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Abstract—Bicycle helmets are shown to offer protection
against head injuries. Rating methods and test standards are
used to evaluate different helmet designs and safety perfor-
mance. Both strain-based injury criteria obtained from finite
element brain injury models and metrics derived from global
kinematic responses can be used to evaluate helmet safety
performance. Little is known about how different injury
models or injury metrics would rank and rate different
helmets. The objective of this study was to determine how
eight brain models and eight metrics based on global
kinematics rank and rate a large number of bicycle helmets
(n=17) subjected to oblique impacts. The results showed
that the ranking and rating are influenced by the choice of
model and metric. Kendall’s tau varied between 0.50 and
0.95 when the ranking was based on maximum principal
strain from brain models. One specific helmet was rated as 2-
star when using one brain model but as 4-star by another
model. This could cause confusion for consumers rather than
inform them of the relative safety performance of a helmet.
Therefore, we suggest that the biomechanics community
should create a norm or recommendation for future ranking
and rating methods.

Keywords—Bicycle helmet, Brain injury criteria, Concussion,

Finite element models, Oblique impact tests, Test methods.

INTRODUCTION

Head injuries are a significant problem in society

that can cause both acute and long-term consequences.

The head is also the most common body region for

severe injuries among bicyclists.41 Bicycle helmets have

been shown to mitigate the severity of injury during

head impacts by reducing the forces acting on the

head.8,9,15,37 In most countries, helmets need to pass a

specific certification standard to be allowed into the

market. Today, most helmet test standards evaluate a

helmet’s safety performance using only the measured

linear acceleration of a dummy headform resulting

from impacts against a rigid surface, e.g., a flat surface

or a curbstone. In the current bicycle helmet stan-

dards,1,7,13 the pass/fail threshold for a helmet ranges

between 250 and 300 g peak linear acceleration,

depending on the standard.

Since the 1940 s, research has demonstrated that the

mechanisms associated with diffuse-type brain injuries

are more sensitive to rotational motion of the head

compared to linear motion especially for diffuse brain

injuries.28 Despite this, rotational head motion is not

reflected in the current bicycle helmet test standards,

although there is ongoing work within the European

standards organization (CEN/TC158) to develop a

new test method for helmets. The new standard will

include rotational measures of head response and will
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include oblique impacts that often result in substantial

rotational head motion.

While oblique impacts have not been formally

adopted into the test standards, several studies have

used these conditions to rate different helmet

designs.4,10,11,47 Bland et al.4 evaluated and rated

bicycle helmets by using a metric that combines peak

resultant linear head acceleration and the resultant

change in angular head velocity. Both Deck et al.11 and

Stigson et al.47 evaluated and rated helmets using a

metric based on the intracranial response of a finite

element (FE) brain model (using the Strasbourg Finite

Element Head Model SUFEHM and the KTH Royal

Institute of Technology head model, respectively). In

those studies, linear and angular head kinematics

measured during the helmet impact tests were applied

to the FE brain models. Then, the resulting deforma-

tion of the brain tissue was used to evaluate the per-

formance of the helmets. The methodology for

assessing brain injury using output from a dummy

headform as input to FE brain models has become

common practice in many different areas of safety

research, including their use in automotive crash (e.g.,

Gabler et al.18) and sports helmet assessment (e.g.,

Elkin et al.12 and Clark et al.6).

More than a dozen different FE brain models have

been developed for brain injury research, all with

varying levels of anatomical detail, material properties,

and boundary conditions between different anatomical

regions of the brain. A comprehensive summary of

most of these models and their methods is found in a

previous publication presented by Giudice et al.27

Several previous studies have compared different

brain injury models and their responses under the same

impacts. Baeck3 compared three different brain injury

models (KTH, SUFEHM and University College

Dublin brain trauma model (UCDBTM)) in different

fall situations, and concluded that significant dispari-

ties were found in the intracranial responses of each

model for the same impact conditions. Ji et al.29

compared three other brain injury models (Dartmouth

scaled and normalized model (DSNM), Wayne State

University head injury model (WSUHIM), and Simu-

lated Injury Monitor (SIMon) head model) in loading

cases from male collegiate hockey games, and found

significant disparities in the magnitude and distribu-

tion of the brain tissue strain among the three models.

In the context of using FE models to assess helmet

performance, both studies suggest that it could be

possible for helmets to be rated differently depending

on which FE model is used.

To introduce an updated helmet test standard,

which includes oblique impacts, a relevant pass/fail

criterion needs to be established. There is the potential

to use tissue-based criteria obtained from FE brain

models, such as peak brain tissue strain, as a metric for

helmet assessment. There is also the potential to use

metrics derived from global kinematic responses, such

as change in angular velocity. From previous studies, it

is known that there are differences in the results pre-

dicted using different FE brain models as mentioned

above. However, little is known about how different

FE brain models would rank and rate different helmets

in realistic impact situations with duration of 10–

15 ms, similar to an impact to a road surface.

The objective of this present study was to determine

the influence of helmet ranking and rating using a

number of existing brain injury models and a variety of

existing injury metrics based on global kinematics for

bicycle helmets tested in oblique impact conditions

against a hard surface. Eight different FE brain models

and eight different kinematic-based metrics were in-

cluded in the comparison.

MATERIALS AND METHODS

Throughout this study, the term ‘ranking’ is used to

describe the individual position of the helmet amongst

the sample tested when organized based on the

assessment metric. The term ‘rating’ is used to describe

the category to which a helmet belongs when the hel-

mets are clustered into different groups depending on

the assessment metric.

The response from eight different FE brain models

and eight different well-established kinematic-based

metrics were calculated based on the output from the

same experimental oblique helmet tests. The results

were used to rate and rank the helmets.

Experimental Data

Experimental tests presented in a previous study47

were used in this study to evaluate the influence of the

different FE models and kinematic-based metrics on

bicycle helmet ranking and rating. The experimental

tests included seventeen different conventional bicycle

helmets from the Swedish market (2015) (Helmet A to

Q). The helmet design varied between the included

helmets with twelve street/commuter helmets, three

mountain bike helmets, and two skate helmets.

The helmets were tested in three different impact

situations, which caused mainly rotation around the

three different anatomical axes of the head (Xrot, Yrot,

and Zrot) (Figure 1). Each helmet was tested once for

each impact situation. In total, 51 different tests were

performed.

The helmeted headforms were dropped onto 45�

angled robust steel anvil covered with 80 grit abrasive

paper at an impact velocity of 6 m/s. The linear and
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angular accelerations of the center of gravity of the

headform were measured in the head-fixed coordinate

system. The kinematic time-histories for all the tests

are presented in the supplementary materials.

Assessment Models

The kinematics from the experiments were applied

to the different brain models. The six components of

the linear and the angular accelerations were pre-

scribed to the rigid skull at the head center of gravity of

each model. All simulations started immediately prior

to impact and then ended after 30 ms. The kinematics

were filtered before being applied to various brain

models. The linear accelerations were filtered with a

1000 cut-off frequency filter, and the angular head

accelerations were filtered with an SAE 180 filter.

In total eight different brain models were used in

this study, which gave total 408 simulations. The eight

different brain models used in this study were:

– Global Human Body Model Consortium

(GHBMC) M50-O v4.336

– Imperial College model (IC)24

– The isotropic version of KTH model33

– PIPER 18 year-old model35

– SIMon model49

– Total Human Model for Safety (THUMS) v.4.022

– UCDBTM v2.050

– The isotropic version of the Worcester Head Injury

Model (WHIM) v.1.030,54

All eight models have been developed separately

and with different strategies. A short summary of the

models is presented in Table 1. Side views of the brain

for the different models are shown in the supplemen-

tary materials. Previous studies of the brain injury

models have used different tissue-response metrics to

evaluate the effect on the risk of brain injury from head

impacts. In this study, the metrics presented by the

respective model developers were used (Table 2). In

general, the injury prediction of FE models was based

on Maximum Principle Strain (MPS) or the Cumula-

tive Strain Damage Metric (CSDM). In most models,

the 95th percentile value of MPS (by element or vol-

ume) was taken as the tissue-response to avoid

potential numerical issues associated with using the

100th percentile value (which can come from a single

element). CSDM is the cumulative volume fraction of

elements with MPS exceeding a predefined strain

threshold.49 In this study, a strain threshold of 0.25

was used for CSDM, which has been used in previous

studies.12,48,49 In all models, either true strain or

Green-Lagrange (G-L) strain was used. Since this is a

study that evaluates existing brain models, the metrics

suggested by the developers were used, and therefore

different metrics are used across the different models.

The ranking and rating of the different brain models

were also compared to metrics based on the global

kinematics: peak resultant linear acceleration (PLA),

peak angular acceleration (PAA), change in resultant

angular velocity (PAV), Brain Injury Criterion

(BrIC),48 Universal Brain Injury Criterion (UBrIC),19

Head Injury Criterion (HIC)51 and Diffuse Axonal,

Multi-Axis, General Evaluation (DAMAGE).20 Also,

a variant of the metric presented by Bland et al.4 used

in the Virginia Tech STAR rating was included as a

kinematic-based metric. The STAR score is based on

six different impact locations using two different

velocities. In the present study, only three different

impact locations, slightly different from the impact

locations included in the STAR rating, and only one

impact velocity was considered. Therefore, a modified

STAR score, called STAR*, was calculated (Equa-

tion 1), where L stands for the number of impacts, a

for PLA, and x for peak change in angular velocity.

STAR� ¼
X3

L¼1

1

1þ e� �10:2þ0:0433�aþ0:19686�0:0002075�a�xð Þ

ð1Þ

FIGURE 1. The test setup, from left to right Xrot, Yrot and Zrot together with the anatomical coordinate system of the head.
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Data Analysis

The linear correlation between the peak magnitudes

of MPS of the models was evaluated with Pearson’s

correlation coefficient of determination (r2). For the

nonparametric data, the ranking of the helmets (from 1

to 17) based on the performance of the helmets, the

Kendall’s tau 31 was evaluated. The statistical analysis

was performed in MATLAB (version 2019a, The

MathWorks, Inc., Natick, Massachusetts, United

States).

Rating of helmets has previously been presented by

giving the helmets different numbers of stars or simi-

TABLE 1. Description of the different brain injury models.

Brain

model

Number

of brain

elements

Number

of brain

nodes

Intracranial

volume

[dm3]

Element formu-

lation

Brain material prop-

erties

Interactions between the different

parts of the brain and the brain-skull

interface Software

GHBMC 121.0 k 101.4 k 1.4 Eight-node

brick element

with constant

stress

Linear viscoelastic (s-

tandard linear solid)

Tied between brain and falx/tento-

rium. Continuous mesh brain and

subdural CSF.

LS Dyna

IC 386.0 k 576.8 k 1.4 Eight-node

brick element

with constant

stress

Hyperelastic and vis-

coelastic (Ogden

model with Prony

series viscoelastic-

ity)

Continuous mesh LS Dyna

KTH 4.1 k 5.2 k 1.4 Eight-node

brick element

with selec-

tively re-

duced inte-

gration

Hyperelastic and vis-

coelastic (Ogden

model with Prony

series viscoelastic-

ity)

Tangential sliding without separation

in normal direction between sub-

dural CSF and brain and between

the CSF located on both sides of

the falx and tentorium and the

brain.

LS Dyna

PIPER 14.4 k 15.9 k 2.2 Eight-node

brick element

with constant

stress

Hyperelastic and vis-

coelastic (Ogden

model with Prony

series viscoelastic-

ity)

Continuous mesh for the brain. Tied

contact between skull and dura

mater.

LS Dyna

SIMon 42.1 k 42.5 k 1.4 Eight-node

brick element

with constant

stress

Linear viscoelastic (s-

tandard linear solid)

Continuous mesh LS Dyna

THUMS 118.8 k 128.2 k 1.6 Eight-node

brick element

with constant

stress

Linear viscoelastic (s-

tandard linear solid)

Automatic surface to surface

between pia sagittal and falx.

Continuous mesh brain and sub-

dural CSF.

LS Dyna

UCDBTM 56.6 k 62.2 k 1.4 Eight-node

brick element

with reduced

integration

Hyperelastic and vis-

coelastic (Neo-

hookean model

with Prony series

viscoelasticity)

Tangential sliding without separation

in normal direction between brain

and pia, falx and tentorium

Abaqus

WHIM 55.1 k 56.6 k 1.5 Eight-node

brick element

with reduced

integration

Hyperelastic and vis-

coelastic (Ogden

model with Prony

series viscoelastic-

ity)

Continuous mesh Abaqus

TABLE 2. Outputs from the models used in this study and
previous publications of the model developers.

Brain model Metrics used by the developers

GHBMC 95th percentile true strain and CSDM

IC 90th percentile G-L strain and G-L strain rate

KTH 100th percentile G-L strain

PIPER 95th percentile G-L strain

SIMon 95th percentile true strain and CSDM

THUMS 95th percentile G-L strain

UCDBTM 100th percentile G-L strain

WHIM 95th percentile G-L strain
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lar.4,11,46 Deck et al.11 used the SUFEHM and the

corresponding injury risk curve to evaluate the helmet

performance from 1 star to 5 stars. A similar method

has been applied by Stigson46 for the KTH model.

Injury risk functions were not available for all eight

models included in this study. Therefore, the rating of

helmets was made by taking the average value of the

intracranial response or kinematic output of the three

loading conditions (Xrot, Yrot, and Zrot). Helmets

were then graded from 1-star (highest average value of

injury metrics) to 4-star (lowest average value of injury

metrics) based on the percentile value of the average

values for all seventeen helmets. The helmets with an

average value of the injury metrics below the 25th

percentile value earned 4-star, which was indicative of

the best safety performance. Helmets with an average

value of the injury metrics between the 25th and 50th

percentile value earned a 3-star rating, while those

between the 50th and 75th percentile earned 2-star.

Helmets that had an average value above the 75th

percentile value earned 1-star, which was indicative of

the worst safety performance.

RESULTS

A variation of MPS and CSDM is seen between the

different models (Figure 2). The response of the mod-

els shows higher values for the Zrot compared to Yrot

and Xrot. The same trend is observed for the kinematic

response based on rotation (Figure 3).

Linear Correlation

Pearson’s correlation coefficient of determination

(r2) varied between 0.53 and 0.99 between the injury

metrics for the different models (Table 3). In general,

most brain models correlated well with each other (r2

> 0.8). The r2 for each loading condition can be found

in the supplementary material.

None of the brain models showed linear correlation

to the kinematic-based metrics based on linear accel-

eration (PLA and HIC) or a combination of linear

acceleration and angular velocity (STAR*) (Table 4).

However, most brain models’ injury metrics had an r2

above 0.8 for the kinematic-based metrics that were

based on angular motion.

Correlation of Ranking

Kendall’s tau varied between 0.50 and 0.98 for the

different model metrics when evaluating all loading

conditions together (Table 3). The tau coefficient was

relatively high between all brain models (>0.8) except

for the UCDTBM, IC, and SIMon models. A visual-

ization of the lowest and highest Kendall’s tau between

the different model prediction of strain is shown in

Figure 4. Kendall’s tau was often lower in the Zrot

loading conditions compared to Xrot and Yrot (see

further details in the supplementary materials). For the

Zrot loading condition, the lowest coefficient of vari-

ation was also seen between the seventeen different

helmets, 3–14% depending on the model, compared to

11–83% for Xrot and 11–46% for Yrot (see supple-

mentary materials). The ranking from the worst to best

performing helmet can also be found in the supple-

mentary materials.

A Kendall’s tau larger than 0.8 was found for most

of the brain models when compared to kinematic-

based metrics based on angular velocity (Table 5).

Only the IC model (strain) showed a Kendall’s tau

above 0.8 for PAA. All brain models showed a Ken-

dall’s tau below 0.62 when compared to PLA, HIC and

STAR*.

Rating of Helmets

In general, there was a reasonable agreement in how

the helmets were rated using the different brain models.

Eleven of the seventeen helmets were given the same

rating by at least 10 of the 11 brain model metrics, and

sixteen of seventeen helmets given the same rating by

at least 7 of the 11 brain model metrics. All brain

model metrics rated helmet M and Q as the best per-

forming helmet when combining all three loading

conditions (Figure 5). Likewise, helmets P, K, and G

were rated in the bottom group (1-star) by 10 of the 11

brain models. Only helmets I and N were given 3 dif-

ferent ratings (1-, 2-, and 3-star). Helmet N had the

most rating disparity of all the helmets (4 for 1-star, 5

for 2-star, and 2 for 3-star). Helmet D was rated 4-star

by 10 of 11 brain models but was rated as a 2-star

helmet by the UCDBTM.

All brain models showed the best correlation with

the ranking of kinematic-based metrics based on

rotation (Table 5). All rotation-based metrics rated

helmet D as a 4-star helmet and PAV, BrIC, UBrIC,

and DAMAGE all rated helmet M and Q as a 4-star

helmet (Figure 6). Including PAA, these kinematic-

based metrics assigned star ratings to each helmet,

similar to what was assigned using the FE brain

models.

DISCUSSION

This study shows how different FE brain models

and kinematic-based metrics rank and rate a large

number of bicycle helmets. Seventeen different helmets

available on the Swedish market (2015) were ranked
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FIGURE 2. Boxplot of the different models for the three loading conditions based on seventeen different pulses per loading
condition.

FIGURE 3. Boxplot of the different kinematic-based metrics for the three loading conditions with seventeen pulses per loading
conditions.

TABLE 3. Kendall’s tau in the lower triangle and the Pearson’s correlation coefficient of determination (r2) in the upper triangle.

GHBMC

GHBMC

CSDM IC

IC Strain

Rate KTH PIPER SIMon

SIMon

CSDM THUMS UCDBTM WHIM

GHBMC -- 0.990 0.878 0.924 0.899 0.933 0.937 0.949 0.990 0.664 0.953

GHBMC

CSDM

0.979 -- 0.841 0.899 0.914 0.933 0.908 0.922 0.990 0.612 0.933

IC 0.648 0.635 -- 0.943 0.691 0.817 0.943 0.947 0.863 0.832 0.910

IC Strain Rate 0.760 0.749 0.838 -- 0.808 0.941 0.986 0.970 0.929 0.826 0.990

KTH 0.905 0.889 0.699 0.779 -- 0.920 0.776 0.769 0.916 0.533 0.854

PIPER 0.887 0.882 0.708 0.851 0.868 -- 0.916 0.899 0.962 0.689 0.968

SIMon 0.787 0.788 0.775 0.902 0.767 0.871 -- 0.994 0.935 0.805 0.984

SIMon CSDM 0.838 0.842 0.743 0.860 0.802 0.903 0.940 -- 0.941 0.776 0.970

THUMS 0.945 0.933 0.655 0.766 0.903 0.906 0.808 0.856 -- 0.661 0.958

UCDBTM 0.513 0.497 0.752 0.691 0.556 0.581 0.650 0.609 0.537 -- 0.778

WHIM 0.830 0.827 0.757 0.915 0.823 0.923 0.920 0.920 0.838 0.619 --

Highlighted in bold above 0.80.
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and rated based on three oblique impacts that produce

rotations about the three anatomical axes of the head.

The results from the eight different brain models, with

multiple outputs from some models, and eight different

kinematic-based metrics showed that the choice of

metrics could influence the ranking and rating as well

as the linear correlation. Comparing the ranking using

Kendall’s tau showed a high correlation (above 0.8) for

30 of the 55 model-to-model comparisons (Table 3).

Pearson’s r2 showed a correlation above 0.8 for 45 of

the 55 model-to-model comparisons. Thus, there was

generally a good correlation between different models

using the bicycle helmet oblique impact dataset. It is

important to note that the lower correlation between

models is not necessarily a measure of the quality or

accuracy of individual models. To be able to evaluate

the quality and accuracy of the models further speci-

fication concerning quality measures is required as well

as further validation, good experiments to validate the

models against and an objective evaluation of the

validation. In fact, it is an ongoing effort to understand

how best to validate a model and rate its quality, as

discussed recently.26,54,56

The rating of the helmets from 1- to 4-star were

broadly similar. Some helmets had a difference in rat-

ing, depending on the choice of brain model. However,

two helmets had larger differences. Helmets I and N

were ranked with 1-star for some brain models, and

either 2- or 3-star for some other brain models. For

helmet N, most of the models placed it among the

highest-ranked 1-star helmets or among the lowest-

ranked 2-star helmets. The peak metrics for the dif-

ferent models were rather close, so differences in star

rating were more or less dependent on the percentile

boundary values that define each rating group with

two exceptions: the UCDTBM and IC models, both

rated the helmet as a 3-star helmet. The rating pre-

sented in Figure 5 was based on the average value of

the three loading conditions. As can be seen in the

supplementary materials, the difference for these two

models compared to the other models was mainly due

to the difference in the ranking of the helmets for the

Xrot loading condition and especially for Zrot loading

condition. For Yrot, the ranking position for helmet N

was almost the same for all models. For helmet I, the

difference was mainly for the Zrot loading conditions.

Zrot was also the direction that had the smallest

coefficient of variation, which could influence the fact

that lower correlation was seen for this loading con-

dition. Also, helmet D had some more variation in

rating, particularly with the UCDTBM. The

UCDTBM ranked the helmet with 2-star, whereas the

other brain models ranked the helmet as a 4-star hel-

met. The ranking of the UCDTBM differed mostly for

the Xrot loading condition (10–13 positions difference)

compared to Yrot (2–4 positions) and Zrot (6–7 posi-

tions).

It is not clear what factors related to the construc-

tion of one brain model determine its difference from

the others. IC, KTH, PIPER and WHIM use the same

material model and model parameters derived by

Kleiven,33 which account for tension-compression

asymmetry. Still, the linear correlation and correlation

of ranking were not always highest between these

models. Other models such as GHBMC, SIMon,

THUMS, and UCDTBM have used a linear vis-

coelastic material model for the brain tissue, which

does not capture the full nonlinear response observed

in some tissue studies.17,39 However, differences in the

material models and properties do not seen to be a

major factor affecting the correlation of model

responses and the correlation of ranking. For instance,

the KTH (which uses a nonlinear material model for

the brain) and GHBMC (which uses a linear model for

the brain) show high correlation in ranking compared

to models with either linear or nonlinear material

models. When comparing the UCDTBM to the other

models in the context of the number of elements and

TABLE 4. Pearson’s correlation coefficient of determination (r2) for the different models and the different kinematic-based
metrics.

PLA HIC PAA PAV BrIC UBrIC DAMAGE STAR*

GHBMC 0.028 0.298 0.734 0.863 0.984 0.982 0.972 0.473

GHBMC CSDM 0.030 0.295 0.707 0.874 0.976 0.960 0.982 0.475

IC 0.000 0.177 0.874 0.679 0.837 0.887 0.774 0.465

IC Strain Rate 0.007 0.202 0.828 0.830 0.904 0.931 0.850 0.537

KTH 0.018 0.211 0.664 0.924 0.910 0.848 0.951 0.564

PIPER 0.026 0.236 0.729 0.958 0.941 0.918 0.929 0.564

SIMon 0.018 0.253 0.781 0.803 0.916 0.953 0.854 0.468

SIMon CSDM 0.020 0.274 0.769 0.781 0.920 0.960 0.865 0.440

THUMS 0.031 0.292 0.726 0.904 0.984 0.972 0.978 0.497

UCDBTM 0.002 0.100 0.783 0.563 0.634 0.686 0.558 0.448

WHIM 0.018 0.238 0.785 0.878 0.941 0.955 0.897 0.527

Highlighted in bold above 0.80.
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nodes, brain volume, material properties, etc. there is

no significant difference compared to other models.

The UCDTBM is in the medium range of the selection

of models when it comes to the number of nodes and

elements. Abaqus is used to solve the UCDTBM,

nonetheless, the same software is also used for WHIM.

It should be mentioned that the IC and UCDTBM

models were the only models that showed a higher

correlation to the PAA compared to PAV, which could

make a difference in ranking.

Besides material properties, brain element mesh

density, mesh quality, element formulation, solver, and

hourglass control could all significantly affect strain

predictions. Earlier studies have shown models with

finer mesh would lead to large brain strains when other

modeling parameter are the same.27,53 Similarly, the

variations in mesh density among the eight brain

models may contribute to the difference in strain pre-

dictions. However, it is difficult to isolate and quantify

the effect that the differences in numerical approaches

has on the correlations between models and their

rankings, because these factors are often interactive.

Future studies may investigate the interactive effects of

key modelling choices on predictions of the human

head FE models, as a step towards providing guidance

on using such models for ranking head protection

systems.

IC, GHBMC, and SIMon models were evaluated

for different local metrics since these various metrics

have been used to evaluate the effect on brain tissue in

previous studies.19,45 For both GHBMC and SIMon

models, MPS and CSDM were evaluated, and small

differences were seen in the correlation between these

two metrics (Kendall’s tau of 0.98 and 0.94, respec-

tively). A slightly larger difference was seen for the IC

model when evaluating strain and strain rate with

Kendall’s tau of 0.84. These differences in the ranking

only had a small influence on the helmet rating, which

most often is the only information that is provided to

consumers. For the GHBMC model, two helmets had

different star rating (Helmet B and N), and for IC and

SIMon models, four helmets had different star rating

(Helmet E, I, N, and P for IC model, and E, H, I, O for

SIMon model).

This study focused on the helmet ranking and rating

using different brain models rather than evaluating the

biofidelity of the models, e.g., through comparing their

predictions with data from experiments on post-mor-

tem human subjects (PMHS) or human volunteers.

Most of the models have been evaluated against dif-

ferent PMHS experiments, and in some cases also

against volunteer data (see the Supplementary material

Table S3). However, it is difficult to compare the dif-

ferent validation results between the models due to

differences in the validation process. There are some

exceptions, e.g., Giordano & Kleiven26 evaluated the

THUMS, isotropic KTH, and GHBMC models with

the same methodology. In total, 40 experiments were

evaluated. They found a biofidelity rating derived from

correlation and analysis (CORA) score between 5.80

and 6.23, which was indicative of fair biofidelity for all

three models. The ranking in this study showed that

Kendall’s tau varied between 0.90 and 0.95 and only

with a minor difference in helmet rating between these

models, but this is not necessarily due to the fact that

FIGURE 4. Visualization of the two models with the highest
(left) and lowest (right) Kendall’s tau. GHBMC and THUMS had
a Kendall’s tau of 0.95 and GHBMC and UCDBTM a Kendall’s
tau of 0.51. The circles indicate the different helmets from A to
Q with the best performing helmet at the top and the worst
performing helmet at the bottom. The lines between the
circles are pulled between the same helmet for the different
brain models.
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they have similar correlation against PMHS. Trotta

et al.50 used the same evaluation protocol for one set of

experiments with the UCDBTM and found higher

scores compared to the GHBMC, and THUMS

models, but when comparing the correlation of rank-

ing to other models, UCDBTM showed the lowest

values. Nevertheless, a recent study by Zhao and Ji54

suggests that CORA may not be effective in discrimi-

nating brain injury models in terms of whole-brain

strain, after all, as two models with similar CORA

scores could produce whole-brain strains 2–3 times

difference in magnitude.

The ranking of helmets was also evaluated using

some kinematic-based metrics. The rating of the hel-

mets was vastly different for the metrics based on lin-

ear acceleration compared with the metrics predicted

by the brain models. In terms of PLA, helmet Q was

rated as a 1-star helmet, and all brain models rated that

helmet as a 4- star helmet. PLA and HIC have shown

better correlation to skull fracture than brain

TABLE 5. Kendall’s tau between the different models and the different kinematic-based metrics.

PLA HIC PAA PAV BrIC UBrIC DAMAGE STAR*

GHBMC 2 0.115 2 0.361 0.59 0.893 0.935 0.904 0.945 0.499

GHBMC CSDM 2 0.131 2 0.377 0.576 0.895 0.942 0.911 0.953 0.482

IC 0.084 2 0.14 0.867 0.655 0.636 0.627 0.631 0.616

IC strain rate 2 0.024 2 0.258 0.746 0.804 0.760 0.747 0.724 0.555

KTH 2 0.079 2 0.319 0.647 0.868 0.868 0.840 0.876 0.540

PIPER 2 0.098 2 0.335 0.650 0.925 0.865 0.837 0.867 0.534

SIMon 2 0.08 2 0.314 0.673 0.852 0.802 0.799 0.763 0.521

SIMon CSDM 2 0.095 2 0.332 0.650 0.871 0.827 0.818 0.82 0.515

THUMS 2 0.117 2 0.36 0.609 0.903 0.912 0.884 0.945 0.506

UCDBTM 0.076 2 0.156 0.712 0.535 0.504 0.494 0.494 0.521

WHIM 2 0.075 2 0.302 0.677 0.885 0.845 0.823 0.796 0.542

Highlighted in bold above 0.80.

1-star 2-star 3-star 4-star

GHBMC P K G N B C A I F E J L O H M D Q

GHBMC CSDM P G K B N A C I F J E L O H M D Q

IC G I K B P A E F C H N J L M Q O D

IC Strain Rate G P K B N I C F A E J H L O M D Q

KTH P G K B N C F I A E J O L H M Q D

Piper P G N K B C A F I E J L O H M D Q

SIMon P K B G N C A F E I J L H O M D Q

SIMon CSDM P K N G B C A F I E J L O H M D Q

THUMS P K N B G A C I F J E L O H M D Q

UCDBTM G B I P D K E F C H N A M J Q L O

WHIM P G K B N C A F I E J L O H M D Q

FIGURE 5. The rating of helmet based on different brain models. The different colors are indicating the different helmets.

 1-star 2-star 3-star 4-star

PLA E G I Q F H J K M A B D O C L N P

PAA E G I K A B F P Q C H J N D L M O

PAV B G N P A C F I K E J L O D H M Q

HIC E G I K B F H M Q A D J P C L N O

BrIC B G K P A C F I N E J L O D H M Q

UBric A B K P C F G I N E H J L D M O Q

DAMAGE G K N P A B C F I E J L O D H M Q

STAR E G I K A B F P Q H J M N C D L O

FIGURE 6. The rating of helmets based on different kinematic-based metrics. The different colors are indicating the different
helmets.
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injuries.23,34 In this study, all brain models apply the

dummy headform kinematics through a rigid skull,

and only the response of the brain tissue is included in

the comparison. In this sense, the models are only able

to assess the risk of diffuse-type brain injuries (e.g.,

concussion, diffuse axonal injury), which arise pri-

marily from brain deformation mechanisms22,40

resulting from head rotation. For future test standards

and rating methods, it may be necessary to evaluate

both the risk of skull fracture and a broader spectrum

of brain injuries.

The kinematic-based metrics based on the angular

motion had the highest correlation with the metrics

predicted by the brain models, but metrics with the

highest correlation were dependent on the model used.

In some cases, the different metrics had a rather similar

correlation coefficient both for ranking, and linear

correlation. For most models, PAA showed a lower

correlation compared to the other angular metrics with

the exception of the IC model with strain and the

UCDTBM model. Some previous studies21,30,32,48 have

proposed that angular velocity shows a better corre-

lation to brain responses for short duration pulses (10–

20 ms), that are characteristic of helmet pulses, while

angular acceleration plays a larger role for pulses with

longer durations, e.g., automotive collisions. These

present results are only for short duration helmet im-

pact pulses.

Different rating methods have been presented pre-

viously, e.g., Deck et al.11 and Stigson.46 Those two

studies were based on brain model response, but they

rated the helmets based on the injury risk functions. In

the present study, we rated the helmets based on the

MPS/strain rate or CSDM directly without any

assessment against injury risk curves. There were two

reasons for this. Firstly, not all brain models used in

this study have had injury risk functions developed

specifically for them. Secondly, the data and methods

for developing injury risk functions are changing ra-

pidly with ongoing research. In the literature, some

model developers use different types of brain injuries

to create AIS2+ risk curves based on simulations of

various accident situations.42 Others have developed

the risk functions from reconstructions of concussion

cases,5,33 a combination of football reconstructions

and volunteer sled test data43,44 or scaled animal

data.49 In future, it would also be wise to explore in

more detail what is required from these injury risk

functions and the underlying cases on which the risk

functions are based. Whether and how risk functions

should be used ought to be discussed in the research

community, in addition to what particular inclusion

criteria should be used when choosing the uninjured

and injured populations. Ideally, this should be avail-

able to the scientific research community through an

open-access database.

Since no injury risk functions were used when rating

the helmets, the rating should not be interpreted as the

absolute real-world performance of the helmet, rather

the performance of that helmet with the conditions

imposed to that particular brain model using that in-

jury metric. As mentioned above, in the present study,

the helmet rating was based on the mean value of three

different impact conditions, and the star ratings were

distributed depending on the 25th, 50th, and 75th

percentile values of the seventeen different helmets.

With this system the helmets are forced into four dif-

ferent categories. It could be so that all helmet had a

low risk of injury and should be rated high or had a

high risk of injury and should be rated low, but now

the helmets are even distributed over the four cate-

gories of stars. For Zrot the coefficient of variation

between the helmets was relatively small, the mean

values of the metrics used to determine the boundaries

of the ratings were also relatively close (see supple-

mentary materials). If injury risk functions would have

been used, it is possible that all the helmets would have

been ranked in only one or two categories. With the

system used in this study, in some cases, the response

of two helmets was similar in their performance, but

they were rated differently because their performance

lay on opposite sides of the border between two rating

categories. This would, of course, influence Kendall’s

tau, and the rating methods.

Another proposed rating method for bicycle helmets

is the STAR rating by Virginia Tech.4 They use a

combination of peak linear acceleration and peak

change in angular velocity for six impact locations

using two impact velocities to calculate the STAR

value. Since this study only included one impact

velocity and three different impact locations, a modi-

fied STAR value (STAR*) was used. STAR* shows a

lower correlation against the models both for linear

correlation and ranking compared to the kinematic-

based metrics that only depended on angular motion.

This study included eight different brain models,

which to the authors’ knowledge is the most extensive

comparison study to date. However, other brain

models do exist and are used to assess safety products,

although they have not been included in this study. In

addition, there are also other metrics based on global

kinematics that were not evaluated in this study. For

the brain models, the effect on brain tissue has only

been evaluated on whole-brain level, but there are

studies suggesting that metrics on subregion levels

would be a better predictor of brain injuries (e.g., Wu

et al.52).

This study is based on experiments of bicycle helmet

impacts that were performed without the neck and the
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rest of the body. It is unclear how important the neck

and body are. Previous studies have shown divergent

results when it comes to headfirst helmet

impacts.14,16,25 The results have been influenced by the

impact conditions such as impact point and impact

surface. By including the neck and body, a biphasic

acceleration with an acceleration phase and a deceler-

ation phase could, which could amplify the brain

strain.38,55 The deceleration phase is not included in

the current study since all tests are performed without

the neck. This is a limitation of the current study and

different helmet rating programs,4,11,47 which may be

addressed in future by the development of a neck that

is more biofidelic in head first impacts.

From the models and kinematic-based metrics in-

cluded in this study, the results show that the ranking

and rating can be influenced by the choice of the

assessment metric. There is a potential risk if different

rating methods present different results depending on

which FE model or kinematic-based metric inform

their rating method. This is likely to cause confusion

among consumers rather than provide constructive

advice regarding the relative safety performance of

helmets. Rating methods are best used to allow con-

sumers to distinguish between a safer and less safe

helmets, whereas test standards are intended to exclude

unsafe helmets from the marketplace. We strongly

suggest that the biomechanics community work col-

laboratively to reach consensus on a validation pro-

cedure for FE models of the head. This procedure

should involve both validation against experimental

data and comparison to real life accident so that derive

trustworthy injury risk functions. However, as dis-

cussed above, we do not recommend at present that

injury risk curves be used in helmet rating methods

because the data and methods for developing injury

risk functions are changing rapidly with ongoing

research.

Nevertheless, in order to provide specific recom-

mendations, further knowledge and technology devel-

opments are necessary. For example, more data based

on real-world accidents are required to evaluate the

performance of the injury metrics. A consensus on a

standardized procedure to validate brain injury models

and rate the performance is also needed to establish the

confidence in their practical applications. In addition,

injury risk functions based on real bicycle accidents

with injured and non-injured casesare also needed for

applications specific to bicycle helmets. At present,

depending on which model or injury metric that is

chosen to evaluate the helmet performance, the rank-

ing and rating can differ. We suggest that all rating

organizations should provide clear information

regarding the uncertainty in the rating depending on

the metric used.
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