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Abstract. The focus of contemporary Web information retrieval systems has 
been to provide efficient support for the querying and retrieval of relevant 
documents. More recently, information retrieval over semantic metadata 
extracted from the Web has received an increasing amount of interest in both 
industry and academia. In particular, discovering complex and meaningful 
relationships among this metadata is an interesting and challenging research 
topic. Just as ranking of documents is a critical component of today’s search 
engines, the ranking of complex relationships will be an important component 
in tomorrow’s Semantic Web analytics engines. Building upon our recent work 
on specifying and discovering complex relationships in RDF data, called 
Semantic Associations, we present a flexible ranking approach which can be 
used to identify more interesting and relevant relationships in the Semantic 
Web. Additionally, we demonstrate our ranking scheme’s effectiveness through 
an empirical evaluation over a real-world dataset.   

Keywords. H.3.3 Information Search and Retrieval,  H.3.3.d  Metadata, H.3.5.f  
XML/XSL/RDF, Semantic Discovery, Semantic Associations, Relationship Ranking, Semantic 
Analytics, User-defined Context, Relationship-based Querying, Semantic Web Technology 

1   Introduction 

The focus of contemporary Web information retrieval systems has been to provide 
efficient support for the querying and retrieval of documents. There has been 
significant academic and industrial research in mainstream search engines, such as 
Google1, Vivisimo2, Teoma3, etc. These systems have made considerable progress in 
the ability to locate relevant pieces of data among the vast numbers of documents on 
the Web. 

Currently, due to the increasing move from data to knowledge and the rising 
popularity of the Semantic Web vision, there is significant interest and ongoing 
research in automatically extracting and representing semantic metadata as 

                                                            
1 http://www.google.com 
2 http://www.vivisimo.com 
3 http://www.teoma.com 
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annotations to both documents and services on the Web. Several communities such as 
the Gene Ontology Consortium, Federal Aviation Administration (Aviation 
Ontology), Molecular Biology Ontology Working Group, Stanford University’s 
Knowledge Systems Lab, etc. are also effectively conceptualizing domain knowledge 
and enabling standards for exchanging, managing and integrating data more 
efficiently. Additionally, research in the Semantic Web has spawned several 
commercially viable products through companies such as Semagix4, Ontoprise5, and 
Network Inference6 to name a few. 

Due to this ongoing work, large scale repositories of semantic metadata extracted 
from Web pages have been created and are publicly available. For example, TAP [1] 
is a fairly broad but not very deep knowledge base annotated in Resource Description 
Framework (RDF)7 that contains information pertaining to authors, sports, companies, 
etc. Additionally, SWETO8 (Semantic Web Technology Evaluation Ontology) is a 
comparatively narrower but deep knowledge base annotated in RDF populated with 
over 800,000 entities and 1.5 million explicit relationships between them, extracted 
from various Web sources.  

Given these developments, the stage is now set for the next generation of 
technologies, which will facilitate getting actionable knowledge and information from 
semantic metadata extracted from Web documents, the deep Web and large enterprise 
repositories. Traditionally, many users analyze information by either browsing the 
Web, or using search engines to locate Web content based on keywords or phrases. 
Conventional search engines return a ranked list of documents that are expected to 
contain information corresponding to the keywords used in the search. The user is left 
with the task of sifting through these results. These approaches therefore do not 
directly give the end user actionable knowledge, that is, searching the documents is 
not a goal yet an intermediate step to discover it. The actionable knowledge is usually 
directed at decision or progress making in business, science etc., and has to be 
gleaned by the user from the documents. We aim to provide a different type of 
analysis based on semantic relationships, in which users are given potentially 
interesting complex relationships between entities, through a sequence of 
relationships between the metadata (annotations) of Web sources (or documents). We 
have defined these complex relationships between two entities as Semantic 
Associations [2]. Arguably, these relationships are at the heart of semantics, lending 
meaning to information, making it understandable and actionable and providing new 
and possibly unexpected insights. In our view, Semantic Associations constitute one 
of most important actionable knowledge. 

When querying for Semantic Associations, users are frequently overwhelmed with 
too many results. For example, a typical Semantic Association query involving two 
‘Computer Science Researchers’ over the SWETO test-bed, results in hundreds or 
thousands of associations. Their associations vary from co-authorship through their 
publications, to relationships through the geographic locations they live in. As with 

                                                            
4 Semagix Inc., http://www.semagix.com 
5 Ontoprise GmbH, http://www.ontoprise.com 
6 Network Inference Ltd., http://www.networkinference.com 
7 http://www.w3.org/RDF/ 
8 http://lsdis.cs.uga.edu/Projects/SemDis/Sweto/ 
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traditional search engine queries where thousands of documents are returned, a user 
cannot be expected to sift through this large number of results in search of those that 
are highly relevant to his/her interest.  

In this paper, we describe ranking of complex relationships on the Semantic Web. 
Specifically, we propose a flexible ranking approach that allows the identification of 
the most interesting Semantic Associations between two entities. Additionally, we 
provide details of the current system implementation and demonstrate the 
effectiveness of the ranking approach through an evaluation over the SWETO test-
bed. 

2   Background 

Metadata Extraction Techniques. Ontology driven metadata extraction techniques 
have been an active research area over the past years. Both semi-automatic [3] and 
automatic techniques and tools have been developed and significant work continues 
[4]. Various tools exist, including Cream [3], Semagix Freedom4, SemTag [5], etc. 
Semagix Freedom has typically been used to populate ontologies that average more 
than one million instances [6]. SemTag, part of IBM’s WebFountain project, has used 
a smaller ontology but has demonstrated Web scale metadata extraction from well 
over a billion pages. In particular, the Freedom toolkit has been used as the 
infrastructure technology to create the data set for our evaluations. Essentially, 
metadata extractors use regular expressions to extract entities from data sources. As 
the sources are ‘scraped’ and analyzed by the extractors, the extracted entities are 
disambiguated and stored in appropriate classes in an ontology.  

 
Data Model Used to Represent Metadata. RDF is a W3C standard used for 
describing resources using a simple model based on named relationships between 
resources. Relationships in RDF, known as Properties, are binary relationships 
between resources (or between a resource and a literal) which take on the roles of 
Subject and Object respectively. The Subject, Predicate and Object compose an RDF 
statement. This model can be represented as a directed labeled graph with typed edges 
and nodes where a labeled edge connects the Subject to the Object. Let a property 
sequence be a finite sequence of relationships, that is, a path in the directed graph. A 
property sequence is therefore a sequence of links between two entities.  
 
Semantic Associations. Semantic Associations are complex relationships between 
resource entities [2]. These complex relationships are essentially property sequences 
that link the two entities in the Semantic Association query. This query takes the form 
ρ(e1, en). The two entities e1 and en are semantically associated if there exists one or 
more property sequence e1, p1, e2, p2, e3,..., en-1, pn-1, en in an RDF graph where ei, 1 ≤ 
i ≤ n, are entities and each pj, 1 ≤ j < n, is a relationship (property) between entities ej 
and ej+1. Note that Semantic Associations are complex relationships spanning over 
heterogeneous schemas (consequently heterogeneous properties and entities), thus 
having potential importance in domains such as drug discovery or national security. 
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For example, in the latter, this kind of actionable knowledge may enable analysts to 
see the connections between different people, places and events. 

 
Algorithms for Semantic Association Discovery. In the context of this work, all 
Semantic Associations queries were performed over RDF knowledge bases. Due to 
the directed graph data model of RDF, Semantic Association queries between two 
entities can be viewed as a graph traversal problem. In this respect, we have 
implemented and tested various graph traversal algorithms based on k-hops, random 
walks and iterative deepening. A discussion of these algorithms is out of the scope of 
this paper.  

3   Ranking Semantic Associations 

Our goal to rank results of a query involves two entities (e.g., e1:Person and 
e9:Person in Fig. 1). Due to the small world phenomenon it is conceivable that there 
are a myriad of paths connecting two entities. Many of these paths are likely to be 
very trivial short paths or paths that convey very little information to the end user. 
Ranking these paths in order of relevance is required. Each user will almost certainly 
have a different notion of relevance and therefore any such ranking scheme needs to 
be configurable. We identify certain criteria that are likely to influence the rank of an 
association. A user supplies a context and weights for customizing the ranking 
criteria. This article is an extension of initial efforts on ranking Semantic Associations 
[7]. We introduce new criteria and present an empirical evaluation. In general, we 
classify the ranking criteria into Semantic and Statistical metrics. Semantic metrics 
are based on semantic aspects of an ontology. Statistical metrics are based on 
statistical aspects of the ontology, particularly on number and connectivity aspects of 
entities and relationships.  

Traditional keyword based search engines use either the content of resources 
(words in a Web page) or the link structure between pages to return a ranked set of 
resources in response to a query. TF-IDF could also be used to judge the relevance of 
a document with respect to a query term. Our ranking problem however does not aim 
to rank documents, yet Semantic Associations, which are essentially sequences of 
properties linking entities. Therefore, the rank of a specific Semantic Association is 
determined using each property in the property sequence which corresponds to a 
single relationship between entities. Hence we believe that conventional ranking 
mechanisms do not apply to the problem we are faced with. 

3.1   Semantic Metrics 

Context. Consider a scenario in which a user is interested in discovering how two 
‘Persons’ are related to each other in the domain of ‘Computer Science Publications’. 
Concepts such as ‘Scientific Publication’, ‘Computer Science Professor’, etc. would 
be most relevant, whereas concepts such as ‘Financial Organization’ would not. 
Thus, to capture the relevance of a (complex) relationship, the notion of a query 
context captures various ontological regions specified by the user. Since the types of 
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the entities are described using RDF, we use the class and relationship types to restrict 
our attention to the entities and relationships of interest (query context). The user 
interacts with a graphical visualization of the ontology to specify the query context 
(see Fig. 2). A user interested in different domains can manually assign weights to 
each region of the query context according to his/her interest or preference so that 
regions of the context can be given more preference than others.  
To illustrate our approach, consider 
three sample associations between 
two entities as depicted at the top 
of Fig. 1, where a user has 
specified a contextual region 1 
containing classes ‘Scientific 
Publication’ and ‘Computer 
Science Researcher’. Additionally, 
assume the user specified region 2 
containing classes ‘Country’ and 
‘State’. The resulting regions, 1 
and 2, refer to the computer 
science research and geographic 
domains, respectively. For the 
associations at the top of Fig. 1, 
(with say, weights 0.8 and 0.2 for 
regions 1 and 2, respectively), the 
bottom-most association would 
have the highest rank because all of 
its entities and relationships are in 
the region with highest weight. The 
second ranked association would 
be the association at the top of the 
figure because it has an entity in 
region 1, but (unlike the 
association in the middle) also has 
an entity in region 2.  

 
Fig. 1. System architecture and context 

example 
 

Before formally presenting the ranking criteria, we introduce notation used 
throughout the paper. Let A represent a Semantic Association, that is, a path sequence 
consisting of nodes (entities) and edges (relationships) that connects the two entities. 
Let length(A) be the number of entities and relationships of A. Let Ri represent the 
region i, that is, the set of classes and relationships that capture a domain of interest. 
Given that both entities and relationships contribute to ranking, let c be a component 
of A (either an entity or a relationship). For example, c1 and clength(A) correspond to the 
entities used in a query where A is one of the Semantic Associations results of the 
query. We define the following sets for convenience, using the notation c ∈  Ri to 
represent whether the type (rdf:type) of c belongs to region Ri: 

}|{ AcRccX ii ∈∧∈=  (1),    ( ) }1||{ AcRcniicZ i ∈∧∉≤≤∀=  (2) 
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where n is the number of regions in the query context. Thus, Xi is the set of 
components of A in the ith region and Z is the set of components of A not in any 
contextual region. We now define the Context weight of a given association A, CA, 
such that 

CA = )
)(

||1())||((
)(

1
1 Alength

ZXW
Alength

n

i
iRi

−××∑
=

 , (3) 

where n is the number of regions, WRi
 is the weight for the ith region. 

 
Subsumption. Classes in an ontology that are lower in the hierarchy can be 
considered to be more specialized instances of those further up in the hierarchy. That 
is, they convey more detailed information and have more specific meaning. For 
example, an entity of type “Professor” conveys more meaning than an entity of type 
“Person”. Hence, the intuition is to assign higher relevance based on subsumption. 
For example, in Fig. 1, entity ‘e8’ will be given higher relevance than entity ‘e5’. 

We now define the component subsumption weight (csw) of the ith component, ci, 
in an association A such that 

csw i = 
depth

c

H
H

i  , (4) 

where 
icH is the position of component ci in hierarchy H (the topmost class has a 

value of 1) and Hdepth is the total height of the class/relationships hierarchy of the 
current branch. We now define the overall Subsumption weight of an association A 
such that 

SA = ∏
=

)(

1

Alength

i
icsw   (5) 

 
Trust. Various entities and their relationships in a Semantic Association originate 
from different sources. Some of these sources may be more trusted than others (e.g., 
Reuters could be regarded as a more trusted source on international news than some 
other news organization). Thus, trust values need to be assigned to the meta-data 
extracted depending on its source. For the dataset we used, trust values were 
empirically assigned. When computing Trust weights of a Semantic Association, we 
follow this intuition: the strength of an association is only as strong as its weakest 
link. This approach has been commonly used in various security models and scenarios 
[8]. Let 

ict represent the assigned trust value (depending on its data source) of a 
component ci. We define the Trust weight of an overall association A as 

TA = )min(
ict . (6) 
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3.2   Statistical Metrics 

Rarity. Given the size of current Semantic Web test-beds (i.e., SWETO, TAP KB), 
many relationships and entities of the same type exist. We believe that in some 
queries, rarely occurring entities and relationships can be considered more interesting. 
This is similar to the ideas presented in [9], where infrequently occurring relationships 
(i.e., rare events) are considered to be more interesting than commonly occurring 
ones. In some queries however, the opposite may be true. For example, in the context 
of money laundering, often individuals engage in common case transactions as to 
avoid detection. In this case, common looking (not rare) transactions are used to 
launder funds so that the financial movements will go overlooked [10]. Thus the user 
should determine, depending upon the query, which Rarity weight preference s/he 
has. 

We define the Rarity rank of an association A, in terms of the rarity of the 
components within A. First, let K represent the knowledge base (all entities and 
relationships). Now, we define the component rarity of the ith component, ci, in A as 
rari such that 

rari = 
||

||||
M

NM −
 , where (7) 

}|{ KresresM ∈=  (all entities and relationships in K), and (8) 

)}()(|{ ijjj ctypeOfrestypeOfKresresN =∧∈= , (9) 

with the restriction that in the case resj and ci are both of type rdf:Property, the subject 
and object of ci and resj must have the same rdf:type. Thus rari captures the frequency 
of occurrence of component ci, with respect to the entire knowledge base. We can 
now define the overall Rarity weight, R, of an association, A, as a function of all the 
components in A, such that  

RA = ∑
=

×
)(

1)(
1 Alength

i
irar

Alength
 (a);      RA = 1 – ∑

=

×
)(

1)(
1 Alength

i
irar

Alength
 (b) , (10) 

where length(A) is the number of components in A. If a user wants to favor rare 
associations, (10a) is used; in contrast, if a user wants to favor more common 
associations (10b) is used. Thus, RA is essentially the average Rarity (or commonality) 
of all components in A. 
 
Popularity. When investigating the entities in an association, it is apparent that some 
entities have more incoming and outgoing relationships than others. Somewhat 
similar to Kleinberg's Web page ranking algorithm [11], as well as the PageRank [12] 
algorithm used by Google, our approach takes into consideration the number 
incoming and outgoing relationships of entities. In our approach, we view the number 
of incoming and outgoing edges of an entity as its Popularity. In some queries, 
associations with entities that have a high Popularity may be more relevant. These 
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entities can be thought of as hotspots in the knowledge base. For example, authors 
with many publications would have high popularity. In certain queries, associations 
that pass through these hotspots could be considered very relevant. Yet, in other 
queries, one may want to rank very popular entities lower. For example, entities of 
type ‘Country’ may have an extremely high number of incoming and outgoing 
relationships.  

Similar to our assessment of Rarity, we define the Popularity of an association in 
terms of the popularity of its entities. We now define the entity popularity, pi, of the ith 
entity, ei, in association A as: 

pi = 
|)(|max

||

1 j

i

enj

e

pop
pop

≤≤

 where )()( ji etypeOfetypeOf =  (11) 

where n is the total number of entities in the knowledge base. Thus, 
iepop  is the set 

of incoming and outgoing relationships of ei and  |)(|max
1 jenj

pop
≤≤

 represents the size 

of the largest such set among all entities in the knowledge base of the same class as ei. 
Thus pi captures the Popularity of ei, with respect to the all other entities of its same 
type in the knowledge base. We now define the overall Popularity weight, P, of an 
association A, such that 

PA = ∑
=

×
n

i
ip

n 1

1
 (a);        PA = 1 – ∑

=

×
n

i
ip

n 1

1
 (b) , (12) 

where n is the number of entities (nodes) in A and pi is the entity popularity of the ith 
entity in A. If a user wants to favor popular associations, is used; in contrast, if a user 
wants to favor less popular associations (12b) is used. Thus, PA is essentially the 
average Popularity or non-Popularity of all entities in A. 

 
Association Length. In some queries, a user may be interested in more direct 
associations (i.e., shorter associations). Yet in other cases a user may wish to find 
indirect or longer associations. For example, money laundering involves deliberate 
innocuous looking transactions that may change several hands. Hence, the user can 
determine which Association Length influence, if any, should be used. 

We define the Association Length weight, L, of an association A. If a user wants to 
favor shorter associations, (13a) is used, otherwise (13b) is used. 

LA = 
)(

1
Alength

 (a);        LA = 1 – 
)(

1
Alength

 (b). (13) 

3.3   Overall Ranking Criterion 

In the above sections, we have defined various association ranking criteria. We will 
now define the overall association Rank, using these criteria as 
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WA = k1 ×  CA + k2 ×  SA + k3 ×  TA + k4 ×  RA+ k5 ×  PA+ k6 ×  LA , (14) 

where ki (1 ≤ i ≤ 6) add up to 1.0 and is intended to allow fine-tuning of the ranking 
criteria (e.g., popularity can be given more weight than association length). This 
provides a flexible, query dependant ranking approach to assess the overall relevance 
of associations. 

4   Experimental Results 

The ranking approach presented in this work has been implemented and tested within 
SemDIS (Semantic DIScovery: Discovering Complex Relationships in the Semantic 
Web) project. The main components are illustrated in Fig. 1. The ranking prototype9 
utilized a modified version of TouchGraph10 (applet for visual interaction with a 
graph) to define a query context. Prior to a query, a user can define contextual regions 
of the visualized ontology, with their associated weights using this graphical interface 
(see Fig. 2). Unranked associations are passed from the query processor to the ranking 
module. The associations are then ranked according to the ranking criteria defined by 
the user. The Web-based user interface allows the user to specify entities on which 
Semantic Association queries are performed. Optionally, the user can customize the 
ranking criteria by assigning weights to each individual ranking criterion. The version 
of SWETO used for the evaluation contains a majority of instances including cities, 
countries, airports, events (such as terrorist events), companies, banks, persons, 
researchers, organizations, and scientific publications, among others. 

                                                            
9 http://lsdis.cs.uga.edu/Demos/ 
10 TouchGraph, LLC http://www.touchgraph.com 
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Fig. 2. User interface for context specification 

4.1 Ranking Evaluation 

Due to the various ways to interpret Semantic Associations, we evaluated our ranked 
results with respect to those obtained by a panel of five human subjects, graduate 
students in computer science and not familiar with the research presented here. The 
human subjects were given query results (randomly sorted) from different Semantic 
Association queries (each consisting of approximately 50 results where the longest 
associations were of length 12). Together with the results, all subjects were provided 
with the ranking criteria for each query (i.e., context, whether to favor short/long, 
rare/common associations, etc.). The human subjects were also provided with the 
type(s) of the entities and relationships in the associations, thus allowing them to 
judge whether an association was relevant to the provided context. They then ranked 
the associations based on this modeled interest and emphasized criterion. Given that 
the human subjects assigned different ranks to the same association, their average 
rank was used as a reference (target match).  

Due to the large number of ways in which the criteria can be customized (e.g., 
favor long and rare vs. short and popular associations), we have evaluated five 
combinations. This is a small set, yet we feel it is a representative sample of these 
combinations. In each of the test queries, we have emphasized (highly weighted) two 
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of the criteria. The following list presents the ranking criteria and broader impact of 
each query.  

 
Query  Query Details Impact 

 
1 

Between two entities of type ‘Person’, with context 
of collegiate departments (‘University’, ‘Academic 
Department’, etc.); favors rare components. 

Illustrates how the ranking approach can capture a 
user’s interest in rare associations within a specific 
domain. 

 
2 

Between two entities of type ‘Person’. Favors short 
associations in the context of computer science 
research. 

Demonstrates the ability to capture the user 
interest in finding more direct connections (i.e., 
collaboration in a research project/area). 

 
3 

Between a ‘Person’ and a ‘University’, where 
common (not rare) associations are highly 
weighted and in the context of mathematics 
(departments and professors). 

Shows the systems flexibility to highlight common 
relationships. This may be relevant, when trying to 
model the way a person relates to entities in a 
similar manner as the common public. 

 
4 

Between a ‘Person’ and a ‘Financial 
Organization’; long associations and the financial 
domain context are favored. 

Generally relevant for semantic analytics 
applications, such as those involving money 
laundering detection [13]. 

 
5 

Between two ‘Persons’; unpopular entities and the 
context of geographic locations are favored. 

Demonstrates the system’s capability to filter non 
relevant results which pass through highly 
connected entities, such as countries. 

 
In order to demonstrate the effectiveness of the ranking scheme, we illustrate in Fig. 3 
(a), the number of Semantic Associations in the intersection of the top k system and 
human-ranked results. This shows the general relationship between the system and 
human-ranked associations. Note that the plot titled ‘Ideal Rank’ demonstrates the 
ideal relationship, in which the intersection equals k (e.g., all of the top five system-
ranked associations are included within the top five human-ranked associations). 
Additionally, Fig. 3 (b) illustrates disagreement between human-ranked results. The 
x-axis represents Semantic Associations which are ranked first, second, etc. according 
to average rank scores of human subjects. Note that the x-axis does not contain their 
actual rank scores, but instead their corresponding ordering. On the other hand, the y-
axis represents rank scores given by the system and human subjects. It is evident in 
the figure that there are varying levels of disagreement in human subjects ranking. 
Note that the system rank falls in its majority within the range of ranking 
disagreement of human subjects (the Spearman’s Footrule distance measure of the 
system rankings with respect to average users’ rankings of 0.23).  

 
Intersection of Human and System Rankings
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Discussion. In three out of the five queries, the top human-ranked association directly 
matched the system assigned rank. Additionally, the top human-ranked association 
fell within the top five system-ranked associations in all five queries. The results are 
promising, given that out of the top ten human-ranked results, the system averaged 
8.4 matches. It is also interesting to note that the minimum average distance of the 
system assigned ranks from that of the human subject’s for a query (considered in 
relative order) was 0.55, while the maximum never exceeded 4. Furthermore, there 
exists disagreement in the ranking of human subjects themselves. While this is a 
limited, initial evaluation, we conclude that these results demonstrate the potential of 
the ranking algorithm and suggest that the approach is flexible enough to capture a 
user’s preference and relevantly rank these complex relationships. 

5   Related Work 

Ranking semantic relationships is fundamentally different from ranking of documents 
in search results as those addressed in contemporary information retrieval approaches. 
In general, contemporary ranking approaches focus on finding relevance with respect 
to keywords for which there is no formal semantics and primarily rely on 
statistical/IR, link analysis, social networking and lexical techniques.  

Research in the area of Semantic Web ranking techniques includes [14, 15], where 
the notion of “semantic ranking” is presented to rank queries returned within portals. 
Their technique reinterprets query results as “query knowledge-bases”, whose 
similarity to the original knowledge-base provides the basis for ranking. In our 
approach, the relevance of results depends on the criteria defined by a user. Other 
relevant work for semantic ranking allows users to vary the ranking from 
conventional mode to discovery mode [16]. 

6   Conclusions 

Next generation technologies that facilitate getting actionable knowledge and 
information from semantic metadata extracted from Web documents, the deep Web 
and large enterprise repositories are emerging. Through our past and ongoing work in 
metadata extraction, as well as the definition and discovering for complex 
relationships on the Semantic Web, which we call Semantic Associations, we see the 
need for new ranking techniques to assess the relevance of these associations due to 
the large number of results from queries.  

Since Semantic Associations are based on metadata extracted from heterogeneous 
documents and a set of potentially complex relationships between these metadata, we 
have discovered that there is no one way to measure their relevance. Thus, we have 
defined a flexible, query dependant approach for automatically analyzing and 
relevantly ranking the resulting associations. Additionally, through empirical 
evaluation of the ranking scheme, we have found our ranking scheme to be promising 
in capturing the user’s interest and rank results in a relevant fashion. 
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