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ABSTRACT

It has been recently recognized that heterogeneous information net-
works composed of multiple types of nodes and links are prevalent
in the real world. Both classification and ranking of the nodes (or
data objects) in such networks are essential for network analysis.
However, so far these approaches have generally been performed
separately. In this paper, we combine ranking and classification in
order to perform more accurate analysis of a heterogeneous infor-
mation network. Our intuition is that highly ranked objects within
a class should play more important roles in classification. On the
other hand, class membership information is important for deter-
mining a quality ranking over a dataset. We believe it is there-
fore beneficial to integrate classification and ranking in a simulta-
neous, mutually enhancing process, and to this end, propose a novel
ranking-based iterative classification framework, called RankClass.
Specifically, we build a graph-based ranking model to iteratively
compute the ranking distribution of the objects within each class.
At each iteration, according to the current ranking results, the graph
structure used in the ranking algorithm is adjusted so that the sub-
network corresponding to the specific class is emphasized, while
the rest of the network is weakened. As our experiments show, inte-
grating ranking with classification not only generates more accurate
classes than the state-of-art classification methods on networked
data, but also provides meaningful ranking of objects within each
class, serving as a more informative view of the data than tradi-
tional classification.
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1. INTRODUCTION
Information networks have been found to play increasingly im-

portant roles in real life applications. Examples include friendship
networks in Facebook1, co-author networks extracted from bibli-
ographic data, and webpages interconnected by hyperlinks on the
Web. Networks and feature vectors are two alternatives to repre-
sent the data, and the former is often more natural than the latter
in many data sets [8]. Even if the data is naturally represented in
a feature space, it is usually helpful to transform the data into a
network, or graph structure (for example, by constructing a near-
est neighbor graph) to better exploit the intrinsic characteristics of
the data. Therefore, learning on networked data is receiving grow-
ing attention in recent years [9, 22, 1, 24, 6]. Most of the existing
studies [19, 16, 2, 12] about information networks mainly work
with homogeneous networks, i.e., networks composed of a single
type of object, as mentioned above. However, heterogeneous net-
works composed of multiple types of objects are more general and
prevalent in many real world applications [21, 11, 3]. For exam-
ple, beyond co-author networks, bibliographic data actually forms
a heterogeneous information network consisting of multi-typed ob-
jects, such as papers, authors, venues and terms.

Example 1. Bibliographic Information Network. A bibliographic
information network generally contains four types of objects: pa-

pers, authors, venues (conferences and journals) and terms. Papers

and authors are linked by the relation of “written by” and “write”.
Papers and venues are linked by “published in” and “publish”. Pa-

pers and terms are linked by “contain” and “contained in”. �

In this paper, we study the analysis of heterogeneous information
networks. Classification and ranking are two of the most funda-
mental analytical techniques. When label information is available
for some of the data objects, classification makes use of the labeled
data as well as the network structure to predict the class member-
ship of the unlabeled data [19, 16]. On the other hand, ranking

gives a partial ordering to objects in the network by evaluating the
node/link properties using some ranking scheme, such as PageRank
[2] or HITS [12]. Both classification and ranking have been widely
studied and found to be applicable in a wide range of problems.

Traditionally, classification and ranking are regarded as orthog-
onal approaches, computed independently. However, adhering to
such a strict dichotomy has serious downsides. Consider, for in-
stance, an information network of bibliographic data, consisting of
some combination of published papers, authors, and conferences.
As a concrete example, suppose we wish to classify the conferences
in Table 1 into two research areas. We wish to minimize the chance

1http://www.facebook.com/



Table 1: Conferences from two research areas

Database
SIGMOD, VLDB,

ICDE, EDBT, PODS, ...

Information Retrieval
SIGIR, ECIR,

CIKM, WWW, WSDM, ...

Table 2: Top-5 ranked conferences in different settings
Rank Global Ranking Within DB Within IR

1 VLDB VLDB SIGIR
2 SIGIR SIGMOD ECIR
3 SIGMOD ICDE WWW
4 ICDE PODS CIKM
5 ECIR EDBT WSDM

that the top conferences are misclassified, not only to improve our
classification results overall, but also because misclassifying a top
conference is very likely to increase errors on many other objects
that link to that conference, and are therefore greatly influenced
by its label. We would thus like to more heavily penalize classi-
fication mistakes made on highly ranked conferences, relative to
a workshop of little influence. Providing a ranking of all confer-
ences within a research area can give users a clearer understanding
of that field, rather than simply grouping conferences into classes
without noting their relative importance. On the other hand, the
class membership of each conference is very valuable for charac-
terizing that conference. Ranking all conferences globally without
considering any class information can often lead to meaningless
results and apples-to-oranges comparisons. For instance, ranking
database and information retrieval conferences together may not
make much sense since the top conferences in these two fields can-
not be reasonably compared, as shown in the second column of
Table 2. These kinds of nonsensical ranking results are not caused
by the specific ranking approach, but are rather due to the inherent
incomparability between the two classes of conferences. Thus we
suppose that combining classification with ranking may generate
more informative results. The third and fourth columns in Table
2 illustrate this combined approach, showing the more meaningful
conference ranking within each class.

In this study, we propose RankClass, a new framework that groups
objects into several pre-specified classes, while generating the rank-
ing information for each type of object within each class simulta-
neously in a heterogeneous information network. More accurate
classification of objects increases the quality of the ranking within
each class, since there is a higher guarantee that the ranking algo-
rithm used will be comparing only objects of the same class. On the
other hand, better ranking scores improve the performance of the
classifier, by correctly identifying which objects are more impor-
tant, and should therefore have a higher influence on the classifier’s
decisions. We use the ranking distribution of objects to charac-
terize each class, and we treat each object’s label information as
a prior. By building a graph-based ranking model, different types
of objects are ranked simultaneously within each class. Based on
these ranking results, we estimate the relative importance or visi-
bility of different parts of the network with regard to each class. In
order to generate better within-class ranking, the network structure
employed by the ranking model is adjusted so that the sub-network
composed of objects ranked high in each specific class is empha-
sized, while the sub-network of the rest of the class is gradually
weakened. Thus, as the network structure of each class becomes
clearer, the ranking quality improves. Finally, the posterior prob-
ability of each object belonging to each class is estimated to de-
termine each object’s optimal class membership. Instead of per-
forming ranking after classification, as facet ranking does [4, 23],
RankClass essentially integrates ranking and classification, allow-

ing both approaches to mutually enhance each other. RankClass
iterates over this process until converging to a stable state. Exper-
imental results show that RankClass both boosts the overall classi-
fication accuracy and constructs within-class rankings, which may
be interpreted as meaningful summaries of each class.

The rest of this paper is organized as follows. We briefly review
the related work in Section 2. We introduce related concepts and
formally define our problem in Section 3. Our ranking-based clas-
sification algorithm, RankClass, is introduced in Section 4. Section
5 presents the experimental results, and we conclude this work in
Section 6.

2. RELATED WORK
As data sets with inherent network structures become increas-

ingly prevalent, ranking networked objects has received substantial
interest in recent years. Two important representative algorithms
are PageRank [2] and HITS [12], both of which propagate informa-
tion throughout the network to compute the ranking score of each
object, using different propagation methods corresponding to dif-
ferent ranking rules. These methods mainly work on homogeneous
information networks. Recently, PopRank [18] was proposed to
rank the popularity of heterogeneous web objects via knowledge
propagation throughout the heterogeneous network of web objects.
This approach considers that different types of links in a network
have different propagation factors, which are trained according to
partial ranks given by experts. In contrast, we rank objects accord-
ing to their importance within each class, rather than within the
global set of all objects, and the ranking results in turn facilitate
more accurate classification.

Classification is an essential tool in analyzing information net-
works when some object label information is available [25, 20].
Collective classification [14, 19, 17] has been proposed to employ
both the network structure and the feature representation of objects
in the classification task. Since local features may not be always
available, Macskassy et al. [15] develop a relational neighbor clas-
sifier to classify network-only data by iteratively assigning an ob-
ject to the majority class of its neighbors. This idea is similar to the
label propagation scheme in graph-based classification [26]. How-
ever, existing algorithms mainly work on homogeneous networks
and graphs, and therefore cannot easily distinguish between the
type differences among objects in a heterogeneous information net-
work. Recently, the graph-based classification framework has been
extended to work on heterogeneous information networks [11]. In
this paper, we build on this approach by providing within-class
ranking for objects in the information network, which can improve
classification results by providing informative summaries of each
class.

To enhance the quality of classification, boosting, bagging and
ensemble methods have been explored in various studies [10]. In
particular, boosting methods such as AdaBoost [5] iteratively learn
from their classification mistakes by assigning higher weights to
objects which are misclassified in each previous round, until a sta-
ble classification state is reached. Like boosting, RankClass also
adjusts the relative importance of objects in various rounds of clas-
sification. However, RankClass uses within-class ranking to mea-
sure the importance of each object with regard to each class, in
contrast to boosting, which estimates the global importance of each
object based on classification mistakes.

Another relevant algorithm is the newly proposed NetClus [21]
method, which uses a ranking-clustering mutual enhancement method-
ology to cluster objects in heterogeneous information networks.
Although this method effectively provides a ranking within each
cluster, it has some limitations: (1) it can only work on heteroge-



neous information networks with a star schema; and (2) it requires
a prior distribution specified by several labeled representative ob-
jects of each cluster, and does not work well with arbitrary labeled
objects, which may not be representative. Thus, if we do not know
which objects are representative in a data set, NetClus cannot be
used. However, for heterogeneous information networks with arbi-
trary network schema, our proposed RankClass algorithm can make
full use of label information available for any data objects to gen-
erate accurate classification results and informative rankings.

3. PROBLEM FORMALIZATION
In this section, we introduce several related concepts and nota-

tions, and then formally define the problem.

Definition 1. Heterogeneous information network. Given m
types of data objects, denoted byX1 = {x11, . . . , x1n1

}, . . . ,Xm =
{xm1, . . . , xmnm}, a graph G = 〈V, E ,W〉 is called a heteroge-
neous information network if V =

⋃m
i=1 Xi and m ≥ 2. E is

the set of links between any two data objects of V , and W is the
set of weight values on the links. When m = 1, G reduces to a
homogeneous information network. �

In the following sections, for convenience, we use Xi to denote
both the set of objects belonging to the i-th type and the type name.
We let Wxipxjq

denote the weight of the link between any two
objects xip and xjq, which is represented by 〈xip, xjq〉.

In a heterogeneous information network, each type of link rela-
tionship between two types of data objects Xi and Xj can be rep-
resented by a relation graph Gij , i, j ∈ {1, . . . ,m}. Note that
it is possible for i = j. Let Rij be an ni × nj relation matrix
corresponding to graph Gij . The element at the p-th row and q-th
column of Rij is denoted as Rij,pq , representing the weight on link
〈xip, xjq〉. There are many ways to define the weights on the links,
which can also incorporate domain knowledge. A simple definition
is as follows:

Rij,pq =

{

1 if data objects xip and xjq are linked together
0 otherwise.

Here we consider undirected relation graphs such that Rij = RT
ji.

In this way, each heterogeneous network G can be mathematically
represented by a set of relation matrices G = {Rij}

m
i,j=1.

To naturally generalize classification in homogeneous network
data, we define a class in a heterogeneous information network to
be a group of multi-typed objects sharing a common topic. For
instance, a research community in a bibliographic information net-
work contains not only authors, but also papers, venues and terms
belonging to the same research area. Other examples include movie
networks in which movies, directors, actors and keywords are tagged
with the same genre, and E-commerce networks where sellers, cus-
tomers, items and tags belong to the same shopping category. The
formal definition of a class is given below:

Definition 2. Class. Given a heterogeneous information net-
work G = 〈V, E ,W〉, V =

⋃m
i=1 Xi, a class is defined as G′ =

〈V ′, E ′,W ′〉, where V ′ ⊆ V , E ′ ⊆ E . ∀e = 〈xip, xjq〉 ∈ E ′,
where xip ∈ V ′ and xjq ∈ V ′, we have W ′

xipxjq
= Wxipxjq

.

Note here, V ′ also consists of multiple types of objects from X1 to
Xm. �

Definition 2 follows [21] and [11]. Notice that a class in a het-
erogeneous information network is actually a sub-network contain-
ing multi-typed objects that are closely related to each other. In
addition to grouping multi-typed objects into the pre-specified K

classes, we also aim to generate the ranking distribution of ob-
jects within each class k, which can be denoted as P (x|T (x), k),
k = 1, . . . ,K. T (x) denotes the type of object x. Note that dif-
ferent types of objects cannot be compared in a ranking. For ex-
ample, it is not meaningful to create a ranking of conferences and
authors together in a bibliographic information network. There-
fore, each ranking distribution is restricted to a single object type,
i.e.,

∑ni

p=1 P (xip|Xi, k) = 1.
Now our problem can be formalized as follows: given a het-

erogeneous information network G = 〈V, E ,W〉, a subset of data
objects V ′ ⊆ V =

⋃m
i=1 Xi, which are labeled with values Y de-

noting which of the K pre-specified classes each object belongs to,
predict the class labels for all the unlabeled objects V−V ′ as well as
the ranking distribution of objects within each class, P (x|T (x), k),
x ∈ V , k = 1, . . . ,K.

4. THE RANKCLASS ALGORITHM
In this section we introduce our ranking-based iterative classifi-

cation method, RankClass. There are two major challenges when
working with heterogeneous information networks: (1) how to ex-
ploit the links representing the dependency relationships between
data objects; and (2) how to model the type differences among ob-
jects and links. The intuition behind RankClass is to build a graph-
based ranking model that ranks multi-typed objects simultaneously,
according to the relative importance of objects within each class.
The initial ranking distribution of each class is determined by the
labeled data. During each iteration, the ranking results are used to
modify the network structure to allow the ranking model to gener-
ate higher quality within-class ranking.

4.1 The Framework of RankClass
We first introduce the general framework of RankClass. We will

explain each part of the algorithm in detail in the following subsec-
tions.

• Step 0: Initialize the ranking distribution within each class
according to the labeled data, i.e., {P (x|T (x), k)0}Kk=1. Ini-
tialize the set of network structures employed in the rank-
ing model, {G0

k}
K
k=1, as G0

k = G, k = 1, . . . , K. Initialize
t = 1.

• Step 1: Using the graph-based ranking model and the current
set of network structures {Gt−1

k }Kk=1, update the ranking dis-

tribution within each class k, i.e., {P (x|T (x), k)t}Kk=1.

• Step 2: Based on {P (x|T (x), k)t}Kk=1, adjust the network
structure to favor within-class ranking, i.e., {Gt

k}
K
k=1.

• Step 3: Repeat steps 1 and 2, setting t = t + 1 until conver-
gence, i.e., until {P (x|T (x), k)∗}Kk=1 = {P (x|T (x), k)t}Kk=1

do not change much for all x ∈ V .

• Step 4: Based on {P (x|T (x), k)∗}Kk=1, calculate the pos-
terior probability for each object, i.e., {P (k|x, T (x))}Kk=1.
Assign the class label to object x as:

C(x) = argmax
1≤k≤K

P (k|x, T (x))

4.2 Graph-based Ranking
Ranking is often used to evaluate the relative importance of ob-

jects in a collection. In this paper, we propose to rank objects within
their own type and within a specific class. The higher an object x is
ranked within class k, the more important x is for class k, and the



more likely it is that x will be visited in class k. Clearly, within-
class ranking is quite different from global ranking, and will vary
throughout different classes.

The intuitive idea of our ranking scheme is authority propaga-
tion throughout the information network. Taking the bibliographic
information network as an example, in a specific research area, it is
natural to observe the following ranking rules [21]:

1. Highly ranked conferences publish many high quality papers.

2. High quality papers are often written by highly ranked au-
thors.

3. High quality papers often contain keywords that are highly
representative of the papers’ areas.

The above authority ranking rules can be summarized as follows:
objects which are linked together in a network are more likely to
share similar ranking scores. Therefore, the ranking of each object
can be iteratively updated by looking at the rankings of its neigh-
bors. The initial ranking distribution within a class k can be spec-
ified by the user. When data objects are labeled without ranking
information in a general classification scenario, we can initialize
the ranking as a uniform distribution over only the labeled data ob-
jects:

P (xip|Xi, k)
0 =

{

1/lik if xip is labeled to class k
0 otherwise.

where lik denotes the total number of objects of type Xi labeled to
class k.

Suppose the current network structure used to estimate the rank-
ing within class k is mathematically represented by the set of rela-
tion matrices: Gt−1

k = {Rij}
m
i,j=1. For each relation matrix Rij ,

we define a diagonal matrix Dij of size ni × ni. The (p, p)-th ele-
ment of Dij is the sum of the p-th row of Rij . Instead of using the
original relation matrices in the authority propagation, we construct
the normalized form of the relation matrices as follows:

Sij = D
(−1/2)
ij RijD

(−1/2)
ji , i, j ∈ {1, . . . ,m} (1)

This normalization technique is adopted in traditional graph-based
learning [26] in order to reduce the impact of node popularity. In
other words, we can suppress popular nodes to some extent, to keep
them from completely dominating the authority propagation. No-
tice that the normalization is applied separately to each relation ma-
trix corresponding to each type of link, rather than the whole net-
work. In this way, the type differences between objects and links
are well-preserved [11]. At the t-th iteration, the ranking distribu-
tion of object xip with regard to class k is updated as follows:

P (xip|Xi, k)
t

∝

∑m
j=1 λijSij,pqP (xjq|Xj , k)

t−1 + αiP (xip|Xi, k)
0

∑m
j=1 λij + αi

(2)

The first term of Equation (2) updates the ranking score of ob-
ject xip by the summation of the ranking scores of its neighbors
xjq , weighted by the link strength Sij,pq . The relative importance
of neighbors of different types is controlled by λij ∈ [0, 1]. The
larger the value of λij , the more value is placed on the relation-
ship between object types Xi and Xj . For example, in a biblio-
graphic information network, if a user believes that the links be-
tween authors and papers are more trustworthy and influential than
the links between conferences and papers, then the λij correspond-
ing to the author-paper relationship should be set larger than that
of conference-paper. As a result, the rank of a paper will rely more
on the ranks of its authors than the rank of its publication venue.

The parameters λij can also be thought of as performing feature
selection in the heterogeneous information network, i.e., selecting
which types of links are important in the ranking process.

The second term learns from the initial ranking distribution en-
coded in the labels, whose contribution is weighted by αi ∈ [0, 1].
A similar strategy has been adopted in [13, 11] to control the weights
between different types of relations and objects. After each itera-
tion, P (xip|Xi, k)

t is normalized such that
∑ni

p=1 P (xip|Xi, k)
t =

1, ∀i = 1, . . . ,m, k = 1, . . . ,K, in order to stay consistent with
the mathematical definition of a ranking distribution.

We employ the authority propagation scheme in Equation (2) to
estimate the ranking distribution instead of other simple measures
computed according to the network topology (e.g., the degree of
each object). This choice was made since we aim to rank objects
with regard to each class by utilizing the current soft classifica-
tion results. Therefore, if the ranking of an object were merely
based on the network topology, it would be the same for all classes.
By learning from the label information in the graph-based author-
ity propagation method, the ranking of each object within different
classes will be computed differently, which is more suitable for our
setting.

Following a similar analysis to [11] and [27], the updating scheme
in Equation (2) can be proven to converge to the closed form solu-
tion of minimizing the following objective function:

J(P (xip|Xi, k))

=
m
∑

i,j=1

λij

ni
∑

p=1

nj
∑

q=1

Sij,pq (P (xip|Xi, k)− P (xjq|Xj , k))
2

+
m
∑

i=1

αi

ni
∑

p=1

(P (xip|Xi, k)− P (xip|Xi, k)
0)2 (3)

which shares a similar theoretical foundation with the graph-based
regularization framework on heterogeneous information networks
[11] that preserves consistency over each relation graph correspond-
ing separately to each link type. However, we extend the graph-
based regularization framework to rank objects within each class,
which is conceptually different from [11].

4.3 Adjusting the Network
Although graph-based ranking considers class information by in-

corporating the labeled data, it still ranks all object types in the
global network. Instead, a within-class ranking should be per-
formed over the sub-network corresponding to each specific class.
The cleaner the network structure, the higher our ranking quality.
Therefore, the ranking within each class should be performed over
a different sub-network, rather than employing the same global net-
work for every class. The network structure is mathematically rep-
resented by the weight values on the links. Thus, extracting the sub-
network belonging to class k is equivalent to increasing the weight
on the links within the corresponding sub-network, and decreasing
the weight on the links in the rest of the network. It is straightfor-
ward to verify that multiplying Rij by any positive constant c will
not change the value of Sij . So increasing the weights on the links
within a sub-network should be performed relative to the weight
on the links of other parts of the network. In other words, we can
increase or decrease the absolute values of the weights on the links
in the whole network, as long as the weights on the links of the
sub-network belonging to class k are larger than those on the links
belonging to the rest of the network. Let Gt

k = {Rt
ij(k)}

m
i,j=1.

We propose a simple scheme to update the network structure so as
to favor the ranking within each class k, given the current ranking



distribution P (x|T (x), k)t:

Rt
ij,pq(k) = Rij,pq ×
(

r(t) +

√

P (xip|Xi, k)t

maxp P (xip|Xi, k)t
P (xjq|Xj , k)t

maxq P (xjq|Xj , k)t

)

(4)

Recall that Rij is the relation matrix corresponding to the links
between object types Xi and Xj in the original network. Using the
above updating scheme, the weight of each link 〈xip, xjq〉 is in-
creased in proportion to the geometric mean of the ranking scores
of xip and xjq, which are scaled to the interval of [0, 1]. The higher
the rankings of xip and xjq , the more important the link between
them 〈xip, xjq〉 is in class k. The weight on that link should there-
fore be increased. Note that instead of creating hard partitions of
the original network into classes, we simply increase the weights
on the links that are important to classes k. This is because at any
time in the iteration, the current classes represented by the rank-
ing distributions are not very accurate, and the results will be more
stable if we consider both the global network structure and the cur-
rent ranking results. By gently increasing the weights of links in
the sub-network of class k, we gradually extract the correct sub-
network from the global network, since the weights of links in the
rest of the network will decrease to very low values. Note that this
adjustment of the network structure still respects the differences
among the various types of objects and links.

r(t) is a positive parameter that does not allow the weights of
links to drop to 0 in the first several iterations, when the author-
ity scores have not propagated very far throughout the network and
P (x|T (x), k)t are close to 0 in value for many objects. As dis-
cussed above, multiplying Rij by any positive constant will not
change the value of Sij . Therefore, it is essentially the ratio be-

tween r(t) and
√

P (xip|k)
t

maxp P (xip|k)
t ×

P (xjq |k)
t

maxq P (xjq |k)
t that determines

how much the original network structure and the current ranking
distribution, respectively, contribute to the adjusted network Gt

k.
Since we hope to progressively extract the sub-network belonging
to each class k, and we want to gradually reduce the weights of
links that do not belong to class k down to 0, we decrease r(t)
exponentially by setting r(t) = 1

2t
.

Equation (4) is not the only way to gradually increase the weights
of links between highly ranked objects in class k. For instance, the

geometric mean of
P (xip|k)

t

maxp P (xip|k)
t and

P (xjq |k)
t

maxq P (xjq |k)
t can be re-

placed by the arithmetic mean, and r(t) can be any positive func-
tion that decreases with t. We will show in Section 5 that even such
simple adjustments as shown above can boost both the classifica-
tion and ranking performance of RankClass.

4.4 Posterior Probability Calculation
Once the ranking distribution of each class has been computed by

the iterative algorithm, we can calculate the posterior probability of
each object of type Xi belonging to class k simply by Bayes’ rule:

P (k|xip,Xi) ∝ P (xip|Xi, k)P (k|Xi)

where P (xip|Xi, k) = P (xip|Xi, k)
∗, and P (k|Xi) represents the

relative size of class k among type Xi, which should also be esti-
mated. We choose the P (k|Xi) that maximizes the likelihood of
generating the set of objects of type Xi:

logL(xi1, . . . , xini
|Xi) =

ni
∑

p=1

logP (xip|Xi)

=

ni
∑

p=1

log

(

K
∑

k=1

P (xip|Xi, k)P (k|Xi)

)

(5)

By employing the EM algorithm, P (k|Xi) can be iteratively es-
timated using the following two equations:

P (k|xip,Xi)
t ∝ P (xip|Xi, k)P (k|Xi)

t

P (k|Xi)
t =

ni
∑

p=1

P (k|xip,Xi)
t/ni

where P (k|Xi) is initialized uniformly as P (k|Xi)
0 = 1/K.

4.5 Computational Complexity Analysis
In this subsection, we analyze the computational complexity of

the proposed RankClass algorithm. Let K denote the number of
classes, |V | denote the total number of objects, and |E| denote the
total number of links in the information network. It takes O(K|V |)
time to initialize the ranking distribution in step 0. At each itera-
tion of step 1, we need to process each link twice to update the
ranking distribution, once for each object at each end of the link.
We also need O(K|V |) time to learn from the initial ranking dis-
tribution. So the total time complexity for step 1 at each iteration
is O(K(|E| + |V |)). In step 2, we need O(K|E|) time to adjust
the network structure at each iteration. After the ranking distri-
bution is computed, we need O(K|V |) time at each iteration of
the EM algorithm to calculate the posterior probability. Finally, it
takes O(K|V |) time to generate the final class prediction in step
4. Hence the total time complexity of the RankClass algorithm is
O
(

N1K(|E|+ |V |) +N2K|V |
)

, where N1 is the number of iter-
ations in the computation of the ranking distribution, and N2 is the
number of iterations in the EM algorithm. We will experimentally
demonstrate that this algorithm converges in a few iterations. And
since the number of classes K is constant, the computational com-
plexity is generally linear in the number of links and objects in the
network.

5. EXPERIMENTS
In this section, we apply our proposed ranking-based classifica-

tion scheme, RankClass, to a real heterogeneous information net-
work extracted from the DBLP2 database. We try to classify the
bibliographic data into research communities, each of which con-
sists of multi-typed objects closely related to the same area. All of
the experiments were conducted on a PC with 3.00GHz CPU and
8GB memory. The following five classification methods on infor-
mation networks are compared:

• Our proposed RankClass algorithm (RankClass).

• Graph-based regularization framework for transductive clas-
sification in heterogeneous information networks (GNetMine)
[11].

• Learning with Local and Global Consistency (LLGC) [26].

• Weighted-vote Relational Neighbor Classifier (wvRN) [15,
16].

• Network-only Link-based Classification (nLB) [19, 16].

LLGC is a graph-based transductive classification algorithm for
homogeneous networks, while GNetMine is its extension, which
works on heterogeneous information networks. Weighted-vote re-
lational neighbor classifier and link-based classification are two
popular classification methods for networked data. Since a feature
representation of nodes is not available for our problem, we use
the network-only derivative of the link-based classifier (nLB) [16],

2
http://www.informatik.uni-trier.de/~ley/db/



Table 3: Comparison of classification accuracy on authors (%)

(a%, p%) of authors
and papers labeled

nLB
(A-A)

nLB
(A-C-P-T)

wvRN
(A-A)

wvRN
(A-C-P-T)

LLGC
(A-A)

LLGC
(A-C-P-T)

GNetMine
(A-C-P-T)

RankClass
(A-C-P-T)

(0.1%, 0.1%) 25.4 26.0 40.8 34.1 41.4 61.3 82.9 85.4

(0.2%, 0.2%) 28.3 26.0 46.0 41.2 44.7 62.2 83.4 88.0

(0.3%, 0.3%) 28.4 27.4 48.6 42.5 48.8 65.7 86.7 88.5

(0.4%, 0.4%) 30.7 26.7 46.3 45.6 48.7 66.0 87.2 88.4

(0.5%, 0.5%) 29.8 27.3 49.0 51.4 50.6 68.9 87.5 89.2

average 28.5 26.7 46.3 43.0 46.8 64.8 85.5 87.9

Table 4: Comparison of classification accuracy on papers (%)

(a%, p%) of authors
and papers labeled

nLB
(P-P)

nLB
(A-C-P-T)

wvRN
(P-P)

wvRN
(A-C-P-T)

LLGC
(P-P)

LLGC
(A-C-P-T)

GNetMine
(A-C-P-T)

RankClass
(A-C-P-T)

(0.1%, 0.1%) 49.8 31.5 62.0 42.0 67.2 62.7 79.2 77.7
(0.2%, 0.2%) 73.1 40.3 71.7 49.7 72.8 65.5 83.5 83.0
(0.3%, 0.3%) 77.9 35.4 77.9 54.3 76.8 66.6 83.2 83.6

(0.4%, 0.4%) 79.1 38.6 78.1 54.4 77.9 70.5 83.7 84.7

(0.5%, 0.5%) 80.7 39.3 77.9 53.5 79.0 73.5 84.1 84.8

average 72.1 37.0 73.5 50.8 74.7 67.8 82.7 82.8

Table 5: Comparison of classification accuracy on conferences (%)

(a%, p%) of authors
and papers labeled

nLB
(A-C-P-T)

wvRN
(A-C-P-T)

LLGC
(A-C-P-T)

GNetMine
(A-C-P-T)

RankClass
(A-C-P-T)

(0.1%, 0.1%) 25.5 43.5 79.0 81.0 85.0

(0.2%, 0.2%) 22.5 56.0 83.5 85.0 85.5

(0.3%, 0.3%) 25.0 59.0 87.0 87.0 90.0

(0.4%, 0.4%) 25.0 57.0 86.5 89.5 92.0

(0.5%, 0.5%) 25.0 68.0 90.0 94.0 95.0

average 24.6 56.7 85.2 87.3 89.5

which creates a feature vector for each node based on neighbor-
ing information. Note that LLGC, wvRN and nLB are classifiers
which work with homogeneous networks, and cannot be directly
applied to heterogeneous information networks. In order to com-
pare all of the above algorithms, we can transform the heteroge-
neous DBLP network into a homogeneous network in two ways
(see Section 5.2): (1) disregard the type differences between ob-
jects and treat all objects as the same type; or (2) extract a homoge-
neous sub-network on one single type of object, if that object type
is partially labeled. We try both approaches in the accuracy study.
The open-source implementation of NetKit-SRL3 [16] is employed
in our experiments.

5.1 Data Preparation
We extracted a connected sub-network of the DBLP data set on

four research areas: database, data mining, information retrieval
and artificial intelligence, which naturally form four classes. As
previously discussed, this heterogeneous information network is
composed of four types of objects: paper, conference, author and
term. Among the four types of objects, we have three types of
link relationships: paper-conference, paper-author, and paper-term.
The data set we used contains 14376 papers, 20 conferences, 14475
authors and 8920 terms, with a total number of 170794 links4.

For accuracy evaluation, we use a labeled data set of 4057 au-
thors, 100 papers and all 20 conferences. For more details about
the labeled data set, please refer to [7, 21]. In the following sec-
tions, we randomly choose a subset of labeled objects and use their

3http://www.research.rutgers.edu/~sofmac/
NetKit.html
4The data set is available at www.cs.illinois.edu/homes/
mingji1/DBLP_four_area.zip for sharing and experiment
repeatability.

label information in the learning process. The classification accu-
racy is evaluated by comparing with manually labeled results on
the rest of the labeled objects. Since terms are difficult to label
even manually, as many terms may belong to multiple areas, we do
not evaluate the accuracy on terms here.

5.2 Accuracy Study
In order to address the label scarcity problem in real life, we

randomly choose (a%, p%) = [(0.1%, 0.1%), (0.2%, 0.2%), . . . ,
(0.5%, 0.5%)] of authors and papers, and use their label informa-
tion in the classification task. For each (a%, p%), we average
the performance scores over 10 random selections of the labeled
set. We set the parameters of LLGC and GNetMine to optimal
values, which were determined experimentally. For our proposed
RankClass method, as discussed above, the parameters λij are used
to select which types of links are important in the ranking process.
We consider all types of objects and links to be important in the
DBLP network, so we follow [11] and set αi = 0.1, λij = 0.2,
∀i, j ∈ {1, . . . ,m}. This may not be the optimal choice, but it
is good enough to demonstrate the effectiveness of our algorithm.
Since labels are given for selected authors and papers, the results
on conferences of wvRN, nLB and LLGC can only be obtained by
mining the original heterogeneous information network (denoted
by A-C-P-T) and disregarding the type differences between objects
and links. While classifying authors and papers, we also tried con-
structing homogeneous author-author (A-A) and paper-paper (P-P)
sub-networks in various ways, where the best results reported for
authors are given by the co-author network, and the best results for
papers are generated by linking two papers if they are published in
the same conference. Note that there is no label information given
for conferences, so we cannot build a conference-conference (C-C)
sub-network for classification. We show the classification accuracy
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Figure 1: Link weight change in 50 iterations

on authors, papers and conferences in Tables 3, 4 and 5, respec-
tively. The last row of each table records the average classification
accuracy while varying the percentage of labeled data.

RankClass outperforms all other algorithms when classifying au-
thors, papers and conferences. Note that even though the number of
authors is much higher than the number of conferences, RankClass
achieves comparable accuracy for both of these types of objects.
While classifying authors and papers, it is interesting to note that
wvRN and nLB perform better on the author-author and paper-

paper sub-networks than on the whole heterogeneous information
network. We observe a similar result when we use LLGC to classify
papers. These results serve to verify that homogeneous classifiers
like wvRN, nLB and LLGC are more suitable for working with
homogeneous data. However, transforming the heterogeneous in-
formation network into homogeneous sub-networks inevitably re-
sults in information loss. For example, in the author-author sub-
network, the conferences where each author often publishes pa-
pers, and the terms that each author likes to use, are no longer
known. Overall, GNetMine performs the second best by explic-
itly respecting the type differences in links and objects and thus
encoding the typed information in the heterogeneous network in
an organized way. Compared to GNetMine, RankClass achieves
16.6%, 0.58% and 17.3% relative error reduction in the average
classification accuracy when classifying authors, papers and con-
ferences, respectively. Although RankClass has a knowledge prop-
agation framework similar to that of GNetMine, RankClass aims to
compute the within-class ranking distribution to characterize each
class, and further employs the ranking results to iteratively extract
the sub-network corresponding to each specific class. Therefore,
the knowledge propagation for each class is more accurate.

We randomly select objects to obtain label information in our ex-
periments. Similar to [21], we observe that if we choose some rep-
resentative (or highly ranked) objects (e.g., famous authors) to la-
bel, the classification performance will be generally slightly better
than when using labels of low quality (e.g., authors closely related
to multiple fields, or with few publications). However, the differ-
ence is not significant. In other words, the initial choice of labeled
data does not drastically affect the quality of ranking and classifi-
cation. This is because our graph-based ranking model in Equation
(3) is a summation of two terms, where the first depends on the
initial ranking, and the second depends on the network structure
which ensures the smoothness of the learner. Even if the quality
of the initial ranking distribution is not very high, RankClass can
still generate a reasonable ranking distribution and label predic-
tions. This is because RankClass exploits the relationships among
objects in the network, iteratively propagating information through-

out the network (see the first term of Equation (3)). Therefore, our
algorithm is theoretically robust when working with random labels.

5.3 Convergence Study
Since our proposed RankClass algorithm iteratively adjusts the

network structure to facilitate within-class ranking, we further ex-
plore the changes of the link weights within the network. Accord-
ing to ground truth for each class k, all of the links connected
to object type Xi can be divided into two groups: one contains
the links that connect to at least one object of class k (denoted as
Gin), while the other group does not involve any objects of class
k (denoted as Gout). Links in Gin compose the sub-network cor-
responding to class k, while links in Gout form the sub-network
excluding class k. In Figure 1, we show the average weight of the
links in Gin and Gout (averaged over the four classes) connected
to authors, conferences and papers, along with the number of itera-
tions, when (0.5%, 0.5%) authors and papers are labeled. The link
weight changes of Gin and Gout for each individual class are very
similar to Figure 1, and are omitted due to space limitation.

From Figure 1, it can be observed that the average link weight
of Gin and Gout are the same at first, and then decrease at various
rates over iterations. During the first several iterations, the ranking
scores have not propagated very far throughout the network and
are close to 0 in value for many objects. Therefore, the weight of
many links decreases almost exponentially as a result of multiply-
ing by r(t). Then the ranking scores of objects within each class k
gradually increase, making the average link weight in Gin decrease
more slowly than that in Gout. Within a few iterations, the average
link weights in Gin and Gout converge to relatively stable values.
There is also a clear gap between the average link weights of Gin

and Gout (the former being much larger than the latter). Thus, the
sub-network corresponding to each class k is well-separated from
the rest of the network, and the within-class ranking can be accu-
rately performed within the sub-network, rather than the global net-
work. When the network structure stabilizes, the graph-based rank-
ing scheme can be proven to converge, following a similar analysis
to [26, 11].

5.4 Case Study
In this section, we present a simple case study by listing the top

ranked data objects within each class. Recall that GNetMine per-
forms the second best in the classification accuracy, and can gen-
erate a confidence score for each object related to each class [11].
Thus, we can also rank data objects according to the confidence
scores related to each class as the within-class ranking. In Tables
6 and 7, we show the comparison of the ranking lists of confer-



Table 6: Top-5 conferences related to each research area generated by different algorithms

RankClass GNetMine

Database Data Mining AI IR Database Data Mining AI IR

VLDB KDD IJCAI SIGIR VLDB SDM IJCAI SIGIR
SIGMOD SDM AAAI ECIR ICDE KDD AAAI ECIR

ICDE ICDM ICML CIKM SIGMOD ICDM ICML CIKM
PODS PKDD CVPR WWW PODS PAKDD CVPR IJCAI
EDBT PAKDD ECML WSDM CIKM PKDD ECML CVPR

Table 7: Top-5 terms related to each research area generated by different algorithms

RankClass GNetMine

Database Data Mining AI IR Database Data Mining AI IR

data mining learning retrieval interlocking rare failing helps
database data knowledge information deindexing extreme interleaved specificity

query clustering reasoning search seed scan cognition sponsored
system frequent logic web bitemporal mining literals relevance

xml classification model text debugging associations configuration information

10
−3

10
−2

10
−1

10
0

0.75

0.8

0.85

0.9

0.95

α
a

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

 

 

RankClass

GNetMine

(a) Varying αa

10
−3

10
−2

10
−1

10
0

0.85

0.9

0.95

α
p

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

 

 

RankClass

GNetMine

(b) Varying αp

10
−4

10
−3

10
−2

10
−1

10
0

0.75

0.8

0.85

0.9

0.95

λ
pa

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

 

 

RankClass

GNetMine

(c) Varying λpa

Figure 2: Model Selection when (0.5%, 0.5%) of authors and papers are labeled

ences and terms generated by RankClass and GNetMine, respec-
tively, with (0.5%, 0.5%) authors and papers labeled.

From comparing the ranking lists of the two types of objects,
we can see that RankClass generates more meaningful ranking re-
sults than GNetMine. There is a high degree of consensus between
the ranking list of conferences generated by RankClass and the top
conferences in each research area. Similarly, the highly ranked
terms generated by RankClass are in high agreement with the most
representative keywords in each field. The reason why GNetMine
fails to generate meaningful ranking lists is that the portions of la-
beled authors and papers are too limited to capture the distribu-
tion of the confidence score with regard to each class. In contrast,
RankClass boosts the ranking performance by iteratively obtaining
the clean sub-network corresponding to each class, which favors
the within-class ranking.

5.5 Model Selection
In the graph-based ranking scheme in Equation (2), the αi’s and

λij ’s are essential parameters which control the relative importance
of different types of information. In the previous experiments, we
empirically set αi’s as 0.1, and λij’s as 0.2, ∀i, j ∈ {1, . . . ,m}.
In this subsection, we study the impact of parameters on the per-
formance of RankClass. Since only several authors and papers are
labeled, the αi associated with authors (denoted by αa) and papers
(denoted by αp), as well as the λij associated with the author-

paper relationship (denoted by λpa) are empirically more impor-
tant than other parameters. Therefore we fix all other parameters
and let αa, αp and λpa vary. As GNetMine performs the second
best in the classification task, and has been proven to be robust over
a large range of parameters [11], we only compare RankClass with
GNetMine in this experiment. Note that we also change the corre-
sponding parameters αa, αp and λpa in GNetMine. We show the

average classification accuracy on three types of objects (author,
paper, conference) as a function of the parameters in Figure 2, with
(a%, p%) = (0.5%, 0.5%) authors and papers labeled.

We observe that over a large range of parameters, RankClass
achieves better performance than GNetMine [11]. Since the graph-
based ranking scheme in RankClass has a knowledge propagation
framework similar to that of GNetMine, the changes in accuracy
of the two algorithms over different parameters trend in a similar
fashion. However, RankClass generates more accurate and robust
results by employing the ranking results to iteratively extract the
sub-network corresponding to each class. We therefore conclude
that the performance of the RankClass algorithm is generally not
very sensitive to the setting of its parameters.

5.6 Time Complexity Study
In this section, we vary the size of the database by randomly

selecting connected sub-networks from the original network, and
then test the running time of our algorithm. The size of the database
is measured by the number of nodes in the network. As can be seen
in Figure 3, the time complexity of our method is generally linear
with respect to the size of the database, which is consistent with our
analysis in Section 4.5.
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Figure 3: Running time w.r.t. database size



6. CONCLUSIONS
In this paper, we investigate a new problem of classifying data

objects in a heterogeneous information network, while simulta-
neously ranking each object according to its importance within
each class, in order to provide informative class summaries. A
novel ranking-based classification algorithm called RankClass is
proposed to iteratively solve this problem. During each iteration,
we calculate the ranking distribution over the nodes of the network
by authority propagation. The ranking results are then used to mod-
ify the network structure to allow the ranking model to improve the
within-class ranking. Thus, we gradually extract the sub-network
corresponding to each specific class from the global network. Fi-
nally, we calculate the posterior probability of each object belong-
ing to each class to determine each object’s optimal class member-
ship.

In the future, we plan to more thoroughly analyze the theoreti-
cal foundation behind the ranking-based classification framework
to further justify its ability to enhance both classification and rank-
ing. It would also be interesting to study integrating ranking and
classification when working with non-networked data.
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