where ε1, . . . , εn are i.i.d. Rademacher random variables (i.e., random symmetric
sign variables), independent of Dn. Then for any convex nondecreasing function ψ ,

Eψ

(
L(rn) − inf

r∈R
L(r)

)
≤ Eψ(4Rn).

PROOF. The inequality follows immediately from (3.1), Lemma A.1, and a
standard symmetrization inequality; see, for example, Giné and Zinn [19]. �
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One may easily use this result to derive probabilistic performance bounds for
the empirical risk minimizer. For example, by taking ψ(x) = eλx for some λ > 0,
and using the bounded differences inequality (see McDiarmid [34]), we have

E exp
(
λ

(
L(rn) − inf

r∈R
L(r)

))
≤ E exp(4λRn)

≤ exp
(

4λERn + 4λ2

n − 1

)
where we used the fact that Rn may be considered as a function of 
n/2� inde-
pendent random vectors (εi,Zi,
n/2�+i ,Xi,X
n/2�+i ) and changing any of them
can change the value of Rn by at most n − 1. By using Markov’s inequality and
choosing λ to minimize the bound, we readily obtain:

COROLLARY 3. Let δ > 0. With probability at least 1 − δ,

L(rn) − inf
r∈R

L(r) ≤ 4ERn + 4

√
ln(1/δ)

n − 1
.

The expected value of the Rademacher average Rn may now be bounded by
standard metric entropy methods, see, for example, Lugosi [29], Boucheron, Bous-
quet and Lugosi [8]. For example, if the class R of indicator functions has finite
VC dimension V , then

ERn ≤ c

√
V

n

for a universal constant c.
This result is similar to the one proved in the bipartite ranking case by Agarwal,

Graepel, Herbrich, Har-Peled and Roth [2] with the restriction that their bound
holds conditionally on a label sequence. The analysis of [2] relies on a particular
complexity measure called rank-shatter coefficient but the core of the argument is
the same.

The proposition above is convenient, simple, and, in a certain sense, not im-
provable. However, it is well known from the theory of statistical learning and em-
pirical risk minimization for classification that the bound (3.1) is often quite loose.
In classification problems the looseness of such a “first-order” approach is due
to the fact that the variance of the estimators of the risk is ignored and bounded
uniformly by a constant. Therefore, the main interest in considering U -statistics
precisely consists in the fact that they have minimal variance among all unbiased
estimators. However, the reduced-variance property of U -statistics plays no role in
the above analysis of the ranking problem. Observe that all upper bounds obtained
in this section remain true for an empirical risk minimizer that, instead of using
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estimates based on U -statistics, estimates the risk of a ranking rule by splitting the
data set into two halves and estimates L(r) by

1


n/2�

n/2�∑
i=1

I[Zi,
n/2�+i ·r(Xi,X
n/2�+i )<0].

Hence, in the argument of this section one loses the advantage of using U -statistics.
In Section 4 it is shown that under certain, not uncommon, circumstances signif-
icantly smaller risk bounds are achievable. There it will have an essential impor-
tance to use sharp exponential bounds for U -processes, involving their reduced
variance.

4. Fast rates. The main results of this paper show that the bounds obtained
in the previous section may be significantly improved under certain conditions. It
is well known (see, e.g., Section 5.2 in the survey [8] and the references therein)
that tighter bounds for the excess risk in the context of binary classification may
be obtained if one can control the variance of the excess risk by its expected value.
In classification this can be guaranteed under certain “low-noise” conditions (see
Tsybakov [43], Massart and Nédélec [33], Koltchinskii [26]).

Next we examine the possibilities of obtaining such improved performance
bounds for empirical ranking risk minimization. The main message is that in the
ranking problem one may also obtain significantly improved bounds under some
conditions that are analogous to the low-noise conditions in the classification prob-
lem, though quite different in nature.

Here we will greatly benefit from using U -statistics (as opposed to splitting the
sample) as the small variance of the U -statistics used to estimate the ranking risk
gives rise to sharper bounds. The starting point of our analysis is the Hoeffding
decomposition of U -statistics (see Appendix A).

Set first

qr((x, y), (x′, y′)) = I[(y−y′)·r(x,x′)<0] − I[(y−y′)·r∗(x,x′)<0]

and consider the following estimate of the excess risk 
(r) = L(r) − L∗ =
Eqr((X,Y ), (X′, Y ′)):


n(r) = 1

n(n − 1)

∑
i �=j

qr((Xi, Yi), (Xj ,Yj )),

which is a U -statistic of degree 2 with kernel qr . If the ranking rules r and r∗ are
symmetric in the sense that r(x, x′) = −r(x′, x) for all x, x′ ∈ X, then the kernel
qr is symmetric. This can always be achieved if we define r(x, x) = 0 for all x. In
the analysis it is convenient to work with symmetric kernels, so we assume that all
ranking rules are symmetric in the sequel.
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Clearly, the minimizer rn of the empirical ranking risk Ln(r) over R also min-
imizes the empirical excess risk 
n(r). To study this minimizer, consider the Ho-
effding decomposition of 
n(r):


n(r) − 
(r) = 2Tn(r) + Wn(r),

where

Tn(r) = 1

n

n∑
i=1

hr(Xi, Yi)

is a sum of i.i.d. random variables with

hr(x, y) = Eqr((x, y), (X′, Y ′)) − 
(r)

and

Wn(r) = 1

n(n − 1)

∑
i �=j

ĥr ((Xi, Yi), (Xj ,Yj ))

is a degenerate U -statistic with symmetric kernel

ĥr ((x, y), (x′, y′)) = qr((x, y), (x′, y′)) − 
(r) − hr(x, y) − hr(x
′, y′).

In the analysis we show that the contribution of the degenerate part Wn(r) of the
U -statistic is negligible compared to that of Tn(r). This means that minimization of

n is approximately equivalent to minimizing Tn(r). But since Tn(r) is an average
of i.i.d. random variables, this can be studied by known techniques worked out for
empirical risk minimization.

The main tool for handling the degenerate part is a new general moment in-
equality for U -processes that may be interesting on its own right. This inequality
is presented in Section 6. We mention here that for VC classes one may use an
inequality of Arcones and Giné [4] and its significant improvement due to Ma-
jor [31].

It is well known from the theory of empirical risk minimization (see Tsybakov
[43], Bartlett and Mendelson [6], Koltchinskii [26], Massart [32]), that in order
to improve the rates of convergence [such as the bound O(

√
V/n) obtained for

VC classes in Section 3], it is necessary to impose some conditions on the joint
distribution of (X,Y ). In our case, the key assumption takes the following form:

ASSUMPTION 4. There exist constants c > 0 and α ∈ [0,1] such that for all
r ∈ R,

Var(hr(X,Y )) ≤ c
(r)α.

The improved rates of convergence will depend on the value of α. We will see
in some examples that this assumption is satisfied for a surprisingly large family of
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distributions, guaranteeing improved rates of convergence. For α = 0 the assump-
tion is always satisfied and the corresponding performance bound does not yield
any improvement over those of Section 3. However, we will see that in many nat-
ural examples Assumption 4 is satisfied with values of α close to one, providing
significant improvements in the rates of convergence.

Now we are prepared to state and prove the main result of the paper. In order
to state the result, we need to introduce some quantities related to the class R. Let
ε1, . . . , εn be i.i.d. Rademacher random variables independent of the (Xi, Yi). Let

Zε = sup
r∈R

∣∣∣∣∣∑
i,j

εiεj ĥr ((Xi, Yi), (Xj ,Yj ))

∣∣∣∣∣,
Uε = sup

r∈R
sup

α : ‖α‖2≤1

∑
i,j

εiαj ĥr ((Xi, Yi), (Xj ,Yj )),

M = sup
r∈R,k=1,...,n

∣∣∣∣∣
n∑

i=1

εiĥr ((Xi, Yi), (Xk,Yk))

∣∣∣∣∣.
Introduce the “loss function”

�(r, (x, y)) = 2EI[(y−Y )·r(x,X)<0] − L(r)

and define

νn(r) = 1

n

n∑
i=1

�(r, (Xi, Yi)) − L(r).

[Observe that νn(r) has zero mean.] Also, define the pseudo-distance

d(r, r ′) = (
E

(
E

[
I[r(X,X′) �=r ′(X,X′)]|X])2)1/2

.

Let φ : [0,∞) → [0,∞) be a nondecreasing function such that φ(x)/x is nonin-
creasing and φ(1) ≥ 1 such that for all r ∈ R,√

nE sup
r ′∈R,d(r,r ′)≤σ

|νn(r) − νn(r
′)| ≤ φ(σ).

THEOREM 5. Consider a minimizer rn of the empirical ranking risk Ln(r)

over a class R of ranking rules and assume Assumption 4. Then there exists a
universal constant C such that, with probability at least 1 − δ, the ranking risk of
rn satisfies

L(rn) − L∗ ≤ 2
(

inf
r∈R

L(r) − L∗
)

+ C

(
EZε

n2 + EUε

√
log(1/δ)

n2

+ EM log(1/δ)

n2 + log(1/δ)

n
+ ρ2 log(1/δ)

)
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where ρ > 0 is the unique solution of the equation
√

nρ2 = φ(ρα).

The theorem provides a performance bound in terms of expected values of cer-
tain Rademacher chaoses indexed by R and local properties of an ordinary empir-
ical process. These quantities have been thoroughly studied and well understood,
and may be easily bounded in many interesting cases. Below we will work out an
example when R is a VC class of indicator functions.

PROOF OF THEOREM 5. We consider the Hoeffding decomposition of the
U -statistic 
n(r) that is minimized over r ∈ R. The idea of the proof is to show
that the degenerate part Wn(r) is of a smaller order and becomes negligible com-
pared to the part Tn(r). Therefore, rn is an approximate minimizer of Tn(r) which
can be handled by recent results on empirical risk minimization when the empirical
risk is defined as a simple sample average.

Let A be the event on which

sup
r∈R

|Wn(r)| ≤ κ,

where

κ = C

(
EZε

n2 + EUε

√
log(1/δ)

n2 + EM log(1/δ)

n2 + log(1/δ)

n

)
for an appropriate constant C. Then by Theorem 11, P[A] ≥ 1 − δ/2. By the
Hoeffding decomposition of the U -statistics 
n(r) it is clear that, on A, rn is
a ρ-minimizer of

2

n

n∑
i=1

�(r, (Xi, Yi))

over r ∈ R in the sense that the value of this latter quantity at its minimum is at
most κ smaller than at rn.

Define r̃n as rn on A and an arbitrary minimizer of (2/n)
∑n

i=1 �(r, (Xi, Yi))

on Ac. Then clearly, with probability at least 1 − δ/2, L(rn) = L(r̃n) and r̃n is a
κ-minimizer of (2/n)

∑n
i=1 �(r, (Xi, Yi)). But then we may use Theorem 8.3 of

Massart [32] to bound the performance of r̃n which implies the theorem. �

Observe that the only condition for the distribution is that the variance of hr

can be bounded in terms of 
(r). In Section 5 we present examples in which
Assumption 4 is satisfied with α > 0. We will see below that the value of α in this
assumption determines the magnitude of the last term which, in turn, dominates
the right-hand side (apart from the approximation error term).

The factor of 2 in front of the approximation error term infr∈R L(r) − L∗ has
no special meaning. It can be replaced by any constant strictly greater than one
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at the price of increasing the value of the constant C. Notice that in the bound for
L(rn)−L∗ derived from Corollary 3, the approximation error appears with a factor
of 1. Thus, the improvement of Theorem 5 is only meaningful if infr∈R L(r) −L∗
does not dominate the other terms in the bound. Ideally, the class R should be
chosen such that the approximation error and the other terms in the bound are
balanced. If this was the case, the theorem would guarantee faster rates of conver-
gence. Based on the bounds presented here, one may design penalized empirical
minimizers of the ranking risk that select the class R from a collection of classes
achieving this objective. We do not give the details here, we just mention that the
techniques presented in Massart [32] and Koltchinskii [26] may be used in a rel-
atively straightforward manner to derive such “oracle inequalities” for penalized
empirical risk minimization in the present framework.

In order to illustrate Theorem 5, we consider the case when R is a VC class,
that is, it has a finite VC dimension V .

COROLLARY 6. Consider the minimizer rn of the empirical ranking risk
Ln(r) over a class R of ranking rules of finite VC dimension V and assume As-
sumption 4. Then there exists a universal constant C such that, with probability at
least 1 − δ, the ranking risk of rn satisfies

L(rn) − L∗ ≤ 2
(

inf
r∈R

L(r) − L∗
)

+ C

(
V log(n/δ)

n

)1/(2−α)

.

PROOF. In order to apply Theorem 5, we need suitable upper bounds for EZε ,
EUε , EM and ρ. To bound EZε , observe that Zε is a Rademacher chaos indexed
by R for which Propositions 2.2 and 2.6 of Arcones and Giné [3] may be applied.
In particular, by using Haussler’s [21] metric entropy bound for VC classes, it is
easy to see that there exists a constant C such that

EZε ≤ CnV.

Similarly, EεM is just an expected Rademacher average that may be bounded by
C

√
V n (see, e.g., [8]).

Also, by the Cauchy–Schwarz inequality,

EU2
ε ≤ E sup

r∈R

√√√√√∑
j

(∑
i

εi ĥr ((Xi, Yi), (Xj ,Yj ))

)2

= E sup
r∈R

{∑
j

∑
i

ĥr ((Xi, Yi), (Xj ,Yj ))
2

+ ∑
j

∑
i,k

εiεkĥr ((Xi, Yi), (Xj ,Yj ))ĥr ((Xj ,Yj ), (Xk,Yk))

}
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≤ n2 + E sup
r∈R

∑
j

∑
i,k

εiεkĥr ((Xi, Yi), (Xj ,Yj ))ĥr ((Xj ,Yj ), (Xk,Yk)).

Observe that the second term on the right-hand side is a Rademacher chaos of
order 2 that can be handled similarly to EZε . Indeed, defining

h′
r ((Xi, Yi), (Xk,Yk)) = 1

n

∑
j

ĥr ((Xi, Yi), (Xj ,Yj ))ĥr ((Xj ,Yj ), (Xk,Yk)),

the second term has the same form as Zε so repeating the same argument, one
obtains

EU2
ε ≤ n2 + CV n2.

Thus,

E(Uε) ≤
√

E(U2
ε ) ≤ CnV 1/2.

This shows that the value of κ defined in the proof of Theorem 5 is of the order of
n−1(V + log(1/δ)). The main term in the bound of Theorem 5 is ρ2. By mimicking
the argument of Massart [32], pages 297–298, we get

C

(
V logn

n

)1/(2−α)

as desired. �

5. Examples.

5.1. The bipartite ranking problem. Next we derive a simple sufficient con-
dition for achieving fast rates of convergence for the bipartite ranking prob-
lem. Recall that here it suffices to consider ranking rules of the form r(x, x′) =
2I[s(x)≥s(x′)] − 1 where s is a scoring function. With some abuse of notation we
write hs for hr .

NOISE ASSUMPTION. There exist constants c > 0 and α ∈ [0,1] such that for
all x ∈ X,

EX′
(|η(x) − η(X′)|−α) ≤ c.(5.2)

PROPOSITION 7. Under (5.2), we have, for all s ∈ F

Var(hs(X,Y )) ≤ c
(s)α.
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PROOF.

Var(hs(X,Y ))

≤ EX

[(
EX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0]

))2]
≤ EX

[
EX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0]|η(X) − η(X′)|α)

× (
EX′(|η(X) − η(X′)|−α)

)]
(by the Cauchy–Schwarz inequality)

≤ c
(
EXEX′

(
I[(s(X)−s(X′))(η(X)−η(X′))<0]|η(X) − η(X′)|))α

(by Jensen’s inequality and the noise assumption)

= c
(s)α. �

Condition (5.2) is satisfied under quite general circumstances. If α = 0 then
clearly the condition poses no restriction, but also no improvement is achieved in
the rates of convergence. On the other hand, at the other extreme, when α = 1,
the condition is quite restrictive as it excludes η to be differentiable, for example,
if X has a uniform distribution over [0,1]. However, interestingly, for any α < 1,
it poses quite mild restrictions as it is highlighted in the following example:

COROLLARY 8. Consider the bipartite ranking problem and assume that
η(x) = P{Y = 1|X = x} is such that the random variable η(X) has an absolutely
continuous distribution on [0,1] with a density bounded by B . Then for any ε > 0,

∀x ∈ X EX′
(|η(x) − η(X′)|−1+ε) ≤ 2B

ε

and therefore, by Propositions 4 and 7, there is a constant C such that for every
δ, ε ∈ (0,1), the excess ranking risk of the empirical minimizer rn satisfies, with
probability at least 1 − δ,

L(rn) − L∗ ≤ 2
(

inf
r∈R

L(r) − L∗
)

+ CBε−1
(

V log(n/δ)

n

)1/(1+ε)

.

PROOF. The corollary follows simply by checking that (5.2) is satisfied for
any α = 1 − ε < 1. Denoting the density of η(X) by f , we have

EX′
(|η(x) − η(X′)|−α) =

∫ 1

0

1

|η(x) − u|α f (u)du

≤ B

∫ 1

0

1

|η(x) − u|α du

= B
η(x)1−α + (1 − η(x))1−α

1 − α
≤ 2B

1 − α
. �
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Condition (5.2) of the corollary requires that the distribution of η(X) is suffi-
ciently spread out, for example, it cannot have atoms or infinite peaks in its density.
Under such a condition a rate of convergence of the order of n−1+ε is achievable
for any ε > 0.

REMARK 4. Note that we crucially used the reduced variance of the
U -statistic L(rn) to derive fast rates from the rather weak condition (5.2). Ap-
plying a similar reasoning for the variance of qs((X,Y ), (X′, Y ′)) (which would
be the case if one considered a risk estimate based on independent pairs by splitting
the training data into two halves, see Section 3), would have led to the condition

|η(x) − η(x′)| ≥ c,(5.3)

for some constant c, and x �= x′. This condition is satisfied only when η(X) has a
discrete distribution.

5.2. Noiseless regression model. Next we consider the noise-free regression
model in which Y = m(X) for some (unknown) function m :X → R. Here obvi-
ously L∗ = 0 and the Bayes ranking rule is given by the scoring function s∗ = m

(or any strictly increasing transformation of it). Clearly, in this case

qr(x, x′) = I[(m(x)−m(x′))·r(x,x′)<0]
and therefore

Var(hr(X,Y )) ≤ Eq2
r (X,X′) = L(r),

and therefore the condition of Proposition 4 is satisfied with c = 1 and α = 1. Thus,
the risk of the empirical risk minimizer rn satisfies, with probability at least 1 − δ,

L(rn) ≤ 2 inf
r∈R

L(r) + C
V log(n/δ)

n

provided R has finite VC dimension V .

5.3. Regression model with noise. Now we turn to the general regression
model with heteroscedastic errors in which Y = m(X) + σ(X)ε for some (un-
known) functions m :X → R and σ :X → R, where ε is a standard Gaussian
random variable, independent of X.

We set

�(X,X′) = m(X) − m(X′)√
σ 2(X) + σ 2(X′)

.

We have again s∗ = m (or any strictly increasing transformation of it) and the
optimal risk is

L∗ = E�(−|�(X,X′)|)
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where � is the distribution function of a standard Gaussian random variable. The
maximal value of L∗ is attained when the regression function m(x) is constant.
Furthermore, we have

L(s) − L∗ = E
(|2�(�(X,X′)) − 1| · I[(m(x)−m(x′))·(s(x)−s(x′))<0]

)
.

Noise assumption. There exist constants c > 0 and α ∈ [0,1] such that for
all x ∈ X,

EX′(|�(x,X′)|−α) ≤ c.(5.4)

PROPOSITION 9. Under (5.4), we have, for all s ∈ F ,

Var(hs(X,Y )) ≤ (
2�(c) − 1

)

(s)α.

PROOF. By symmetry, we have

|2�(�(X,X′)) − 1| = 2�(|�(X,X′)|) − 1.

Then, using the concavity of the distribution function � on R+, we have, by
Jensen’s inequality,

∀x ∈ X EX′�(|�(x,X′)|−α) ≤ �(EX′ |�(x,X′)|−α) ≤ �(c),

where we have used (5.4) together with the fact that � is increasing. Now the result
follows following the argument given in the proof of Proposition 7. �

The preceding noise condition is satisfied in many cases, as illustrated by the
example below.

COROLLARY 10. Suppose that m(X) has a bounded density and the condi-
tional variance σ(x) is bounded over X. Then the noise condition (5.4) is satisfied
for any α < 1.

REMARK 5. The argument above still holds if we drop the Gaussian noise as-
sumption. Indeed we only need the random variable ε to have a symmetric density
decreasing over R+.

6. A moment inequality for U -processes. In this section we establish a
general exponential inequality for U -processes. This result is based on mo-
ment inequalities obtained for empirical processes and Rademacher chaoses
in Bousquet, Boucheron, Lugosi and Massart [9] and generalizes an inequal-
ity due to Arcones and Giné [4]. We also mention an essential improvement
of the results of [4] due to Major [31] for VC and other “nice” classes. We
also refer to the corresponding results obtained for U -statistics by Adamczak
[1], Giné, Latala and Zinn [18] and Houdré and Reynaud-Bouret [24]. We
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point out here that the recent work of Adamczak [1] establishes very general
moment inequalities for Banach space-valued degenerate U -statistics of arbi-
trary order. Adamczak’s inequality has a natural counterpart for suprema of
U -processes. When specialized to the case of U -processes of order 2, Adamczak’s
Theorem 1 takes a form very similar to Theorem 11 below. However, Adamczak’s
result is given in terms of various operator norms corresponding to the kernel while
the relevant quantities in the theorem below are defined in terms of expectations of
certain associated Rademacher averages and chaoses. For our applications we find
the latter quantities easier to handle.

THEOREM 11. Let X,X1, . . . ,Xn be i.i.d. random variables and let F be a
class of kernels. Consider a degenerate U -process Z of order 2 indexed by F ,

Z = sup
f ∈F

∣∣∣∣∣∑
i,j

f (Xi,Xj )

∣∣∣∣∣
where Ef (X,x) = 0, ∀x,f . Assume also f (x, x) = 0, ∀x and supf ∈F ‖f ‖∞ =
F . Let ε1, . . . , εn be i.i.d. Rademacher random variables and introduce the random
variables

Zε = sup
f ∈F

∣∣∣∣∣∑
i,j

εiεjf (Xi,Xj )

∣∣∣∣∣,
Uε = sup

f ∈F
sup

α : ‖α‖2≤1

∑
i,j

εiαjf (Xi,Xj ),

M = sup
f ∈F ,k=1,...,n

∣∣∣∣∣
n∑

i=1

εif (Xi,Xk)

∣∣∣∣∣.
Then there exists a universal constant C > 0 such that for all n and q ≥ 2,

(EZq)1/q ≤ C
(
EZε + q1/2

EUε + q(EM + Fn) + q3/2Fn1/2 + q2F
)
.

Also, there exists a universal constant C such that for all n and t > 0,

P{Z > CEZε + t}

≤ exp
(
− 1

C
min

((
t

EUε

)2

,
t

EM + Fn
,

(
t

F
√

n

)2/3

,

√
t

F

))
.

REMARK 6. Generously overestimated values of the constants may be easily
deduced from the proof. We are convinced that these are far from being the best
possible but do not have a good guess of what the best constants might be.

PROOF OF THEOREM 11. The proof of Theorem 11 is based on sym-
metrization, decoupling, and concentration inequalities for empirical processes
and Rademacher chaos.
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Since the f are degenerate kernels, one may relate the moments of Z to those
of Zε by the randomization inequality

EZq ≤ 4q
EZq

ε ,

valid for q ≥ 1; see Chapter 3 of [15]. Thus, it suffices to derive moment inequali-
ties for the symmetrized U -process Zε . We do this by conditioning. Denote by Eε

the expectation taken with respect to the variables εi (i.e., conditional expectation
given X1, . . . ,Xn). Then we write EZ

q
ε = EEεZ

q
ε and study the quantity EεZ

q
ε ,

with the Xi fixed. But then Zε is a so-called Rademacher chaos whose tail be-
havior has been studied, see Talagrand [42], Ledoux [28], Boucheron, Bousquet,
Lugosi and Massart [9]. In particular, for any q ≥ 2,

(EεZ
q
ε )1/q ≤ EεZε + (

Eε

(
Zε − EεZε

)q
+

)1/q (since Z ≥ 0)

≤ EεZε + 3
√

q EεUε + 4qB

with Uε defined above and

B = sup
f ∈F

sup
α,α′ : ‖α‖2,‖α′‖2≤1

∣∣∣∣∣∑
i,j

αiα
′
j f (Xi,Xj )

∣∣∣∣∣
where the second inequality follows by Theorem 14 of [9]. Using the inequality
(a + b + c)q ≤ 3q−1(aq + bq + cq) valid for q ≥ 2, a, b, c > 0, we have

EεZ
q
ε ≤ 3q−1(

(EεZε)
q + 3qqq/2(EεUε)

q + 4qqqBq)
.

It remains to derive suitable upper bounds for the expectation of the three terms on
the right-hand side.

First term: E(EεZε)
q . In order to handle the moments of EεZε , first we note

that by a decoupling inequality in de la Peña and Giné [15], page 101,

EεZε ≤ 8EεZ
′
ε,

where

Z′
ε = sup

f ∈F

∣∣∣∣∣∑
i,j

εiε
′
jf (Xi,Xj )

∣∣∣∣∣.
Here ε′

1, . . . , ε
′
n are i.i.d. Rademacher variables, independent of the Xi and the εi .

Note that Eε now denotes expectation taken with respect to both the εi and the ε′
i .

Thus, we have

E(EεZε)
q ≤ 8q

E(EεZ
′
ε)

q .

In order to bound the moments of the random variable A = EεZ
′
ε , we apply Corol-

lary 3 of [9]. In order to apply this corollary, define, for k = 1, . . . , n, the random
variables

Ak = Eε sup
f ∈F

∣∣∣∣∣ ∑
i,j �=k

εiε
′
j f (Xi,Xj )

∣∣∣∣∣.
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It is easy to see that Ak ≤ A.
On the other hand, defining

Rk = sup
f ∈F

∣∣∣∣∣
n∑

i=1

εif (Xi,Xk)

∣∣∣∣∣,
we clearly have

A − Ak ≤ 2EεRk.

Also, denoting by f ∗ the (random) function achieving the maximum in the defini-
tion of Z, we have

n∑
k=1

(A − Ak) ≤ Eε

(
n∑

k=1

εk

n∑
j=1

ε′
jf

∗(Xk,X
′
j ) +

n∑
k=1

ε′
k

n∑
i=1

εif
∗(Xi,X

′
k)

)

= 2A.

Therefore,
n∑

k=1

(A − Ak)
2 ≤ 4AEεM,

where M = maxk Rk . Then by Corollary 3 of [9], we obtain

E(EεZ
′
ε)

q = EAq ≤ 2q−1(
2q(EZ′

ε)
q + 5qqq

E(EεM)q
)
.

By un-decoupling (see de la Peña and Giné [15], page 101), we have EZ′
ε ≤ 4EZε .

To bound E(EεM)q , observe that EεM is a conditional Rademacher average,
for which Theorem 13 of [9] may be applied. According to this,

E(EεM)q ≤ 2q−1(
2q(EM)q + 5qqqF q)

.

Collecting terms, we have

E(EεZε)
q ≤ 128q(EZε)

q + 320qqq(EM)q + 800qF qq2q .

Second term: EX(EεUε)
q . The moments of EεUε can be estimated by the

same inequality as the one we used for EεM since EεUε is also a conditional
Rademacher average. Observing that

sup
f,i

sup
α:‖α‖2≤1

∑
j �=i

αjf (Xi,Xj ) ≤ F
√

n

by the Cauchy–Schwarz inequality, we have, by Theorem 13 from [9],

E(EεUε)
q ≤ 2q−1(2q(

EUε)
q + 5qqqF qnq/2)

.

Third term: EXBq . Finally, by the Cauchy–Schwarz inequality, we have
B ≤ nF so

EXBq ≤ nqF q.
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Now it remains to simply put the pieces together to obtain

EZq ≤ 12q(
128q(EZε)

q + 12qqq/2(EUε)
q + 320qqq(EM)q + 4qF qnqqq

+ 30qF qnq/2q3q/2 + 800qF qq2q)
,

proving the announced moment inequality.
In order to derive the exponential inequality, use Markov’s inequality P{Z >

t} ≤ t−q
EZq and choose

q = C min
((

t

EUε

)2

,
t

EM
,

t

Fn
,

(
t

F
√

n

)2/3

,

√
t

F

)
for an appropriate constant C. �

7. Convex risk minimization. Several successful algorithms for classifica-
tion, including various versions of boosting and support vector machines are based
on replacing the loss function by a convex function and minimizing the corre-
sponding empirical convex risk functionals over a certain class of functions (typi-
cally over a ball in an appropriately chosen Hilbert or Banach space of functions).
This approach has important computational advantages, as the minimization of the
empirical convex functional is often computationally feasible by gradient descent
algorithms. Recently significant theoretical advance has been made in understand-
ing the statistical behavior of such methods, see, for example, Bartlett, Jordan and
McAuliffe [5], Blanchard, Lugosi and Vayatis [7], Breiman [10], Jiang [25], Lu-
gosi and Vayatis [30] and Zhang [48].

The purpose of this section is to extend the principle of convex risk minimiza-
tion to the ranking problem studied in this paper. Our analysis also provides a
theoretical framework for the analysis of some successful ranking algorithms such
as the RANKBOOST algorithm of Freund, Iyer, Schapire and Singer [17]. In what
follows we adapt the arguments of Lugosi and Vayatis [30] (where a simple binary
classification problem was considered) to the ranking problem.

The basic idea is to consider ranking rules induced by real-valued functions,
that is, ranking rules of the form

r(x, x′) =
{

1, if f (x, x′) > 0,
−1, otherwise,

where f :X × X → R is some measurable real-valued function. With a slight
abuse of notation, we will denote by L(f ) = P{sgn(Z) ·f (X,X′) < 0} = L(r) the
risk of the ranking rule induced by f . [Here sgn(x) = 1 if x > 0, sgn(x) = −1 if
x < 0 and sgn(x) = 0 if x = 0.] Let φ : R → [0,∞) be a convex cost function sat-
isfying φ(0) = 1 and φ(x) ≥ I[x≥0]. Typical choices of φ include the exponential
cost function φ(x) = ex , the “logit” function φ(x) = log2(1 + ex), or the “hinge
loss” φ(x) = (1 + x)+. Define the cost functional associated to the cost function φ

by

A(f ) = Eφ
(− sgn(Z) · f (X,X′)

)
.
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Obviously, L(f ) ≤ A(f ). We denote by A∗ = inff A(f ) the “optimal” value
of the cost functional where the infimum is taken over all measurable functions
f :X × X → R.

The most natural estimate of the cost functional A(f ), based on the training
data Dn, is the empirical cost functional defined by the U -statistic

An(f ) = 1

n(n − 1)

∑
i �=j

φ
(− sgn(Zi,j ) · f (Xi,Xj )

)
.

The ranking rules based on convex risk minimization we consider in this section
minimize, over a set F of real-valued functions f :X × X → R, the empirical
cost functional An, that is, we choose fn = arg minf ∈F An(f ) and assign the cor-
responding ranking rule

rn(x, x′) =
{

1, if fn(x, x′) > 0,
−1, otherwise.

[Here we assume implicitly that the minimum exists. More precisely, one may
define fn as any function f ∈ F satisfying An(fn) ≤ inff ∈F An(f ) + 1/n.]

By minimizing convex risk functionals, one hopes to make the excess convex
risk A(fn) − A∗ small. This is meaningful for ranking if one can relate the ex-
cess convex risk to the excess ranking risk L(fn) − L∗. This may be done quite
generally by recalling a result of Bartlett, Jordan and McAuliffe [5]. To this end,
introduce the functions

H(ρ) = inf
α∈R

(
ρφ(−α) + (1 − ρ)φ(α)

)
and

H−(ρ) = inf
α : α(2ρ−1)≤0

(
ρφ(−α) + (1 − ρ)φ(α)

)
.

Defining ψ over R by

ψ(x) = H−
(

1 + x

2

)
− H−

(
1 − x

2

)
,

Theorem 3 of [5] implies that for all functions f :X × X → R,

L(f ) − L∗ ≤ ψ−1(
A(f ) − A∗)

where ψ−1 denotes the inverse of ψ . Bartlett, Jordan and McAuliffe show that,
whenever φ is convex, limx→0 ψ−1(x) = 0, so convergence of the excess convex
risk to zero implies that the excess ranking risk also converges to zero. Moreover, in
most interesting cases ψ−1(x) may be bounded, for x > 0, by a constant multiple
of

√
x (such as in the case of exponential or logit cost functions) or even by x [e.g.,

if φ(x) = (1 + x)+ is the so-called hinge loss].
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Thus, to analyze the excess ranking risk L(f ) − L∗ for convex risk minimiza-
tion, it suffices to bound the excess convex risk. This may be done by decomposing
it into “estimation” and “approximation” errors as follows:

A(fn) − A∗(f ) ≤
(
A(fn) − inf

f ∈F
A(f )

)
+

(
inf

f ∈F
A(f ) − A∗

)
.

Clearly, just like in Section 3, we may (loosely) bound the excess convex risk
over the class F as

A(fn) − inf
f ∈F

A(f ) ≤ 2 sup
f ∈F

|An(f ) − A(f )|.

To bound the right-hand side, assume, for simplicity, that the class F of functions
is uniformly bounded, say supf ∈F ,x∈X |f (x)| ≤ B . Then once again, we may ap-
peal to Lemma A.1 and the bounded differences inequality which imply that for
any λ > 0,

E exp
(
λ sup

f ∈F
|An(f ) − A(f )|

)

≤ E exp

(
λ sup

f ∈F

(
1


n/2�

n/2�∑
i=1

φ
(− sgn

(
Zi,
n/2�+i

)

× f
(
Xi,X
n/2�+i

)) − A(f )

))

≤ exp

(
λE sup

f ∈F

(
1


n/2�

n/2�∑
i=1

φ
(− sgn

(
Zi,
n/2�+i

)

× f
(
Xi,X
n/2�+i

)) − A(f )

)
+ λ2B2

2n

)
.

Now it suffices to derive an upper bound for the expected supremum appearing
in the exponent. This may be done by standard symmetrization and contraction
inequalities. In fact, by mimicking Koltchinskii and Panchenko [27] (see also the
proof of Lemma 2 in Lugosi and Vayatis [30]), we obtain

E sup
f ∈F

(
1


n/2�

n/2�∑
i=1

φ
(− sgn

(
Zi,
n/2�+i

) · f (
Xi,X
n/2�+i

)) − A(f )

)

≤ 4Bφ′(B)E sup
f ∈F

(
1


n/2�

n/2�∑
i=1

σi · f (
Xi,X
n/2�+i

))
where σ1, . . . , σ
n/2� i.i.d. Rademacher random variables independent of Dn, that
is, symmetric sign variables with P{σi = 1} = P{σi = −1} = 1/2.

We summarize our findings:
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PROPOSITION 12. Let fn be the ranking rule minimizing the empirical convex
risk functional An(f ) over a class of functions f uniformly bounded by −B and B .
Then, with probability at least 1 − δ,

A(fn) − inf
f ∈F

A(f ) ≤ 8Bφ′(B)Rn(F ) +
√

2B2 log(1/δ)

n

where Rn denotes the Rademacher average

Rn(F ) = E sup
f ∈F

(
1


n/2�

n/2�∑
i=1

σi · f (
Xi,X
n/2�+i

))
.

Many interesting bounds are available for the Rademacher average of various
classes of functions. For example, in analogy of boosting-type classification prob-
lems, one may consider a class FB of functions defined by

FB =
{
f (x, x′) =

N∑
j=1

wjgj (x, x′) :N ∈ N,

N∑
j=1

|wj | = B,gj ∈ R

}

where R is a class of ranking rules as defined in Section 3. In this case it is easy
to see that

Rn(FB) ≤ BRn(R) ≤ const.
BV√

n

where V is the VC dimension of the “base” class R.
Summarizing, we have shown that a ranking rule based on the empirical mini-

mization An(f ) over a class of ranking functions FB of the form defined above,
the excess ranking risk satisfies, with probability at least 1 − δ,

L(fn) − L∗ ≤ ψ−1
(

8Bφ′(B)c
BV√

n
+

√
2B2 log(1/δ)

n
+

(
inf

f ∈FB

A(f ) − A∗
))

.

This inequality may be used to derive the universal consistency of such ranking
rules. For example, the following corollary is immediate.

COROLLARY 13. Let R be a class of ranking rules of finite VC dimension V

such that the associated class of functions FB is rich in the sense that

lim
B→∞ inf

f ∈FB

A(f ) = A∗

for all distributions of (X,Y ). Then if fn is defined as the empirical min-
imizer of An(f ) over FBn where the sequence Bn satisfies Bn → ∞ and
B2

nφ′(Bn)/
√

n → 0, then

lim
n→∞L(fn) = L∗ almost surely.
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Classes R satisfying the conditions of the corollary exist, we refer the reader to
Lugosi and Vayatis [30] for several examples.

Proposition 12 can also be used for establishing performance bounds for kernel
methods such as support vector machines. A prototypical kernel-based ranking
method may be defined as follows. To lighten notation, we write W = X × X.

Let k :W × W → R be a symmetric positive definite function, that is,

n∑
i,j=1

αiαjk(wi,wj ) ≥ 0,

for all choices of n, α1, . . . , αn ∈ R and w1, . . . ,wn ∈ W .
A kernel-type ranking algorithm may be defined as one that performs mini-

mization of the empirical convex risk An(f ) [typically based on the hinge loss
φ(x) = (1+x)+] over the class FB of functions defined by a ball of the associated
reproducing kernel Hilbert space of the form [where w = (x, x′)]

FB =
{
f (w) =

N∑
j=1

cj k(wj ,w) : N ∈ N,

N∑
i,j=1

cicj k(wi,wj ) ≤ B2,w1, . . . ,wN ∈ W

}
.

In this case we have

Rn(FB) ≤ 2B

n
E

√√√√√
n/2�∑
i=1

k
((

Xi,X
n/2�+i

)
,
(
Xi,X
n/2�+i

))
,

see, for example, Boucheron, Bousquet and Lugosi [8]. Once again, universal con-
sistency of such kernel-based ranking rules may be derived in a straightforward
way if the approximation error inff ∈FB

A(f )−A∗ can be guaranteed to go to zero
as B → ∞. For the approximation properties of such kernel classes we refer the
reader to Cucker and Smale [14], Scovel and Steinwart [36], Smale and Zhou [38],
Steinwart [39] etc.

REMARK 7 (Fast rates). A natural question is whether the arguments of Sec-
tion 4 can be extended to prove fast rates of convergence for minimizers of the
convex ranking risk. For ordinary binary classification such an analysis was carried
out by Blanchard, Lugosi and Vayatis [7]. It is an interesting problem to explore
whether the techniques of [7] extend to the setting of this section. However, the
arguments are quite technical and point beyond the scope of the present paper.



868 S. CLÉMENÇON, G. LUGOSI AND N. VAYATIS

APPENDIX A: BASIC FACTS ABOUT U -STATISTICS

Here we recall some basic facts about U -statistics. Consider the i.i.d. random
variables X,X1, . . . ,Xn taking values in a set X and denote by

Un = 1

n(n − 1)

∑
i �=j

q(Xi,Xj )

a U -statistic of order 2 where the kernel q :X×X → R is a symmetric real-valued
function.

U -statistics have been studied in depth and their behavior is well understood.
One of the classical inequalities concerning U -statistics is due to Hoeffding [23]
which implies that, for all t > 0,

P{|Un − EUn| > t} ≤ 2e−2
(n/2)�t2 ≤ 2e−(n−1)t2
.

Hoeffding also shows that, if σ 2 = Var(q(X1,X2)), then

P{|Un − EUn| > t} ≤ 2 exp
(
− 
(n/2)�t2

2σ 2 + 2t/3

)
.(A.1)

It is important to notice here that the latter inequality may be improved by re-
placing σ 2 by a smaller term. This is based on the so-called Hoeffding decompo-
sition as described below.

The U -statistic Un is said to be degenerate if its kernel q satisfies

E(q(x,X)) = 0 for all x ∈ X.

There are two basic representations of U -statistics which we recall next (see Ser-
fling [37] for more details).

Average of “sums-of-i.i.d.” blocks. This representation is the key for ob-
taining the “first-order” results of Section 3 for nondegenerate U -statistics. The
U -statistic Un can be expressed as

Un = 1

n!
∑
π

1


n/2�

n/2�∑
i=1

q
(
Xπ(i),Xπ(
n/2�+i)

)
where the sum is taken over all permutations π of {1, . . . , n}. The idea underlying
this representation is to reduce the analysis to the case of sums of i.i.d. random
variables. The next simple lemma is based on this representation.

LEMMA A.1. Let qτ :X×X → R be real-valued functions indexed by τ ∈ T

where T is some set. If X1, . . . ,Xn are i.i.d. then for any convex nondecreasing
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function ψ ,

Eψ

(
sup
τ∈T

1

n(n − 1)

∑
i �=j

qτ (Xi,Xj )

)

≤ Eψ

(
sup
τ∈T

1


n/2�

n/2�∑
i=1

qτ

(
Xi,X
n/2�+i

))
,

assuming the suprema are measurable and the expected values exist.

PROOF. The proof uses the same trick Hoeffding’s inequalities mentioned
above are based on. Observe that

Eψ

(
sup
τ∈T

1

n(n − 1)

∑
i �=j

qτ (Xi,Xj )

)

= Eψ

(
sup
τ∈T

1

n!
∑
π

1


n/2�

n/2�∑
i=1

qτ

(
Xπ(i),Xπ(
n/2�+i)

))

≤ Eψ

(
1

n!
∑
π

sup
τ∈T

1


n/2�

n/2�∑
i=1

qτ

(
Xπ(i),Xπ(
n/2�+i)

))
(since ψ is nondecreasing)

≤ 1

n!
∑
π

Eψ

(
sup
τ∈T

1


n/2�

n/2�∑
i=1

qτ

(
Xπ(i),Xπ(
n/2�+i)

))
(by Jensen’s inequality)

= Eψ

(
sup
τ∈T

1


n/2�

n/2�∑
i=1

qτ

(
Xi,X
n/2�+i

))

as desired. �

Hoeffding’s decomposition. Another way to interpret U -statistics is based on
an orthogonal expansion known as Hoeffding’s decomposition.

Assuming that q(X1,X2) is square integrable, Un − EUn may be decomposed
as a sum Tn of i.i.d. random variables plus a degenerate U -statistic Wn. In order to
write this decomposition, consider the following function of one variable

h(Xi) = E(q(Xi,X)|Xi) − EUn,

and the function of two variables

ĥ(Xi,Xj ) = q(Xi,Xj ) − EUn − h(Xi) − h(Xj ).
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Then we have the orthogonal expansion

Un = EUn + 2Tn + Wn,

where

Tn = 1

n

n∑
i=1

h(Xi),

Wn = 1

n(n − 1)

∑
i �=j

ĥ(Xi,Xj ).

Wn is a degenerate U -statistic because its kernel ĥ satisfies

E(ĥ(Xi,X)|Xi) = 0.

Clearly, the variance of Tn is

Var(Tn) = Var(E(q(X1,X)|X1))

n
.

Note that Var(E(q(X1,X)|X1)) is less than Var(q(X1,X)) (unless q is already
degenerate). Furthermore, the variance of the degenerate U -statistic Wn is of
the order 1/n2. Tn is thus the leading term in this orthogonal decomposi-
tion. Indeed, the limit distribution of

√
n(Un − EUn) is the normal distribution

N (0,4 Var(E(q(X1,X)|X1)) (see [22]). This suggests that inequality (A.1) may
be quite loose.

Indeed, exploiting further Hoeffding’s decomposition (combined with argu-
ments related to decoupling, randomization and hypercontractivity of Rademacher
chaos) de la Peña and Giné [15] established a Bernstein’s type inequality of the
form (A.1) but with σ 2 replaced by the variance of the conditional expectation
(see Theorem 4.1.13 in [15]).

Specialized to our setting with q(Xi,Xj ) = I[Zi,j ·r(Xi,Xj )<0] the inequality of
de la Peña and Giné states that

P{|Ln(r) − L(r)| > t} ≤ 4 exp
(
− nt2

8s2 + ct

)
,

where s2 = Var(P{Z · r(X,X′) < 0|X}) is the variance of the conditional expecta-
tion and c is some constant.

APPENDIX B: CONNECTION WITH THE ROC CURVE AND THE AUC
CRITERION

In the bipartite ranking problem, the ROC curve (ROC standing for Receiver
Operator Characteristic; see [20]) and the AUC criterion are popular measures for
evaluating the performance of scoring functions in applications.
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Let s :X → R be a scoring function. The ROC curve is defined by plotting the
true positive rate

TPRs(x) = P
(
s(X) ≥ x|Y = 1

)
against the false positive rate

FPRs(x) = P
(
s(X) ≥ x|Y = −1

)
.

By a straightforward change of parameter, the ROC curve may be expressed as
the graph of the power of the test defined by s(X) as a function of its level α:

βs(α) = TPRs(qs,α),

where qs,α = inf{x ∈ (0,1) : FPRs(x) ≤ α}.
Observe that if s(X) and Y are independent (i.e., when TPRs = FPRs ), the ROC

curve is simply the diagonal segment βs(α) = α. This measure of accuracy induces
a partial order on the set of all scoring functions: for any s1, s2, we say that s1 is
more accurate than s2 if and only if its ROC curve is above the one of s2 for every
level α, that is, if and only if βs2(α) ≤ βs1(α) for all α ∈ (0,1).

PROPOSITION B.1. The regression function η induces an optimal ordering on
X in the sense that its ROC curve is not below any other scoring function s:

∀α ∈ [0,1] βη(α) ≥ βs(α).

PROOF. The result follows from the Neyman–Pearson lemma applied to the
test of the null assumption “Y = −1” against the alternative “Y = 1” based on the
observation X: the test based on the likelihood ratio η(X)/(1−η(X)) is uniformly
more powerful than any other test based on X. �

REMARK B.8. Note that the ROC curve does not characterize the scoring
function. For any s and any strictly increasing function h : R → R, s and h ◦ s

clearly yield the same ordering on X : βs = βh◦s .

Instead of optimizing the ROC curve over a class of scoring functions which is
a difficult task, a simple idea is to search for s that maximizes the Area Under the
ROC Curve (known as the AUC criterion):

AUC(s) =
∫ 1

0
βs(α) dα.

This theoretical quantity may be easily interpreted in a probabilistic fashion as
shown by the following proposition.

PROPOSITION B.2. For any scoring function s,

AUC(s) = P
(
s(X) ≥ s(X′)|Y = 1, Y ′ = −1

)
,

where (X,Y ) and (X′, Y ′) are independent pairs drawn from the binary classifi-
cation model.
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PROOF. Let U be a uniformly distributed random variable over (0,1), inde-
pendent of (X,Y ). Denote by Fs the distribution function of s(X) given Y = −1.
Then

AUC(s) =
∫ 1

0
P

(
s(X) ≥ qs,α|Y = 1

)
dα

= E
(
P

(
s(X) ≥ F−1

s (U)|Y = 1
))

= P
(
s(X) ≥ s(X′)|Y = 1, Y ′ = −1

)
. �
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