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Abstract

We propose a method to rank and retrieve image se-

quences from a natural language text query, consisting of

multiple sentences or paragraphs. One of the method’s

key applications is to visualize visitors’ text-only reviews

on TRIPADVISOR or YELP, by automatically retrieving the

most illustrative image sequences. While most previous

work has dealt with the relations between a natural lan-

guage sentence and an image or a video, our work extends

to the relations between paragraphs and image sequences.

Our approach leverages the vast user-generated resource

of blog posts and photo streams on the Web. We use blog

posts as text-image parallel training data that co-locate in-

formative text with representative images that are carefully

selected by users. We exploit large-scale photo streams to

augment the image samples for retrieval. We design a latent

structural SVM framework to learn the semantic relevance

relations between text and image sequences. We present

both quantitative and qualitative results on the newly cre-

ated DISNEYLAND dataset.

1. Introduction

Textual and visual forms of communication are com-

plementary and synergetic in many aspects (e.g. news ar-

ticles, blogs). A system that can take passages of free

form text and automatically illustrate them with relevant

imagery would constitute a significant step forward toward

joint understanding of natural language descriptions and vi-

sual content of images. Recently there has been steady

progress of chipping away at this challenging problem by

either one-sentence (i.e. subject-verb-object style) text gen-

eration methods [7, 8, 9, 17, 24, 29] for image description,

or image/video retrieval from sentence queries [10, 37]. In

this paper, we make the next leap towards retrieving a se-

quence of images (as opposed to a single image) to illus-

trate much longer in terms of content, passages of text,

that may consist of multiple sentences or even paragraphs

(as opposed to a single sentence). One of the challenges,
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Figure 1. A depiction of our problem statement with Disneyland

examples. We leverage (a) blog posts to learn the mapping be-

tween sentences and images, and (b) photo streams to augment the

image samples. (c) Our objective is to rank and retrieve image se-

quences that best describe a given text query consisting of multiple

sentences or paragraphs.

however, is obtaining appropriate text-image parallel corpus

from which semantic relationships between text and images

can be learned.

As social media sites continue to proliferate, a growing

number of individuals willingly share their own experiences

in the form of images, videos, or text, over a multitude of

Web platforms. For example, many people who visit Dis-

neyland take large streams of photos about their unique ex-

perience, and upload them onto photo hosting sites such as

FLICKR. Some of more enthusiastic users also craft blog

posts to document their trips on weblog publishing sites

such as BLOGGER or WORDPRESS, or evaluate their experi-

ences on review sites like TRIPADVISOR or YELP.

In this paper, we address a problem of ranking and re-

trieval of image sequences for a natural language query of

multiple sentences, by leveraging a large corpus of online

images and text that describe common events or activities in

different forms. Fig.1 illustrates an intuition of our problem

statement with an example of tourism (e.g. visiting Disney-

land). Given a text query consisting of multiple sentences or

paragraphs, our goal is to automatically retrieve image se-
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quences that best describe the essence of the query text. In

order to more densely populate image samples, we also ex-

ploit a large set of photo streams; each stream is a sequence

of images that are taken by a single user in one day. Our

approach is developed based on the structural ranking SVM

with latent variables (e.g. [11, 18, 35]), in order to learn the

relevance relation between text and image sequences.

Our research can enable a number of web service appli-

cations, especially in the domain of tourism. For example,

we can visualize the visitors’ text-only reviews on TRIPAD-

VISOR or YELP, by automatically retrieving the most illus-

trative image sequences from the Web. This application is

significant because general users can understand key con-

cepts and sentiment much easier and quicker with images.

Moreover, the visuals are more useful for a new visitor. For

example, a user who has never visited Disneyland may not

fully understand the reviews about Bug’s land, without il-

lustration of attractions, which our approach can generate.

As a problem domain, we focus on a theme park, specif-

ically Disneyland, because it is easy to obtain abundant vi-

sual and textual data. However, our approach and problem

formulation are much broader and are applicable to any do-

main that has a large set of blog posts with images (more

broadly, any mixed image and text media). A concrete ex-

ample is tourist websites that discuss or review museums,

restaurants, cities or countries. In such setting, representa-

tive illustrations can be created for the flow of sentiments in

the reviews. Our approach is unsupervised and is applicable

to any of these domains if data is available.

We evaluate the image retrieval performance of our

method on a newly collected Disneyland dataset, which

consists of more than 10K blog posts with 120K associated

images, and 6K photo streams of more than 540K unique

images. We present comprehensive empirical studies com-

paring the retrieval accuracies of image sequences between

five text segmentation, three text description, and two text-

to-image embedding methods and their combinations. Our

approach using latent structural SVM can efficiently inte-

grate multiple algorithmic outputs in a unified way. We also

perform the visualization of users’ reviews on TRIPAD-

VISOR or YELP, and evaluate them using crowdsourcing-

based user studies via Amazon Mechanical Turk.

1.1. Related work

We now discuss some representative works that learn re-

lations between images and natural language text.

Sentence generation from images/videos. The goal of this

line of work is to automatically create or retrieve a concise

descriptive sentence for a given image [8, 9, 17, 24, 34].

Among them, [8] and [9] are the most relevant to ours

because their methods directly leverage a large collection

of raw (possibly noisy) online data, such as multimodal

database of news articles (images and their captions) in [8]

and Flickr images annotated with noisy tags, titles, and de-

scriptions in [9]. In our work, in addition to Flickr photo

streams, we exploit blog posts and consumers’ reviews,

which have not been explored prior. Moreover, our work

focuses on the extended problem of retrieving image se-

quences for a query of multiple sentences.

Mapping between images and text. Prior work has also

looked at learning a mapping between sentences and im-

ages or retrieving one from the other (e.g. [7, 10, 29, 37]).

The main focus in this line of work is on definition of a

common semantic space that embeds both images and sen-

tences. Some successful ideas include triplets of objects, ac-

tions, and scenes in [7], kernel canonical correlation analy-

sis in [10], dependency tree-recursive neural networks (DT-

RNN) in [29], and conditional random field models on ab-

stract scenes in [37]. The key novelty of our work is that

we focus on the relation between multiple paragraphs and

image sequences, instead of between sentences and images.

Recently, multimodal recurrent neural networks [14, 16,

29] have been extensively used for mapping between text

and images. Our latent structural SVM framework is ap-

pealing because of its flexibility that enables us to learn the

weights of combinations of different model components in a

unified way, including text segmentations, text descriptors,

and text-to-image mapping methods.

Image/video retrieval from structured queries. This di-

rection of work goes beyond conventional keyword-based

image/video retrieval, and addresses structured queries.

Some notable examples include video search for a sentence

in the context of autonomous driving [22], image ranking

and retrieval based on visual phrases [25], multiple-attribute

queries [27], and graph-structured object queries [18]. The

work of [28] proposed a method of merging three different

query modalities (e.g. text, sketch, and images) into a com-

mon semantic space for image retrieval. Our work is unique

in two aspects; first, our query structure is natural language

paragraphs, and second, the retrieval targets are image se-

quences rather than individual images.

One of the most relevant works is [13], which also devel-

ops a method for automated story picturing. However, there

are key differences. First, given a query passage, we aim to

retrieve image sequences that emphasize the progression of

the passage, as opposed to similar image retrieval. Second,

our approach leverages unstructured online blogs and photo

streams, as opposed to dataset created by experts.

1.2. Contributions

(1) To the best of our knowledge, this work is the first

to address the ranking and retrieval of image sequences for

natural language queries of multiple paragraphs. We extend

both input and output to more complex forms in relation

to previous research: paragraphs instead of sentences and

image sequences instead of individual images.



(2) We develop an image sequence retrieval method,

built upon a structural ranking SVM with latent variables.

We show that our method can flexibly incorporate different

pieces of information about the text and image structure.

(3) We evaluate our method with a large unstructured

Disneyland dataset, consisting of 10K blog posts with 120K

associated images, and 6K photo streams of 540K images.

With quantitative evaluation and user studies via Amazon

Mechanical Turk, we show our approach is practical in vi-

sualizing natural language text written by actual users.

2. Problem Formulation

We have three types of input data. The first input is a

set of visitors’ blog posts B = {B1, · · · , BN}. We assume

that each blog post Bn consists of a sequence of images

and associated text Bn = {(In1 , T
n
1 ), · · · , (I

n
|Bn|, T

n
|Bn|)}.

The set of blog posts B is used as an image-text parallel

corpus for training, from which we can learn a joint image-

text embedding into a common latent space.

The second input is a large set of visitors’ photo streams

P = {P 1, · · · , PL}. We define a photo stream as a set of

images that are taken in sequence by the same photogra-

pher within a single day. The main use of photo streams is

to populate image samples for retrieval. We embed photo

streams in the same latent space using the transformation

learned from the blog data, and then for a given query text

we can also return the images from photo streams.

The third input is a set of text-only posts Q where each

post Q ∈ Q consists of multiple sentences or paragraphs.

They include users’ reviews or blog posts without images.

We use Q as a set of text queries.

We formulate the retrieval of image sequences for a

multiple paragraph query as follows. Given a query text

Q ∈ Q, we rank a set of image sequences, S =
{(S1, w1), · · · , (SK , wK)} where Sk is the k-th ranked im-

age sequence, wk is a ranking score, and K is the number

of sets to retrieve. Each sequence Sk consists of images of

blog posts B or photo streams P . We assume that the size

of a retrieved sequence Sk, denoted κk, is a user input, be-

cause it is rather subjective to individual’s preference. For

instance, some blog authors would upload tens of images

for a short blog post, while others would be more verbose

and use only a few images per post.

2.1. Text­Image Parallel Corpus

We assume that each image in a blog post is semantically

associated with some portion of the text in the same post.

The challenge in creating a text-image parallel training cor-

pus is that the text in a blog post is often unstructured, and

thus the canonical association between text and images is

unknown a priori. Acquiring annotator labels is one op-

tion, but is not scalable to a large corpus. Therefore, our

approach is to segment the text of a post such that each text

segment is coherent in semantics, and let each image have

some association with each of the text segments. We then

use text-to-image block distance to determine the varying

degree of image-text association (i.e. a text segment closer

to an image has a higher degree of association than other

text segments located farther in a document). Once the text

segmentation and image-text association is obtained, each

blog post Bn can be decomposed into a sequence of images

and associated text: Bn = {(In1 , T
n
1 ), · · · , (I

n
|Bn|, T

n
|Bn|)}.

2.2. Text Segmentation

We assume that a blog author augments, with images,

text segments of the post in a semantically meaningful man-

ner. The purpose of text segmentation is therefore to divide

the input text into coherent groups of sentences such that

each segment is expected to be associated with a single im-

age. We apply several automatic text segmentation methods

in NLP literature [5, 6, 32], based on its syntactic structure

or semantic distribution. Each of the resulting segments ob-

tained from the following methods represents either a se-

quence of sentences with the highest content centrality and

coherence, or an individual topic that is latent in the post.

We implement one syntactic segmentation (1) and four se-

mantic segmentation methods (2)–(5). Semantic-based seg-

mentation methods represent each sentence in terms of its

semantic centrality, and group a sequence of sentences such

that each segment maintains its coherency.

(1) Paragraph tokenizer. One of simplest segmenta-

tion methods is to divide the passage by its syntactic struc-

ture, such as by paragraphs. Each paragraph often carries

a unique topic or event, thus likely to be associated with

an image. We apply a standard paragraph tokenizer (NLTK

[23]) that uses rule-based regular expressions to detect para-

graph divisions.

(2) Latent Semantic Analysis (LSA). The LSA applies

the singular value decomposition (SVD) to obtain the con-

cept dimension of sentences [19, 30]. Assuming that a pas-

sage is composed of multiple concepts or topics, each of

which is represented by a few terms in the passage, the LSA

based method recursively finds the most representative sen-

tence or a group of sentences (segment) that maximizes the

inter-sentence similarity value for each topic (e.g. the most

prominent topic boundary) [32, 5].

(3) LexRank. The LexRank algorithm detects key sen-

tences in the text based on their lexical centrality [2, 6]. We

construct a graph by creating a vertex for each sentence in

the blog, and connecting as edges the semantically similar

sentences using the intra-sentence cosine similarity of TF-

IDF vectors. We obtain the top sentences by their semantic

importance that is estimated via random walk and eigenvec-

tor centrality. For each top centroid sentence, we build a text

segment such that its boundary is within the equal sentence

distance between two centroids.



(4-5) Summary-based LSA and LexRank. The LSA

and LexRank algorithm can perform not only segmenta-

tion but also summarization [6, 15]. Thus, using the two

base algorithms, we jointly perform segmentation and sum-

marization, and treat each resulting summary sentence as

a segment to be associated with an image. That is, while

the segmentation (2)–(3) represents each segment as multi-

ple sentences, the segmentation (4)–(5) selects only a single

sentence that has the highest semantic centrality from each

text segment, and can remove less representative portions of

the segments.

2.3. Text Description

After performing text segmentation, we extract features

from each text segment. We first pre-process the text corpus

by normalizing each tokenized sentence and removing stop

words. We use the three standard text descriptors.

(1) Bag-of-Words (BOW). The bag-of-words approach

is a simplified representation of text that treats each input

text as a multiset of words, disregarding its complex seman-

tics or grammar [26].

(2) TF-IDF. TF-IDF improves upon BOW by weighting

each term with both term frequency and inverse document

frequency, thus being able to identify the key terms that are

unique to the given text [1]. TF-IDF can efficiently capture

the characteristics of the given text especially if the text is

long (e.g. multiple paragraphs). Because TF-IDF vector can

be very sparse, we reduce the feature dimension to 20,000

by picking only the most frequent term frequencies.

(3) LDA Topic Distribution. An LDA model can rep-

resent each given text as mixing proportions for latent com-

ponents, which are often interpreted as “topics” [3, 4]. Thus

an LDA model can project text in a much more compact di-

mension, which has been reported to be effective in many

tasks including text categorization [21, 31, 33]. In our ex-

periment, we train a topic model with 50 topics, 2 passes

over our corpus with 10K blog documents.

2.4. Image Description

For image description, we use dense feature extraction

with vector quantization, which is one of the standard meth-

ods in recent computer vision research. We densely extract

HSV color SIFT and histogram of oriented edge (HOG) fea-

tures on a regular grid of each image at steps of 4 and 8 pix-

els, respectively. Then, we form 300 visual words for each

feature type by applying K-means to randomly selected de-

scriptors. Finally, the nearest word is assigned to every node

of the grid. As image or region descriptors, we build L1 nor-

malized spatial pyramid histograms to count the frequency

of each visual word in three levels of regular grids. We de-

fine the image descriptor v by concatenating the two spatial

pyramid histograms of color SIFT and HOG features.

2.5. Text­to­Image Embedding

The text-to-image embedding aims to obtain a mapping

between images and their associated text, and allows us to

retrieve the closest images for a given text, and vice versa.

We implement two methods, which include one parametric

method using NCCA (Normalized Canonical Correlation

Analysis) [9], and one nonparametric method using simple

K-nearest neighbor search. Suppose that each of the train-

ing blog posts is segmented as a sequence of text and images

(e.g. Bn = {(In1 , T
n
1 ) · · · , (I

n
|Bn|, T

n
|Bn|)}), and finally we

have M image and text pairs. Using the image and text de-

scriptors in previous sections, we represent each image and

text as x and y, respectively. We then repeat the embedding

for each image and text descriptor and each segmentation

method separately.

(1) NCCA. We present a set of M image and text pairs in

matrices X ∈ R
M×d and Y ∈ R

M×D, respectively. Then

the goal of text-to-image embedding is to find matrices U ∈
R

d×c and V ∈ R
D×c to map images and text to a common

c-dimensional latent space by XU and YV. The objective

of the CCA is to find U and V such that

max
U,V

tr(UTXTYV) (1)

s.t. UTXTXU=I,VTYTYV=I.

The CCA optimization is solved as a generalized eigen-

value problem as in [9]:
(

Cxx Cxy

CT
xy Cyy

)(

zx
zy

)

= λ

(

Cxx 0

0 Cyy

)(

zx
zy

)

, (2)

where Cxx = XTX, Cxy = XTY, and Cyy = YTY.

We form projection matrices U and V from the top c eigen-

vectors corresponding to each zx and zy , respectively. The

NCCA proposes to compute the similarity σ(x,y) between

image x and text y by

(

xUdiag(λt
x1, . . . , λ

t
xc)

)(

yVdiag(λt
y1, . . . , λ

t
yc)

)T

‖xUdiag(λt
x1, . . . , λ

t
xc)‖2‖yVdiag(λt

y1, . . . , λ
t
yc)‖2

(3)

where λx1, . . . , λxc are the top c eigenvalues that corre-

spond to eigenvectors zx, and t is the power to which the

eigenvalues are taken. We use c = 96 and t = 4 as done

in [9]. Using the similarity metric of Eq.(3) we can retrieve

the closest images for any given text and vice versa.

(2) KNN. The KNN is a technique of lazy learning in

which we retain all M training pairs of images and text.

The similarity σ(x,y) from image x to text y is σ(x,y) =
cos(x,x′) where x′ = argmax(x′,y′)∈T cos(y,y′). That

is, we first find the closest text y′ to y from the training

set, and compute the cosine similarity between x and x′

that is associated with y′. Hence, the values of σ(x,y) and

σ(y,x) are not identical, because the former is computed

from an image space while the latter is from a text space.



In the experiments of Section 4, we compare the retrieval

performance of these two embedding methods.

3. The Retrieval Model

We design our ranking and retrieval approach based upon

the structural SVM with latent variables (e.g. [12, 35]). Our

discriminant function is defined as a real-valued function

F(Q,S) : Q×S → R
+, which measures the compatibility

of a query text Q ∈ Q and an image sequence S ∈ S .

Naturally, the mapping from text to an image sequence

depends on how to segment the given passage. We call

this task text segmentation, which defines the function

G(Q, κ,H) that partitions a query paragraph Q into a se-

quence of κ segments H = {h1, · · · , hκ}, so that each text

segment hi is topically coherent and maps to a single im-

age. Thus the image sequence S = {s1, · · · , sκ} has the

same length with H , where each si corresponds to hi. In

practice, each hi can be single or multiple sentences.

We treat the text segmentation output as a latent vari-

able, because its correct answer is not available at both

training and test stage. If we denote one instance of para-

graph segmentation by H ∈ H, the retrieval objective is to

find the optimal image sequences S∗ for a query text Q:

S∗= argmax
(S,H)∈S×H

F(Q,S,H)= argmax
(S,H)∈S×H

w·Ψ(Q,S,H) (4)

where as usual the discriminant function is linear in the fea-

ture vector Ψ(Q,S,H), which describes the relation among

query input Q, image sequence output S, and a segment in-

stance H as a latent variable.

3.1. Feature Spaces

We decompose the feature vector into two components:

w·Ψ(Q,S,H)=α·Φ(Q,S,H)+β·Π(Q,S,H). (5)

The first component Φ(Q,S,H) includes a set of fea-

tures describing a one-to-one relation between each pair of

(si, hi), whereas Π(Q,S,H) consists of feature vectors re-

lating S to H as a set.

The first feature set Φ(Q,S,H), that measures one-to-

one compatibility between text and images, concatenates

the mean similarities of all combinations between two im-

age features in Section 2.4 and three text features in Section

2.3. Thus, Φ(H,S) ∈ R
6 is defined by

Φ(H,S) =
1

κ

[
∑κ

i=1σ(x
1
i ,y

1
i ) · · ·

∑κ

i=1σ(x
2
i ,y

3
i )
]T
, (6)

where x1
i and y1

i are the first type of image and text de-

scriptors for hi and si, respectively. For image-text similar-

ity σ(x,y), we use one of the two methods (i.e. NCAA or

KNN) defined in Section 2.5.

The second feature set Π(Q,S,H) describes compatibil-

ity between the sequences of text segments H and images

S as a whole. We use the two popular similarity measures:

one orderless metric, Hausdorff similarity, and one ordered

one, Dynamic Time Warping (DTW) similarity. We con-

sider both orderless and ordered metrics because sequen-

tial relation may not be always consistent in different blogs

where the image-text ordering often does not match. The

final feature dimension becomes Π(Q,S,H) ∈ R
12 (i.e. 2

metrics× 3 text× 2 image features).

3.2. Learning

In order to learn the model (e.g. computing the parameter

vector w of Eq.(5)), we use blog data as training data. With

a slight abuse of notation, we denote our training data as

Bt = {(Q(n), S(n))|n = 1, · · · , N}, where Q(n) and S(n)

are the text and image sequence of training blog n. The

learning objective of structural latent SVM is

min
w,ξ≥0

1

2
‖w‖2 +

C

N

N
∑

n=1

ξn (7)

s.t.w·
(

Ψ(Q(n),S(n))−Ψ(Q(n),S)
)

≥∆(S(n),S)−ξi, (8)

∀n, ∀S ∈ S\S(n)

where ξn is a slack variable and C is a regularization pa-

rameter. The loss function is defined as ∆(S(n), S) =

1 − 1
|S(n)|

∑|S(n)|
s=1 σ(s

(n)
i , si), which is the element-wise

mean distance between S(n) and S. We let S to have the

same length with S(n).

Note that we have no access to the correct segmentation

for text Q(n) at both training and test time. Thus, we let the

segmentation of each document be a latent variable. More

specifically, in Section 2.2, we describes five different seg-

mentation methods that are functions of Q and κ. As a latent

variable of each training data, we introduce h(n) ∈ RD,

where D is the number of possible segmentation methods.

(e.g. D = 5 in our setting). Thus, h(n) is a binary vector

with only one nonzero element indicating which segmenta-

tion output is applied to a training document n. With the

latent variables, the constraints of Eq.(8) can be specified as

wd· max
h

(n)
d

∈{1,··· ,D}

(

Ψ(Q(n), S(n),h
(n)
d )−Ψ(Q(n), S,h

(n)
d )

)

≥ ∆(S(n), S)− ξi. ∀n, ∀S ∈ S\S(n). (9)

Now we have D different sets of wd that are learned

from the blogs that are segmented by method d.

In Eq.(9), S can be any possible image sequences with

the size of κ. Since S ∈ S can be countlessly many, we

limit the generation of negative S as follows. With a fixed

η, for each training blog n, we generate negative S by ran-

domly applying two operations to S(n), which are shuffling



the orders and replacing some of S(n) with other images.

We set η = 50 in the experiments.

Optimization. We use alternating optimization that has

been commonly used for the latent structural SVM (e.g.

[18, 35]). In summary, we alternate between the optimiza-

tion of SVM parameters {wd}
D
d=1, and segmentation labels

h. We first randomly initialize h(n) for each training blog,

and apply the segmentation method d accordingly. We then

repeat the following two steps until convergence or for a

pre-defined number of iterations.
(a) With a fixed segmentation method for each training

data n with h(n), we solve standard structural SVM of

Eq.(7) to obtain {wd}. We use the n-slack algorithm

with margin-rescaling presented in [12].
(b) With fixed SVM parameters, update the segmentation

method by h(n) = argmaxd wd ·Ψ(Q(n), S(n), H) for

all training blogs n ∈ {1, · · · , N}.

3.3. Inference

At test time, we are given a set of learned parame-

ters {wd}
D
d=1, a query text Q, training blogs Bt and the

database of photo streams P , from which the best image

S∗ is selected. The retrieval is performed as follows. Sup-

pose that the candidate image sequences Scand are given.

Then, for each S ∈ Scand, we compute the score s by

maxd F(Q,S,H) = maxd wd ·Ψ(Q,S,H). That is, once

we apply D different segmentation methods to Q, we com-

pute the scores of each image sequence S by finding the

maximum score s among D different segmentation outputs

with their corresponding wd. Finally, we can sort S ∈ S
according to the scores.

However, one major difficulty of this scenario is that

there are exponentially many candidates in Scand, so we

use an approximate strategy. Once the query text Q is

segmented into H = {h1, · · · , hκ}, we first find the Kh-

nearest neighbor images of each hi and constrain S ∈ Scand

to be generated from them. With this constraint, the size of

Scand becomes Kh × κ. Optionally, to further improve the

search speed for S∗, we can use a greedy algorithm; for ex-

ample, once we choose an image for h1, we select the next

image for h2 that maximizes the sore wd ·Ψ(Q,S,H). The

greedy algorithm has been widely used in the applications

of structural SVM to subset selection problems [20, 36].

4. Experiments

We first conduct comprehensive experiments for the im-

age sequence retrieval task to compare the contributions of

different text features, segmentation methods, embedding

methods, and their combinations. We then demonstrate the

ability of our approach to visualize the text-only review en-

tries of TRIPADVISOR and YELP. We perform user stud-

ies using Amazon Mechanical Turk to obtain general users’

preferences.

4.1. Datasets of Photo Streams, Blogs, and Reviews

We crawl image and text data for the two parks at Cali-

fornia: Disney California Adventure and Disneyland Park.

Photo Stream Data. We collect 542,217 unique images

of 6,026 photo streams from Flickr by querying keywords

related to Disneyland. We only consider photo streams that

contain more than 30 images, and remove noisy ones that

are not relevant to the park.

Blog Data. We first crawl 53,091 unique blog posts

and 128,563 associated pictures from three popular blog-

publishing sites, BLOGSPOT, WORDPRESS, and TYPEPAD

by changing query terms from Google search. Then, the

blogs are manually classified into three groups by Disney-

land experts: Travelogues, Disney and Junk. The Travel-

ogue label indicates the blog posts of our interest, which

describe stories and events with multiple images in Dis-

neyland. The Disney label is applied to the posts that are

Disney-related but not travelogues, such as history of Dis-

neyland, Disney films, or merchandise. We use only the

blogs of the Travelogue group, whose size is 10,075 posts

and 121,251 associated images.

TripAdvisor and Yelp dataset. TripAdvisor and Yelp

curate traveler reviews for specific venues registered on

their sites. We manually pick 100 reviews from each web-

site (200 in total), under venue names Disney California

Adventure and Disneyland Park. We pick reviews that are

neither too short nor too long. We use traveler review data

for evaluation in order to demonstrate that the knowledge

of image-text association obtained from the blog data can

be flexibly applied to other types of text entries under the

same general domain.

4.2. Results on Image Sequence Retrieval

For quantitative evaluation, we randomly select 80% of

blog posts as a training set and the others as a test set. For

each test blog post, we use the text portion as a query text Q

and the sequence of images as groundtruth SG. The goal of

each algorithm is to retrieve the best image sequence from

training blogs or photo streams P . Since the training and

test data are disjoint, each algorithm can only retrieve sim-

ilar (but not identical) images at best. We perform the ex-

periment under two different settings: with or without the

groundtruth size (κ) of the image sequence as it appears in

the original blog post given to the algorithm. We test with

10 different sets of training and test partitions.

To measure performance, we need to define how close

the estimated S = {s1, · · · , sκ} is to the groundtruth SG =
{sG1, · · · , sG|SG|} for a query Q. Because the retrieved

sequence can only have similar images to the groundtruth

and may not have the same number of images, we de-

fine similarity-based Jaccard index as an evaluation met-

ric as follows. We first represent each image s by the L1-

normalized descriptor as in Section 2. Since S and SG are



Figure 2. Comparison of different (a) segmentation methods, (b)

text representation methods, and (c) embedding methods on the

image retrieval accuracy with the similarity-based Jaccard Index

measure in Eq.(10), when the ground truth image sequence size κ

is given (top), and unknown (bottom) to the algorithm.

two vector sequences with possibly different lengths, we

align S and SG using the dynamic time warping (DTW)

algorithm, which finds a set of correspondences C between

them. Then, we define the similarity-based Jaccard index as

J(S, SG) =

∑

(si,sj)∈C σ(si, sj)

max(|S|, |SG|)
(10)

where σ(si, sj) is the cosine similarity. Note that J(S, SG)
is higher for a more similar pair of S and SG in both ap-

pearance and lengths.

Since the problem of retrieving image sequences from

multiple paragraph queries has not been addressed in pre-

vious literature, we instead present comprehensive com-

parison results of different combinations of methods we

propose. Specifically, as baselines we vary among five

text segmentation methods (Syntactic (S1), LSA (S2),

LSA-based-summary (S3), LexRank (S4), and LexRank-

based-summary (S5)), three text representation methods

(BOW (F1), TF-IDF (F2), and LDA topic distribution

(F3)), and two text-to-image embedding methods ((KNN)

and (NCCA)). These baselines are tested against our latent

structural SVM model that dynamically assigns the best

segmentation method per input text (SL) and that jointly

optimizes the feature weights (FA).

Comparison of text segmentation methods. We test

whether our latent model improves the retrieval perfor-

mance against the fixed segmentation methods. For this

experiment, we fix the embedding to (KNN) and the text de-

scription to (FA).

Fig.2.(a) shows that our latent model (SL) can assign the

best segmentation method to each input blog post, outper-

forming all the baselines that use one fixed segmentation

method. Since every blog is written in a different style, the

results make an intuitive sense that finding and applying the

vs. (FA+NCCA)

60.6% (303/500)

# Votes 5 4 3 2 1 0

# Samples 15 26 21 26 9 3

vs. (F1+KNN)

59.0% (295/500)

# Votes 5 4 3 2 1 0

# Samples 16 19 29 19 14 3

vs. (S2+KNN)

57.4% (287/500)

# Votes 5 4 3 2 1 0

# Samples 11 21 32 18 16 2

Table 1. The results of pairwise preference tests on visualization

of consumer reviews via AMT between our method and three base-

lines. The numbers indicates the percentage of responses that our

visualization is better than that of baseline for a given sentence.

best segmentation algorithm per input blog improves the

performance. Obviously, algorithms perform better when

the groundtruth image sequence size (κ) is given, retriev-

ing image sequences that deviate less from the groundtruth

images. Note that even a small numerical increase in accu-

racy with the Jaccard Index measure indicates a significant

qualitative improvement, as evident in Section 4.3.

Comparison of text features. We test whether our

model improves the retrieval performance compared to the

baselines where one text descriptor is fixed. For this ex-

periment, we fix the segmentation and embedding method

to (S1)+(KNN). Fig.2.(b) shows that the aggregated fea-

ture set (FA) outperforms the single best-performing fea-

ture set. Among the text features, the TF-IDF (F2) per-

forms the best. The results clearly show that textual infor-

mation gained from different representations is complemen-

tary, and our structural SVM model successfully adjusts the

importance of each pair of image and text features (FA).

Comparison of text-to-image embedding methods.

Fig.2.(c) compares the performance of the two embedding

methods when applied with two different feature descrip-

tors (FA) and (F2). We fix the segmentation to (SL). In

our experiments, the nonparametric method (KNN) learns

better mapping between images and text than the paramet-

ric (NCCA). We observe that the best pair of an embedding

method and a text representation is (KNN)+(FA).

In conclusion, our approach consistently outperforms

baselines by 2.5% to 8%. The accuracy improvement quan-

titatively appear moderate, mainly because the similarity-

based metric of Eq.(10) encodes correct trends but sup-

presses perceptual differences (similar to the BLEU score).

Qualitative results. Fig.3 shows examples of image se-

quence retrieval. We compare the results of our algorithm

and baselines with the groundtruth. Our algorithm illus-

trates the main theme of documents by retrieving relevant

images in terms of attractions (e.g. Mickey’s toontown),

events (e.g. parades), and locations (e.g. restaurants).

4.3. Visualization of Customers’ Reviews

We evaluate the ability of our algorithm to visualize the

general users’ reviews. We build a set of query text Q
by selecting 100 story-like reviews that mainly describe



Figure 3. Qualitative comparison of the image sequence retrieval. On the left, we show downsized original blog posts and parts of text

queries. On the right, we show the groundtruth image sequences (GT), the prediction of our algorithm (SL), and that of one baseline from

top to bottom. More similar the predicted sequences are to groundtruth, more accurate the retrieval algorithm is for given text queries. Note

that actual blogs and image sequences are much longer; we show only parts of them for illustration purpose.

Figure 4. Examples of visualization of consumers’ reviews on TRIPADVISOR and YELP. We show relevant parts of the documents with

bold fonts for the words that are visualized in the retrieved images. For each text query, we show three top-ranked image sequences. Note

that actual query reviews and image sequences are much longer; we show only parts of them for illustration purpose.

the flow of the trip sequentially, from each of TRIPADVI-

SOR and YELP datasets. Since the query reviews are text-

only and have no groundtruth image sequences, we employ

crowdsourcing-based evaluation via Amazon Mechanical

Turk (AMT). We first train our method and baselines using

the blog data. We then show each query review and a pair

of image sequences predicted by our algorithm and one of

the baselines in a random order, and ask a turker to choose

the one that visualizes the passage best. We obtain these

preference answers from five different turkers per query.

Table 1 shows the results of pairwise AMT preference

tests. We compare with three baselines, each of which

uses a different text feature, segmentation, and embedding

method. Although the question is highly subjective in na-

ture and has a variety of equally good answers, our results

are favored by the general turkers by larger margins.

Fig.4 shows three top-ranked image sequences for TRI-

PADVISOR and YELP reviews. Although actual query re-

views and image sequences are much longer, we select

some parts of them for illustration purpose. We highlight

the terms that are visualized by our algorithm. Disneyland

provides a diverse sets of entertainment, activities, events,

and attractions, which are highly co-located in both text and

images. Our approach helps build cross-reference between

them, which can enable a wide range of promising and en-

gaging Web applications.

5. Conclusion

We proposed a method to retrieve image sequences for

a text query of multiple paragraphs. Using the blogs and

photo streams on the Web, we built an image-text parallel

corpus where the association was learned. We formulated a

latent structural SVM to learn their semantic relations, and

presented a comprehensive evaluation against a number of

baselines as well as a user study via AMT.
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