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Abstract

DEA (Data Envelopment Analysis) evaluates the relative efficiency
of a set of DMUs (Decision Making Units). The relative efficiency of
a DMU is the result of comparing the inputs and outputs of the DMU
and those of other DMUs in the PPS (Production Possibility Set). If
the inputs and outputs each vary in intervals, the DMUs cannot be
easily evaluated and ranked using the obtained efficiency scores. In this
paper, presenting a new idea for computing the efficiency of DMUs with
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interval data, an interval will be defined for the efficiency score of each
unit. And finally, a method for ranking DMUs by the obtained efficiency
interval is presented. And, the new technique will be applied to a set of
real data.
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1 Introduction

Data Envelopment Analysis technique was presented in the CCR paper by
Charnes et al. (1997), and since then was developed by various researchers. In
this method, the relative efficiency of a set of DMUs which use similar types
of (multiple) resources to produce similar types of (multiple) outputs is com-
puted. Finally, DMUs are divided into two groups of efficient and inefficient
DMUs. In ordinary DEA models, the input and output values are assumed to
be definite. In recent year, in different applications of DEA, inputs and outputs
have been observed whose values are indefinite. Such data are called ”inac-
curate”. Inaccurate data can be probabilistic, interval, ordinal, qualitative,
or fuzzy. Therefore, some papers were presented on the theoretical develop-
ment of this technique whit interval data, of which we can name Despotis et.
al(2002)and Jahanshahloo et al. (2004). In the above-mentioned papers, all
the DMUs are divided into three groups which are defined according to the
interval obtained for the efficiency value of DMUs. This paper consists of the
following sections: In section 2, DEA is discussed. DEA with interval data is
presented in section3. And, the method for ranking DMUs with interval data
is put forward in section4. Finally, an example with real interval data will be
given.

2 DEA

Suppose that we have n DMUs, DMUj : j = 1, . . . , n, to be evaluated, each
DMU using m inputs to produce s outputs. Xj = (x1j , . . . , xmj) and Yj =
(y1j , . . . , ysj) are the input and output vectors of DMUj, respectively, in which
Xj , Yj ≥ 0, Xj �= 0 and Yj �= 0. The input-oriented CCR model to evaluate
the relative efficiency of DMUp is as follows:
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ep = max

s∑

r=1

uryrp (1)

s.t.
s∑

r=1

uryrj −
m∑

i=1

vixij ≤ 0, j = 1, . . . , n,

m∑

i=1

vixip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

where U= (u1, . . . , us) and V = (v1, . . . , vm) are output and input weight
vectors, respectively, and they are unknown, and should be computed by solv-
ing problem (1). Assume that (U∗, V ∗) is the optimal solution to problem
(1). Then, the DMUp under evaluation is relative efficient if and only if
e∗p = 1.Otherwise, DMU is said to be inefficient. In problem (1), it is assumed
that all inputs and outputs of any DMU are of known values.

3 Interval DEA

Let input and output values of any DMU be located in a certain interval, where
xL

ijand xU
ijare the lower and upper bounds of the ith input of thejth DMU,

respectively, and yL
rj andyU

rjare the lower and upper bounds of the rth output
of the jth DMU, respectively; that is to say,xL

ij ≤ xij ≤ xU
ij andyL

ij ≤ yij ≤ yU
ij .

Such data are called interval data, because they are located in intervals. Note
that always xL

ij ≤ xU
ij and yL

ij ≤ yU
ij . If xL

ij = xU
ij , then the i th input of the

j th DMU has a definite value. Interval problems are those whose parameter
values are located in intervals, their exact values being unable to be identified.
The CCR model for evaluatingDMUpwith interval data is as follows:

ep = max

s∑

r=1

ur[y
L
rp, y

U
rp] (2)

s.t.
s∑

r=1

ur[y
L
rj, y

U
rj] −

m∑

i=1

vi[x
L
ij , x

U
ij] ≤ 0, j = 1, . . . , n,

m∑

i=1

vi[x
L
ip, x

U
ip] = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,
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In problem (2), seeing that all parameters of the problem are in intervals
and do not have definite values, the relative efficiency ofDMUp is also located
in an interval. The upper and lower bounds of the relative efficiency of DMUp

are obtained by solving the following problems, respectively.

eU
p = max

s∑

r=1

ury
U
rp (3)

s.t.
s∑

r=1

ury
L
rj −

m∑

i=1

vix
U
ij ≤ 0, j = 1, . . . , n, j �= p

s∑

r=1

ury
U
rp −

m∑

i=1

vix
L
ip ≤ 0,

m∑

i=1

vix
L
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

eL
p = max

s∑

r=1

ury
L
rp (4)

s.t.

s∑

r=1

ury
U
rj −

m∑

i=1

vix
L
ij ≤ 0, j = 1, . . . , n, j �= p

s∑

r=1

ury
L
rp −

m∑

i=1

vix
U
ip ≤ 0,

m∑

i=1

vix
U
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

In problem (3), the DMU under evaluation is in its best condition, and the
other DMUs are in their worst condition. So, ep ≤ eU

p always holds. Whereas,
in problem (4), the DMU under evaluation is in its worst condition and the
other DMUs are in their best condition. Therefore, the obtained efficiency will
be the worst possible efficiency for the DMU under evaluation, so ep ≥ eL

p .
According to what has been mentioned, we can say, ep ∈ [eL

p , eU
p ]. Considering

that the efficiency of any DMU lies in an interval, all DMUs can be divided
into one of the three following classes:
Class 1 includes all DMUs which are efficient both in their best and worst
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conditions, that is to say,E++ = {DMUj : eL
j = eU

j = 1}.
Class 2 consists of all DMUs which are efficient in their best condition, but in-
efficient in their worst condition, in other words, E+ = {DMUj : eL

j < 1, eU
j =

1 }.
And, class 3 contains all DMUs which are inefficient in their best condition. It
goes without saying that such DMUs are, also, inefficient in their best condi-
tion, that is to say, E− = {DMUj : eL

j < 1, eU
j < 1 }. All DMUs in E++ are

as efficient DMUs, since they are efficient both in their best and worst condi-
tions. And, all DMUs inE−are inefficient, as they are inefficient both in their
best and worst conditions. But, in case of DMUs inE+, one cannot determine
their being efficient or inefficient, because they are efficient in some condition
and inefficient in some other condition. In the next section, a method will be
presented for ranking DMUs with interval data.

4 Ranking DMUs with interval data

In the previous section, a method was presented by which interval efficiency
was obtained for every DMU with interval data. Ranking interval efficiency
seems a little difficult. In other words, if two DMUs are located inE++, how
can we comment on one of them being better than the other? The same holds
true for DMUs in E+ or inE−. In this section, a method is proposed for
ranking the DMUs in each class. To being with, suppose that any DMU in
E+ has a better rank than DMUs inE−. Therefore, the following proposed
method can be applied to each one of the classes E++, E+ and E−, separately.
For each DMU, four types of efficiency can be computed:
a) the DMUs under evaluation in its best condition, and the other DMUs in
their worst condition,

e1
p = max

s∑

r=1

ury
U
rp (5)

s.t.

s∑

r=1

ury
L
rj −

m∑

i=1

vix
U
ij ≤ 0, j = 1, . . . , n, j �= p

s∑

r=1

ury
U
rp −

m∑

i=1

vix
L
ip ≤ 0,

m∑

i=1

vix
L
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,
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b) the DMU under evaluation in its best condition, and the other DMUs,
also, in their best condition,

e2
p = max

s∑

r=1

ury
U
rp (6)

s.t.

s∑

r=1

ury
U
rj −

m∑

i=1

vix
L
ij ≤ 0, j = 1, . . . , n,

m∑

i=1

vix
L
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

c) the DMU under evaluation in its worst condition , and the other DMUs,
also, in their worst condition,

e3
p = max

s∑

r=1

ury
L
rp (7)

s.t.
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ury
L
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i=1

vix
U
ij ≤ 0, j = 1, . . . , n,
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vix
U
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

d) the DMU under evaluation in its worst condition, and the other DMUs
in their best condition,

e4
p = max
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ury
L
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ury
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Considering problems (5), (6), (7) and (8), we can state the following:
e1

p = eU
p , e4

p = eL
p , e4

p ≤ e2
p ≤ e1

p, e
4
p ≤ e3

p, e
3
p ≤ e1

p . The following method is
proposed for ranking DMUs in each class E++, E+ and E−. First, solve the
four following models which correspond each DMU, respectively. The models
presented below are the AP models corresponding problems (5), (6), (7) and
(8).

θ1
p = max

s∑

r=1

ury
U
rp (9)

s.t.

s∑

r=1

ury
L
rj −

m∑

i=1

vix
U
ij ≤ 0, j = 1, . . . , n, j �= p

m∑

i=1

vix
L
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

θ2
p = max

s∑

r=1

ury
U
rp (10)

s.t.

s∑

r=1

ury
U
rj −

m∑

i=1

vix
L
ij ≤ 0, j = 1, . . . , n, j �= p

m∑
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L
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,
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θ3
p = max

s∑

r=1

ury
L
rp (11)

s.t.
s∑

r=1

ury
L
rj −

m∑

i=1

vix
U
ij ≤ 0, j = 1, . . . , n, j �= p

m∑

i=1

vix
U
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

θ4
p = max

s∑

r=1

ury
L
rp (12)

s.t.

s∑

r=1

ury
U
rj −

m∑

i=1

vix
L
ij ≤ 0, j = 1, . . . , n, j �= p

m∑

i=1

vix
U
ip = 1

ui, vr ≥ ε i = 1, . . . , m, r = 1, . . . , s,

Problems (9), (10), (11) and (12) are the very problems (5), (6), (7) and
(8), except that the boundedness condition of the objective function has been
excluded from the constraints. Therefore, the values of θ1

p, θ
2
p, θ

3
p and θ4

p may
exceed unity. Now the following criterion can be suggested for ranking the
DMUs of each class.
θp = 1

4∑

i=1

αi

(α1θ
1
p + α2θ

2
p + α3θ

3
p + α4θ

4
p).

In a certain class, any DMU having a higher value will have a better rank-
ing. The application of the above method for ranking should be carried out
separately to each class, and ranking should be done separately in each class.

5 Ranking Bank Branches

We now apply our approach to some commercial bank branches in Iran. There
are 20 branches in this district. Each branch uses 3 inputs to produce 5
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outputs. Table 1 shows these inputs and outputs.

Inputs Outputs
Payable interest The total sum of four main deposits
Personnel Other deposits
Non-Performing loans Loans granted

Received interest
Fee

Table 1 Inputs and Outputs

In Tables 2 and 3 the interval inputs and interval outputs for these DMUs
are given. Also in Table 4 the efficiencies of these DMUs are presented.

DMUj xL
1j xU

2j xL
2j xU

2j xL
3j xU

3j

1 5007.37 9613.37 36.29 36.86 87243 87243
2 2926.81 5961.55 18.8 2016 9945 12120
3 8732.7 17752.5 25.74 27.17 47575 50013
4 945.93 1966.39 20.81 22.54 19292 19753
5 8487.07 17521.66 14.16 14.8 3428 3911
6 13759.35 27359.36 19.46 19.46 13929 15657
7 587.69 1205.47 27.29 27.48 27827 29005
8 4646.39 9559.61 24.52 25.07 9070 9983
9 1554.29 3427.89 20.47 21.59 412036 413902
10 17528.31 36297.54 14.84 15.05 8638 10229
11 2444.34 4955.78 20.42 20.54 500 937
12 7303.27 14178.11 22.87 23.19 16148 21353
13 9852.15 19742.89 18.47 21.83 17163 17290
14 4540.75 9312.24 22.83 23.96 17918 17964
15 3039.58 6304.01 39.32 39.86 51582 55136
16 6585.81 13453.58 25.57 26.52 20975 23992
17 4209.18 8603.79 27.59 27.95 41960 43103
18 1015.52 2037.82 13.63 13.93 18641 19354
19 5800.38 11875.39 27.12 27.26 19500 19569
20 1445.68 2922.15 28.96 28.96 31700 32061

Table 2 Input − data for the 20 bank branches
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DMUj yL
1j yU

1j yL
2j yU

2j yL
3j yU

3j yL
4j yU

4j yL
5j yU

5j

1 2696995 3126798 263643 382545 1675519 1853365 108634.76 125740.28 965.97 6957.33
2 340377 440355 95978 117659 377309 390203 32396.65 37836.56 304.67 749.4
3 1027546 1061260 37911 503089 1233548 1822028 96842.33 108080.01 2285.03 3174
4 1145235 1213541 229646 268460 468520 542101 32362.8 39273.37 207.98 510.93
5 390902 395241 4924 12136 129751 142873 12662.71 14165.44 63.32 92.3
6 988115 1087392 74133 111324 507502 574355 53591.3 72257.28 480.16 869.52
7 144906 165818 180530 180617 288513 323721 40507.97 45847.48 176.58 370.81
8 408163 416416 405396 486431 1044221 1071812 56260.09 73948.09 4654.71 5882.53
9 335070 410427 337971 449336 1584722 1802942 176436.81 189006.12 560.26 2506.67
10 700842 768593 14378 15192 2290745 2573512 662725.21 791463.08 58.89 86.86
11 641680 696338 114183 241081 1579961 2285079 17527.58 20773.91 1070.81 2283.08
12 453170 481943 27196 29553 245726 275717 35757.83 42790.14 375.07 559.85
13 553167 574989 21298 23043 425886 431815 45652.24 50255.75 438.43 836.82
14 309670 342598 20168 26172 124188 126930 8143.79 11948.04 936.62 1468.45
15 286149 317186 149183 270708 787959 810088 106798.63 111962.3 1203.79 4335.24
16 321435 347848 66169 80453 360880 379488 89971.47 165524.22 200.36 399.8
17 618105 835839 244250 404579 9136507 9136507 33036.79 41826.51 2781.24 4555.42
18 248125 320974 3063 6330 26687 29173 9525.6 10877.78 240.04 274.7
19 640890 679916 490508 684372 2946797 3985900 66097.16 95329.87 961.56 1914.25
20 119948 120208 14943 17495 297674 308012 21991.53 27934.19 282.73 471.22

Table 3 Output − data for the 20 bank branches

DMUj e1
j e2

j e3
j e4

j

1 1 1 1 1
2 1 0.657024 0.455349 0.371424
3 1 1 0.83911 0.523443
4 1 1 1 1
5 0.763021 0.666492 0.71051 0.618831
6 1 1 1 0.917738
7 1 1 1 0.728914
8 1 1 1 1
9 1 1 1 1
10 1 1 1 1
11 1 1 1 1
12 0.496069 0.396102 0.403706 0.328345
13 0.701987 0.53513 0.538834 0.449969
14 0.724067 0.353113 0.368022 0.26395
15 1 1 0.930397 0.413252
16 1 0.550914 0.372671 0.221643
17 1 1 1 1
18 0.952539 0.351603 0.400584 0.263737
19 1 1 1 0.991215
20 1 0.399693 0.403382 0.183825

Table 4 Efficiencies of DMUs

In Table 5, the classifications and ranking of these DMUs are presented.
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DMUj θ̄j
1

θ̄j
2

θ̄j
3

θ̄j
4

θ̄j
5 Classification Rank

1 3.523761 1.846914 1.482492 1.259058 2.028056 E++ 7
2 1.020757 0.506559 0.455339 0.207883 0.547634 E+ 14
3 1.359532 0.971804 0.83911 0.52135 0.922949 E+ 12
4 5.224134 2.418946 2.518259 1.259423 2.85519 E++ 5
5 0.763021 0.666492 0.71051 0.618831 0.689714 E- 16
6 1.245606 1.025448 1.059813 0.917738 1.062151 E+ 11
7 3.172361 1.463782 1.544707 0.728914 1.727441 E+ 8
8 4.812406 1.869024 2.825858 1.433282 2.735142 E++ 6
9 5.745185 2.703864 2.451013 1.238175 3.034559 E++ 4
10 19.90213 11.50958 15.19096 7.955503 13.63954 E++ 2
11 26.44258 20.38311 10.35878 8.209075 16.34839 E++ 1
12 0.496069 0.396102 0.403706 0.328345 0.406055 E- 20
13 0.701987 0.53513 0.538834 0.449969 0.55648 E- 17
14 0.724067 0.353113 0.368022 0.26395 0.427288 E- 19
15 3.181636 1.168753 0.930397 0.413252 1.423509 E+ 10
16 1.297599 0.550288 0.372671 0.221643 0.61055 E+ 13
17 6.536229 2.65356 3.672324 2.158379 3.755123 E++ 3
18 0.952539 0.351603 0.400584 0.263676 0.492101 E- 18
19 2.218415 1.349766 1.227325 0.991215 1.44668 E+ 9
20 0.977855 0.399693 0.403382 0.183825 0.491189 E+ 15

Table 5 Classif ication and Ranking of DMUs

Regarding Table 4and table 5, it can be seen that branches 1, 4, 8, 9, 10, 11and
17 are efficient in their worst condition there for they are placed in E++, and
among these braches branch number 11 has the best rank, and branches 10,
17, 9, 4, 8 and 1 lie after it. It is also seen that branches 2, 3, 6, 7, 15, 16,
19 and 20 are put in E+, because they are efficient in their best condition,
but they are inefficient in their worst condition. Among the branches in E+,
branch number 7 has the best rank, and after that lie branches 19, 15, 6, 3,
16, 2 and 20. And finally, since branches 5, 12, 13, 14 and 18 are inefficient in
their best condition, they are placed in E-, and among them, branch number
5 has the best rank and branches 13, 18, 14 and 12 lie after it. Considering
the fact that DMUs in E++, and those in E+ have a better rank that those
in E-, the ranking of DMUs has been shown in table 5.

6 Conclusion

Regarding table 5, we can observe that DMU20 ∈ E+ and DMU5 ∈ E−

but θ5 > θ20 , and this is due to the fact that the data of DMU5 are in a
smaller interval than that of the data of DMU20 ande4

20 in much less than e4
5

; i.e.,e4
5 − e4

20 > e1
20 − e1

5 .
Now we can rank the branches, according to the director,s opinion, in such
a way that the higher the θ corresponding to a branch, the better its rank,
regardless of which classes of E++, E+ and E− the given are placed in. It is
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obvious that if DMUj ∈ E++ and DMUi ∈ E+ or DMUi ∈ E− then θj > θi.
According to what was mentioned, it can be observed that DMUs in E++ have
better ranks than other DMUs. Thus, the branches in our example can be
ranked as follows: 11, 10, 17, 9, 4, 8, 1, 7, 19, 15, 6, 3, 5, 16, 13, 2, 18, 20, 14
and 12
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