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Abstract 
 

The growth in worldwide data traffic and user subscriptions in mobile 

telecommunication networks makes it increasingly difficult to manage 

network performance in an environment already containing multiple radio 

access technologies. Despite the rise of 5G, LTE remains the dominant 

technology, and new cells are installed daily to support traffic growth and 

new services such as voice over LTE. Detecting faulty cells in the network 

is one of the main concerns of operators. Self-organizing networks have 

been introduced to deal with this problem, and their self-healing function-

ality has improved cell fault management. Nonetheless, faulty cell detec-

tion remains challenging, and most of the tasks involved are still done 

manually. This paper introduces a new method of faulty cell detection in 

an LTE radio access network, applying multiple criteria methods to this 

problem. The cells are ranked based on selected key performance indica-

tors, using the multi-attribute utility theory to construct a utility function. 

The analytic hierarchy process is used to define weights for the criteria. 
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1 Introduction 
 

Despite the uncertainty caused by the COVID-19 pandemic, mobile subscrip-

tions continue to grow globally, bolstered by the new 5G NR (5th Generation 

New Radio) radio access technology (RAT). Nonetheless, 4G LTE (4th Genera-

tion Long Term Evolution) remains the dominant RAT by subscription, and 

voice over LTE (VoLTE) service enables interoperable voice and communication 

services on 4G and 5G devices. VoLTE adoption also accelerates the decommis-

sioning of 2G and 3G networks, freeing frequencies for use by new LTE bands. 

Meanwhile, the year-on-year mobile network data traffic growth remains at 

around 50%, driven by the rising number of smartphone subscriptions and an 

increasing average data volume per subscription (Jejdling, 2020). 

While the data traffic continues to grow and VoLTE service continues to  

expand, new technologies, such as dynamic spectrum sharing (DSS), allow LTE 

and 5G to share the same carrier (Nory, 2019). Carrier aggregation between the 

two RATs is driving operators to expand their LTE access network capacity even 

more, adding more layers and, in the end, more cells to the existing network. The 

complexity of managing and operating such networks is forcing operators to 

auto-mate many operational processes to remain competitive. Self-organizing 

networks (SONs) were introduced to reduce the operating expenditures associated 

with managing the increased number of cells by reducing the need for manual 

network planning, configuration, and optimization (3GPP TS 32.500, 2020). 

SON functionalities (described in the next section) can be classified as self- 

-configuration, self-optimization, or self-healing. 

Barco, Lazaro, and Munoz (2012) point out that there are few studies on self-

-healing (Sallent et al., 2011; Hu et al., 2010), and emphasize the complexity of 

cell fault detection problems. They are usually revealed not through a highly 

anomalous value of one key performance indicator (KPI) but through slightly 

abnormal values of several KPIs. Szilagyi and Novaczki (2012) further point out 

that self-healing studies focus mainly on simple use cases, such as detecting 

complete cell outages. This paper proposes a new decision process to contribute 

to the literature on the self-healing of networks. 

This process weighs multiple indicators and ranks the cells by their perfor-

mance, filtering the most degrading ones to facilitate network operation and 

management. It is based on the Multiple Criteria Decision Methods (MCDM), 

defined by Obayiuwana and Falowo (2017) as an advanced technique of optimi-

zation research for resolving decision problems with multiple criteria using  

a more robust, explicit, rational, and efficient decision-making process. 

According to Obayiuwana and Falowo (2017), MCDM methods have been 

used primarily for network selection decisions in situations where different RATs 
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coexist. MCDM methods have rarely been applied to other RAT-related prob-

lems. Moreover, MCDM methods have been used in cases with a limited number of 

alternatives, such as RATs or small groups of cells. They have not been used for 

detecting fault cells while considering the complete network as an alternative. 

This paper proposes a new application of MCDM methods in an LTE radio 

access network to detect and rank faulty cells based on key performance indica-

tors (KPIs), considering all the cells of a given network. 

The paper is organized as follows. Section 2 introduces the concepts and theo-

ries used, outlining the current decision methods used in radio access networks. 

Section 3 presents the proposed approach, highlighting its novelty and contribu-

tions to multiple criteria decision problems. Section 4 presents some results from 

applying the proposed method in an actual LTE network. Finally, Section 5 

summarizes the contributions of this paper. 
 

2  Theoretical and conceptual background 
 

This section provides the background for the concepts and theories used in the 

paper. The idea of self-organizing networks is described, with particular atten-

tion to self-healing. Cell fault detection and key performance indicators are also 

discussed. 

 

2.1  Self-organizing network concepts 
 

In 2008, the Next Generation Mobile Networks (NGMN) Alliance, an open fo-

rum founded by major mobile network operators, defined the requirements and 

recommendations for implementing self-organizing networks (Next generation, 

2008). This allowed the automation of some network planning, configuration, 

and optimization processes through SON functionalities (3GPP TS 32.500, 

2020). The functionalities indicated by NGMN were self-configuration, self- 

-optimization, fault management, and fault correction (subsequently renamed 

self-healing). Later, the 3rd Generation Partnership Project (3GPP), which pro-

vides reports and specifications for cellular telecommunications technologies, 

introduced SON in its standards as a fundamental element for LTE deployment 

(Barco, Lazaro, and Munoz, 2012) and defined the main SON functionalities 

based on the NGMN requirements (3GPP TS 32.500, 2020). The main SON 

functionalities are summarized by Barco, Lazaro, and Munoz (2012): 

1. Self-configuration: includes functions for network deployment and configura-

tion of its parameters. Thanks to autoconfiguration, network elements can 

start autonomously, run setup routines, and configure initial parameters. 
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2. Self-optimization: responsible for auto-tuning parameters, which should be 

dynamically recalculated when traffic and network conditions change. Self- 

-optimization includes tuning parameters related to the list of neighboring 

cells, traffic balance, handover, and coverage. 

3. Self-healing: includes functions to cope with service degradations or outages, 

including fault detection and diagnosis and mechanisms for outage compen-

sation. 

The first two functionalities are well-documented, and some functions, such 

as automatic neighbor relation (ANR) and node auto-connectivity, were even 

used in the first LTE deployments. Self-configuration reduces costs and acceler-

ates cell deployment in the network, while self-optimization provides operational 

cost savings through energy saving or load-balancing optimization. On the other 

hand, studies on self-healing are scarce, as it is the most complex of the three 

domains due to the variety of vendors, software versions, and hardware types 

coexisting in a single network (Szilagyi and Novaczki, 2012). The existing stud-

ies on self-healing are incomplete, dealing only with certain straightforward self-

-healing aspects in specific scenarios, such as detecting complete cell outages 

(Barco, Lazaro, and Munoz, 2012). However, new studies on automatic fault 

detection and diagnosis can also reduce the cost of managing networks. 

 

2.2  Self-healing concepts 

 

As described by 3GPP, self-healing aims to solve or mitigate the faults that can 

be translated automatically by triggering appropriate recovery actions. The self- 

-healing function consists of two parts: the monitoring part and the healing pro-

cess part (3GPP TS 32.541, 2020). In the first part (shown in Figure 1), the trig-

ger condition of self-healing (TCoSH), which could be either an alarm or a key 

performance indicator, is monitored; when the TCoSH is reached, a particular 

action is triggered to prevent or mitigate the specific fault. This article focuses 

on detecting a cell fault during the monitoring phase of the self-healing process. 

Detecting and solving cell faults is one of the main concerns for network  

operators and vendors. Self-healing is required when a cell degrades, impacting 

the rest of the network. This kind of cell is called a problematic cell, and each 

operator and vendor uses a different indicator to identify the cell fault symptoms. 

A symptom is a measurement whose observed value helps identify a fault. 

Symptoms include key performance indicators, alarms, online measurements, 

and drive tests (Barco, Lazaro, and Munoz, 2012). 
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Figure 1: The monitoring part of the self-healing function 

Source: Adapted from: 3GPP TS 32.541 (2020). 

 

2.3  Cell fault detection 

 

In general, alarms can identify a cell fault only in critical cases, i.e., software and 

hardware failures, transmission problems, or downtimes. A single fault may gen-

erate multiple alarms, and several different faults can trigger a single alarm.  

Furthermore, alarm messages cannot always be transmitted when a cell loses 

connectivity or stops sending information. Also, on many occasions, a cell fault 

does not generate any alarm. This can be caused by poor radio conditions, i.e., 

inadequate coverage, shadowing, or external interference (Barco, Lazaro, and 

Munoz, 2012), or else by incorrect configuration. Therefore, key performance 

indicators are the main inputs used by RAT experts to detect a cell fault and are 

used as criteria for the decision process proposed in this paper. 

Barco, Lazaro, and Munoz (2012) propose a self-healing reference model, 

which is the basis for this paper’s cell fault detection process. According to 

them, fault detection is responsible for identifying the problematic cells to be 

healed, including cells with service outage (cell outage detection) and cells with 

service degradation (cell degradation detection). A possible simple method of 

detecting a cell fault consists of setting thresholds for some KPIs. However, 

gradual degradations cannot be detected simply by a threshold, especially if pro-

active rather than reactive detection is carried out. Therefore, the authors state 

that an algorithm should be developed that considers all relevant KPIs and uses 

appropriate decision logic to determine whether an outage or degradation has 

occurred. 
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2.4  Key performance indicators 

 

For managing purposes, to monitor the network’s overall performance and com-

pare the performance in different areas or periods, an operator needs to measure 

the statistical network performance periodically. Statistical data sampling can be 

performed regularly, i.e., daily, weekly, or monthly (3GPP TS 32.421, 2015). 

Performance data are collected and recorded by network elements, following  

a schedule established by the network element manager. These data are used to 

evaluate performance in five areas: network traffic, configuration, resource  

access, resource availability, and quality of service (QoS) (3GPP TS 32.401, 

2018). QoS indicators measure the network performance the end user is  

expected to experience. These are the measurements considered in this paper. 

Data performance is measured through specific parameters, or performance 

indicators (PIs), defined by each equipment vendor and used to monitor the cur-

rent network status and performance. This enables prompt action to control, 

when necessary, the performance and resources of the network and services.  

A radio access network can have hundreds of PIs. Often measurements are taken 

simply because they are available, not because they are meaningful. It should be 

noted that the complete range of network status information and PIs is not neces-

sary to manage the network. One of the challenges of managing networks is 

understanding which data are critical for supporting specific objectives (ITU-T 

Recommendation E.419, 2006). PIs representing the essential network perfor-

mance measurements are called key performance indicators (KPIs).  

For an LTE RAT, 3GPP defines six categories of KPIs (3GPP TS 32.450, 

2019). All except for the last one can be used to measure the QoS. The categories 

are the following: 

1. Accessibility KPIs: used to measure the availability of service within speci-

fied tolerances and other given conditions when requested by the user (ITU-T 

Recommendation E.800, 2008). 

2. Retainability KPIs: used to measure the abnormal interruptions of service 

(ITU-T Recommendation E.800, 2008). 

3. Mobility KPIs: used to measure how LTE mobility functionality is working. 

4. Integrity KPIs: used to measure the data integrity, ensuring that data have not 

been altered in an unauthorized manner (ITU-T Recommendation E.800, 

2008). 

5. Energy efficiency KPIs: used to measure data energy efficiency in LTE net-

work elements. 

6. Availability KPIs: used to measure the percentage of times when the cell is 

considered available. 
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2.5  Multiple Criteria Decision Methods 

 

Multiple Criteria Decision Methods have a relatively short history as a disci-

pline. Their foundations were laid between 1950 and 1960, and they became the 

dominant paradigm in decision analysis and decision support in the presence of 

multiple evaluation dimensions (Zavadskas, Turskis and Kildienė, 2014). 

MCDM has been one of the fastest-growing problem areas in many disciplines, 

where a set of alternatives needs to be evaluated in terms of several criteria  

(Triantaphyllou, 2010). Nonetheless, there is no single well-defined methodolo-

gy that one could follow from the beginning to the end of a decision-making 

process. When dealing with objects that can only be described and compared 

using multiple characteristics, aggregating them is a significant problem. The 

aggregation aims to synthesize the (usually contradictory) features of the objects 

to achieve a goal, such as choosing among the objects, rank-ordering them, sort-

ing them into categories, and so on (Bouyssou et al., 2006). 

MCDM methods use a wide range of approaches to solving the problems 

mentioned above. They can be broadly classified into two categories (cf. Figure 2): 

discrete MCDM or discrete MADM (multi-attribute decision-making) and con-

tinuous MODM (multi-objective decision-making) methods. MODM methods 

are associated with problems where alternatives are not predetermined. The goal 

is to design the best/optimal choice considering a set of well-defined design 

constraints and a set of quantifiable objectives. Thus, MODM methods deal with 

the design process, and the number of alternatives is infinite (continuous). On 

the other hand, discrete MCDM/MADM methods deal with discrete and prede-

termined options described by discrete determined criteria sets (Zavadskas,  

Turskis and Kildienė, 2014). 

 

 
 

Figure 2: Broad classification of MCDM methods 
 

Source: Zavadskas, Turskis and Kildienė (2014). 

 

MCDM methods have been primarily used in radio access networks to ad-

dress discrete problems of network selection in heterogeneous wireless networks 

(HWN). Decision-making problems have become more complex since the  

advent of the third-generation (3G) radio access technology WCDMA (wideband 

code division multiple access), specified in Release 99 by 3GPP in 1999, which 
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allowed higher data rates and facilitated the significant increase in the number of 

mobile devices. Furthermore, mobile devices with advanced capabilities saw a mas-

sive proliferation with the evolution to 4G and the LTE RAT, specified in Release 8 

by 3GPP in 2008. The imminent deployment of 5G will introduce yet another new 

RAT, which will coexist with the current RATs. Hence, the selection of the best 

network becomes essentially an MCDM process (Paul and Falowo, 2017). 

Obayiuwana and Falowo (2017) review and classify the most significant MCDM 

algorithms used to solve the network decision-making problems for HWNs. 

On the other hand, Yeryomin and Seitz (2016) evaluated different algorithms 

used in the multiple criteria network selection problem, including simple addi-

tive weighting (SAW), weighted product model (WPM), elimination and choice 

expressing reality (ELECTRE), the technique for order of preference by similarity  

to ideal solution (TOPSIS), grey relational analysis (GRA), optimization and 

compromise solution (VIKOR), and the analytic hierarchy process (AHP). Some 

other critical applications of MCDM methods in those problems can be found in 

Pervaiz (2010), Sasirekha and Ilanzkumaran (2013), and Nguyen-Vuong et al. 

(2013). At the same time, Alhabo and Zhang (2018) predict that the introduction 

of 5G and the increasing demand for mobile data will lead to a selection scheme 

that considers different users with different priorities and preferences. 

LTE evolution and increased data traffic have also introduced new decision- 

-making problems that MCDM methods could address. While network selection 

can be considered a vertical handover, LTE is designed to support user mobility, 

even at high speed, moving from one cell to another during active service  

sessions (Nathaniel et al., 2014), which is considered a horizontal handover. 

Horizontal handover can also contribute to an effective load balancing for the 

optimum use of network resources. Recognizing this, Nathaniel et al. (2014) 

used a new MCDM approach to create a framework with a decision algorithm to 

solve the load-balancing problem in LTE. Furthermore, Dudnikova et al. (2015) 

introduced another innovative approach for MCDM while considering the prob-

lem generated by densely deployed heterogeneous networks with significant net-

work energy consumption increments. To deal with this situation, they proposed 

using grey relational analysis and the analytic hierarchy process (MCDM tools) to 

find the number of base stations to switch off to maximize energy savings. 

Therefore, different MCDM methods have been long applied in cellular net-

works and RATs, primarily for the network selection problem. However, the 

increasing complexity generated by new technologies, the colossal data traffic, 

the growing number of mobile subscriptions, and the cumulative number of cells 

installed in the network over the years make this scenario a fertile ground for 

new applications of MCDM methods to solve new decision problems.  
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The present study proposes a new application of the MCDM methods MAUT 

and AHP to solve the decision problem where faulty LTE cells need to be detect-

ed and ranked in a self-healing system in a network with non-predetermined 

alternatives and a vast number of options. 

 

2.6  The Analytic Hierarchy Process 

 

The AHP, first introduced by Saaty (2013; 1990), is a decision-making process 

based on the innate human ability to use information and experience to estimate 

relative magnitudes through paired comparisons. These comparisons are used to 

construct ratio scales of various dimensions, arranged in a hierarchic structure 

that allows for a systematic procedure to organize basic reasoning and intuition 

by breaking a problem down into smaller constituent parts. Thus, the AHP leads 

from superficial pairwise comparison judgments to the priorities in the hierarchy 

(Saaty, 2013). 

 

2.7  The utility function 

 

The utility function is a way of measuring the desirability of preferring different 

objects called alternatives. The utility score is the degree of well-being each of 

those alternatives provides to the decision-maker. The utility function comprises 

various criteria that assess an alternative’s global utility. For each criterion, the 

decision-maker assigns a marginal utility score. One advantage to defining utili-

ty functions is that the options of the decision problem receive a global score. 

The marginal utility scores of the criteria are aggregated to yield the global utili-

ty score. This score makes it possible to compare all options and rank them from 

best to worst, with equal rankings permitted. A bad score on one criterion can be 

compensated by a good score on another (Ishizaka and Nemery, 2013). This 

approach is called the whole aggregation approach. 

Ishizaka and Nemery state that if the utility function for each criterion (a repre-

sentation of the perceived utility given the performance of the option on a specific 

criterion) is known, then the multi-attribute utility theory (MAUT) is recom-

mended (Ishizaka and Nemery, 2013). 

 

2.8  The Multi-Attribute Utility Theory 

 

One of the most readily understandable approaches to decision analysis is multi-

attribute utility analysis (MAUT) by Keeney and Raiffa (Keeney and Raiffa, 

1993; Rupprecht et al., 2017). MAUT is based on the hypothesis that every deci-
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sion-maker tries to optimize, consciously or implicitly, a function that aggregates 

all their points of view. It means that the decision maker’s preferences can be 

represented by a function called the utility function U. Each alternative of set A 

is evaluated based on function U and receives a utility score U(a) (an example is 

shown in Figure 3). This utility score allows all alternatives to be ranked from 

best to worst (Ishizaka and Nemery, 2013). The preference and indifference rela-

tions among the other options of A are thus defined as follows: 

 
∀ 𝑎, 𝑏 ∈ 𝐴: 𝑎 Ρ 𝑏 ⇔ 𝑈(𝑎) > 𝑈(𝑏): 𝑎 𝑖𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑜 𝑏 (1) 

 
∀ 𝑎, 𝑏 ∈ 𝐴: 𝑎 Ρ 𝑏 ⇔ 𝑈(𝑎) = 𝑈(𝑏): 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑖𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 (2) 

 

 
  
Figure 3: Representation of the set A ranking of the MAUT model 
 

Source: Adapted from: Ishizaka and Nemery (2013, p. 82). 

 

The utility function is defined using the additive model, the most popular and 

widely used model. In this model, the simple weighted sum is a particular case 

where 𝑈𝑗 are all linear functions (Ishizaka and Nemery, 2013). The utility score 

corresponds to the following: 
 

∀ 𝑎𝑖 ∈ 𝐴: 𝑈(𝑎𝑖) = 𝑈(𝑓1(𝑎𝑖), … , 𝑓𝑞(𝑎𝑖)) =  ∑ 𝑈𝑗(𝑓𝑗(𝑎𝑖)) ∙ 𝜔𝑗

𝑞

𝑗=1
 (3) 

 

where q is the number of criteria, ω𝑗 is the weight of criterion 𝑓𝑗, and 𝑈𝑗(𝑓𝑗) ≥ 0. In 

general, they satisfy the normalization constraint (Ishizaka and Nemery, 2013): 
 

∑ 𝜔𝑗 = 1
𝑞

𝑗=1
 (4) 
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The marginal utility function has the property that the best alternative on  

a specific criterion has a marginal utility score of 1, and the worst option has  

a score of 0 on the same criterion. 

 

3  The proposed cell ranking method 
 

We propose an algorithm to rank the LTE cells of a given RTA on the basis of their 

general performance, measured through the most relevant KPIs. The cells are 

ranked from the lowest-performing ones to a predefined threshold to facilitate cell 

fault management and self-healing processes by reducing the number of cells to be 

managed and healed. The main difficulty with ranking all the cells in a network is 

the vast number of alternatives (thousands of LTE cells). Thus, we propose using 

discrete MCDM methods to solve a problem where the other options are numerous 

and non-predetermined (faulty cells) with a set of quantifiable objectives (selected 

KPIs) that could be classified as a continuous MODM problem. Therefore, based 

on the broad classification of MCDM methods presented by Zavadskas 

(Zavadskas, Turskis and Kildienė, 2014), the present problem could be associated 

with a new category of problems, which Zavadskas had not considered, at the 

intersection of discrete and continuous problems (see Figure 4). 

 

 
 

Figure 4: New proposed classification of MCDM methods 
 

Source: Adapted from: Zavadskas, Turskis and Kildienė (2014). 

 

The proposed method involves three steps, which are described below. 

 

3.1  KPI selection 

 

This first step is to select the RAT KPIs with the most significant impact on the 

end-user experience, considering both data and voice indicators. Selection is 

based on two factors: the motivation to improve the user experience (3GPP TS 

28.404, 2020) and the difficulty of expressing it objectively and mathematically. 

To make this selection, it is essential to establish a relationship between user 

expectations and the QoS KPIs (Vaser and Forconi, 2015). Therefore, from the 
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five categories of KPIs defined in (3GPP TS 32.450, 2019) and classified as QoS 

KPIs in this article, eight individual KPIs were selected from the three categories 

with the most significant impact on the end user: accessibility, retainability, and 

mobility. The Telemanagement Forum (TMF) Wireless Services Measurement 

Handbook GB923 (The Open Group, 2004) states that voice and data networks 

have been provisioned separately, and KPIs have been considered independently 

for each service. All the KPIs included in the proposed method are calculated as 

the ratio of two or more performance counters, so they are all normalized, rang-

ing from 0 to 1. The KPIs selected and their formulas are described below. 

 

Accessibility KPIs 

 

E-RAB accessibility is a measurement showing the probability that an end user 

would be provided with an E-RAB (evolved UTRAN radio access bearer) on 

request (ITU-T Recommendation E.419, 2006). This type of KPI is perceived by 

the end user in data service as a connection delay and has a high impact on voice 

service, as it is perceived as service unavailability. Therefore, two KPIs of this 

type were selected: 
 

1. Data E-RAB accessibility: a KPI that shows the probability success rate for 

E-RAB establishment: 
 

𝐴𝐶𝐶_𝐸𝑅𝐴𝐵_𝐷𝐴𝑇𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑑𝑎𝑡𝑎 𝐸𝑅𝐴𝐵 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑑𝑎𝑡𝑎 𝐸𝑅𝐴𝐵 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 (5) 

 

2. Data VoLTE E-RAB accessibility: a KPI that shows the probability success 

rate for VoLTE E-RAB establishment: 
 

𝐴𝐶𝐶_𝐸𝑅𝐴𝐵_𝑉𝑜𝐿𝑇𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑉𝑜𝐿𝑇𝐸 𝐸𝑅𝐴𝐵 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑉𝑜𝐿𝑇𝐸 𝐸𝑅𝐴𝐵 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 (6) 

 

Retainability KPIs 

 

E-RAB retainability is a measurement that shows how often an end user loses an 

E-RAB in an abnormal way when the E-RAB is used (ITU-T Recommendation 

E.419, 2006). The end user in data service also perceives this type of KPI as  

a connection delay since the service needs to be re-established. It also seriously 

affects voice service, as it interrupts the voice call. 3GPP defines retainability as 

abnormal E-RAB releases per session time in seconds. However, this paper 

measures the ratio of normal E-RAB releases to the total number of E-RAB  

releases to be consistent with the other indicators, ranging from 0 (no success)  

to 1 (100% success). Therefore, two KPIs of this type are selected: 
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1. Data E-RAB retainability: a KPI that shows the rate of the number of normally 

released E-RABs with data in a buffer: 
 

𝑅𝐸𝑇_𝐸𝑅𝐴𝐵_𝐷𝐴𝑇𝐴 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝐸𝑅𝐴𝐵𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝐸𝑅𝐴𝐵𝑠
 (7) 

 

2. Data VoLTE E-RAB retainability: a KPI that shows the rate of the number of 

normally released VoLTE E-RABs with data in a buffer: 
 

𝑅𝐸𝑇_𝐸𝑅𝐴𝐵_𝑉𝑜𝐿𝑇𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑉𝑜𝐿𝑇𝐸 𝐸𝑅𝐴𝐵

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑉𝑜𝐿𝑇𝐸 𝐸𝑅𝐴𝐵
 (8) 

 

As for defining an abnormal E-RAB release with end-user impact, a release 

of the E-RAB is only considered abnormal if the eNodeB assumes that data is 

waiting for transfer in any of the buffers (ITU-T Recommendation E.419, 2006). 

 

Mobility KPIs 

 

LTE mobility is a measurement showing how LTE mobility functionality works 

(ITU-T Recommendation E.419, 2006). 3GPP includes handovers with both 

intra- and inter-LTE frequencies in the same KPI. However, in this paper, they 

are considered separate KPIs since they affect data and VoLTE services differ-

ently. Handover failures can cause delays in data transfers and call degradation, 

affecting the end user’s perception. Four KPIs of this type are selected: 

1. Intra-frequency handover: a KPI showing how E-UTRAN mobility function-

ality works within the same LTE frequency: 
 

𝐼𝑁𝑇𝑅𝐴_𝐻𝑂_𝐷𝐴𝑇𝐴 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑖𝑛𝑡𝑟𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐻𝑂

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑟𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐻𝑂 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 (9) 

 

2. Inter-frequency handover: a KPI that shows how E-UTRAN mobility func-

tionality is working between different LTE frequencies: 
 

𝐼𝑁𝑇𝐸𝑅_𝐻𝑂_𝐷𝐴𝑇𝐴 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑖𝑛𝑡𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐻𝑂

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐻𝑂 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 (10) 

 

Another process considered when evaluating problems related to mobility is 

the single radio voice call continuity (SRVCC), which is the continuity between 

voice calls in VoLTE and circuit-switched access (WCDMA or GSM RATs) 

(3GPP TS 23.216, 2020). The SRVCC procedure can be considered a particular 

case of handover, starting when the coverage or quality of the VoLTE call is 

poor. The session is transferred to a different RAT to keep the call active. 
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The SRVCC procedure consists of two steps: SRVCC preparation and 

SRVCC execution. SRVCC preparation does not directly impact the end user but 

can indicate a fault scenario. SRVCC execution strongly affects the end user, 

generating voice call interruptions. Therefore, both KPIs related to SRVCC are 

selected: 

3. SRVCC preparation: a KPI that shows the success rate of the first step of 

SRVCC, preparing the SRVCC handover, starting when the user device  

receives the handover command (Qualcomm Technologies Inc., 2012): 
 

𝑆𝑅𝑉𝐶𝐶_𝑃𝑅𝐸𝑃 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑆𝑅𝑉𝐶𝐶 𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑅𝑉𝐶𝐶 𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 (11) 

 

4. SRVCC execution: a KPI that shows the success rate of the second step, 

which happens when the user device executes the handover after success in 

the previous step (Qualcomm Technologies Inc., 2012):  
 

𝑆𝑅𝑉𝐶𝐶_𝐸𝑋𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑆𝑅𝑉𝐶𝐶 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑅𝑉𝐶𝐶 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 (12) 

 

3.2  Weight definition 

 

Weights must be defined for each of the selected KPIs to construct the utility 

function. AHP was chosen as it relies on simple hierarchic structures to represent 

decision problems (Saaty, 2013). The weights are found by calculating scores (or 

priorities, as they are called in AHP) based on the pairwise comparisons provid-

ed by the user (Ishizaka and Nemery, 2013). 

To define the weights for the selected KPIs, AHP is implemented in three 

steps, following the procedure described by Dudnikova et al. (2015). 

1. The problem is decomposed into its constituent parts, or criteria, which are 

the KPIs described in the previous subsection (summarized in Table 1). 
 

Table 1: Selected KPIs 
 

Category Service KPI 

Accessibility Data ACC_ERAB_DATA 

Voice ACC_ERAB_VoLTE 

Retainability Data RET_ERAB_DATA 

Voice RET_ERAB_VoLTE 

Mobility Data INTRA_HO_DATA 

Data INTER_HO_DATA 

Voice SRVCC_PREP 

Voice SRVCC_EXE 

 

 



         P.N. Lopes Neto, J.C. Freire Junior, C.E. Tuna 

 

60 

2. A relative importance value is assigned to each criterion by pairwise compar-

ison. The fundamental scale, or the Saaty scale, defined in Saaty (2013), is 

used to rank the judgments introduced in Table 2. In LTE networks, voice is  

a data service (Voice over LTE − VoLTE). It follows the strictest quality crite-

ria, as voice is susceptible to delay, jitter, and loss (The Open Group, 2004). 

Hence, the method proposed in this paper assigns higher importance to voice 

KPIs than to the other KPIs. 

 
Table 2: Fundamental or Saaty Scale 

 

Importance Definition Explanation 

1 Equal importance Two activities contribute equally to the objective 

3 Moderate importance Experience and judgment slightly favor one activity over 

another 

5 Strong importance Experience and judgment strongly favor one activity over 

another 

7 Very strong importance An activity is favored very strongly over another; its domi-

nance is demonstrated in practice 

9 Extreme importance The evidence favoring one activity over another is of the 

highest possible order of affirmation 

2, 4, 6, 8 Intermediate values between adjacent judgments 

Source: Saaty (2013). 

 

The quantified judgments about pairs of criteria are represented by the fol-

lowing j × j matrix A: 
 

𝐴 = [

1
1/𝑎12

⋮
1/𝑎𝑗1

𝑎12

1
⋮

1/𝑎2𝑗

⋯
⋯
⋮

⋯

𝑎1𝑗

𝑎2𝑗

⋮
1

] (13) 

 

3. The eigenvector w of matrix A is calculated using the geometric mean meth-

od (Pervaiz and Bigham, 2009), and the relative weights of the factors (ω𝑗) 

are derived from the components of the normalized eigenvector (Dudnikova 

et al., 2015): 

 

𝑤𝑗 = (Π𝑎𝑗𝑗)
1

𝑞⁄
 (14) 

 

𝜔𝑗 =
𝑤𝑗

∑ 𝑤𝑗
𝑞
𝑗=1

 (15) 

 

The matrix A, the eigenvector, and the relative weights calculated from the 

presented formulas are shown in Table 3. 
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As expected, voice KPIs have the highest relative weights, and the retainabil-

ity of VoLTE calls (RET_ERAB_VoLTE) is the most significant weight. 

Since comparisons performed in AHP are subjective, judgment errors are in-

evitable and must be detected by verifying the consistency rate (CR) of A before 

selecting the weight values. The CR is calculated as follows: 
 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
;  𝐶𝐼 =

𝜆𝑚𝑎𝑥 − 𝑞

𝑞 − 1
 (16) 

 

where CI is a consistency index, representing the deviation of the maximum 

eigenvalue of matrix A (λ𝑚𝑎𝑥) from the number of criteria used in the compari-

son process (q). RI is a random index, the average CI of a randomly generated 

reciprocal matrix. All RI values for different matrix dimensions are provided in 

Saaty (2013). If CR = 0, the matrix is perfectly consistent. If CR ≤ 0.1, the eval-

uated weight values are acceptable (Dudnikova et al., 2015). The λ𝑚𝑎𝑥 is calcu-

lated as follows: 
 

𝜆𝑚𝑎𝑥 = [∑ 𝑎𝑗1

𝑞

𝑗=1
⋯ ∑ 𝑎𝑗𝑞

𝑞

𝑗=1
] ∙ [

𝜔1

…
𝜔𝑗

]  (17) 

 

In the present problem, λ𝑚𝑎𝑥= 8.9276, CI = 0.1325, RI = 1.41, and CR =  

= 0.0940. Therefore, CR ≤ 0.1, and the obtained relative weights are consistent. 

 

3.3  Utility function construction 

 

As explained in Section 2, when the utility function for each criterion is known, 

the multi-attribute utility theory (MAUT) is recommended (Ishizaka and Nem-

ery, 2013). It is the case for the present problem, where the criteria are the  

selected KPIs, each having a defined function. As all selected KPIs are ratios 

from the interval [0,1]. Hence, the MCDM method MAUT can construct the 

utility function. 

The proposed method uses the simple weighted sum to construct the utility 

function for each LTE cell, considering the eight KPIs selected as criteria 𝑎𝑖, the 

relative weights obtained using the AHP method, and the number of fails for 

each KPI. The number of fails is necessary to avoid assigning a high score to  

a cell with degraded KPIs, but a low number of fails due to low traffic.  

The function is then normalized by dividing the weighted sum by the sum of 

weights multiplied by the fails for each KPI, as shown below: 
 

∀𝑎𝑖  ∈ 𝐴: 𝑈(𝑎𝑖) =  
∑ 𝑈𝑗(𝑓𝑗(𝑎𝑖)) ∙ 𝜔𝑗 ∙ 𝐹𝑎𝑖𝑙𝑠𝑗

𝑞
𝑗=1

∑ 𝜔𝑗 ∙ 𝐹𝑎𝑖𝑙𝑠𝑗
𝑞
𝑗=1

 (18) 
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The number of fails of each KPI is calculated as a difference between the 

number of attempts and the number of successes for each indicator: 
 

𝐹𝑎𝑖𝑙𝑠𝑗 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑗 −  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠𝑗  (19) 

 

4   Results 

 

The proposed method has been applied in a real LTE network from a Brazilian tele-

communications operator. 4925 cells from different equipment vendors covering  

a region of west-central Brazil were selected to verify the results. First, statistical 

data sampling of the eight selected KPIs was performed, aggregating the counters in 

a 24-hour base, and the utility function U (Formula 18) was applied to the cells. 

Then, the cells’ utility functions were ranked in reverse order, from worst to best, to 

quickly identify the most degraded cells. The results are presented in a dashboard, 

with the cells labeled, starting with Cell 0 to Cell 4925. 

The KPIs values in the dashboard are classified into three ranges for easier 

visual monitoring:  

1) critical: from 0 to 0.50, indicating the most critical values; 

2) alarming: from 0.50 to 0.99, indicating intermediate values; 

3) OK: from 0.99 to 1, indicating the highest values. 

The utility values follow the same classification, ranging from 0 to 1, with 

critical values between 0 and 0.50. 

As an example of the results obtained, Table 5 reproduces the dashboard for  

a specific day, showing the first 12 results. The utility function allows the eight 

KPIs of the cells to be aggregated into a single indicator, facilitating ranking of 

the cells. Furthermore, only 0.20% of the cells have values below 0.50, signifi-

cantly reducing the number of critical cells from the selected universe that need 

to be managed and healed, and highlighting the worst cells in terms of QoS, 

which are the main objectives of the proposed model. 

On the analysis day, Cell 3083 was ranked as the worst cell, as SRVCC prep-

aration performed very poorly, followed by SRVCC execution and handover 

KPIs. However, the cell had no active alarms or other operational problems and 

was not identified by traditional fault management. Crucially, although Cell 

3083 was not the one with the most fails, its impact on the network was huge, as 

the fails were concentrated in VoLTE mobility, which the end user would have 

perceived as voice quality degradation. Table 4 shows all Cell 3083 measure-

ments used to calculate its utility function, as detailed in Formula (20): 
  

𝑈(3083) =  
∑ 𝑈𝑗(𝑓𝑗(3083)) ∙ 𝜔𝑗 ∙ 𝐹𝑎𝑖𝑙𝑠𝑗

𝑞
𝑗=1

∑ 𝜔𝑗 ∙ 𝐹𝑎𝑖𝑙𝑠𝑗
𝑞
𝑗=1

 (20) 
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where: 
 

∑ 𝑈𝑗(𝑓𝑗(3083)) ∙ 𝜔𝑗 ∙ 𝐹𝑎𝑖𝑙𝑠𝑗
𝑞
𝑗=1  = 0.9923 ∙ 0.4276 ∙ 1 + 1 ∙ 0.2304 ∙ 0 + 0.9996 ∙  

∙ 0.1108 ∙ 10 + 0.9998 ∙ 0.0710 ∙ 3 + 0.9870 ∙ 0.0511 ∙ 76 + 0.9852 ∙ 0.0360 ∙ 119 + 

+ 0.0026 ∙ 0.0459 ∙ 2267 + 0.8333 ∙ 0.0271 ∙ 1  
 

and: 
 

∑ 𝜔𝑗 ∙ 𝐹𝑎𝑖𝑙𝑠𝑗
𝑞
𝑗=1  = 0.4276 ∙ 1 + 0.2304 ∙ 0 + 0.1108 ∙ 10 + 0.0710 ∙ 3 + 0.0511 ∙  

∙ 76 + 0.0360 ∙ 119 + 0.0459 ∙ 2267 + 0.0271 ∙ 1 

 
 

Table 4: Measurements from Cell 3083 used to calculate its utility function 
 

KPI Success Attempts Fails Value Weights 

VoLTE_RET 129 130 1 0.9923 0.4276 

VoLTE_ACC 130 130 0 1.0000 0.2304 

RET_ERAB 25776 25786 10 0.9996 0.1108 

ACC_ERAB 19505 19508 3 0.9998 0.0710 

HO_INTRA 7912 8031 76 0.9870 0.0511 

HO_INTER 5762 5838 119 0.9852 0.0360 

SRVCC_PREP 6 2273 2267 0.0026 0.0459 

SRVCC_EXE 5 6 1 0.8333 0.0271 

 

Another significant result from applying the proposed model is shown by the 

analysis of Cells 0574 and 0573. They are neighbor cells and present a value of 

zero in VoLTE KPIs. However, they did not have VoLTE fails, which indicates 

no traffic on that service, even if the KPIs impacting their utility function were 

from data handover. However, the lack of VoLTE traffic can also indicate a con-

figuration failure and should be investigated by cell performance managers. 

An overall analysis of the results for the worst cells of the network can give 

engineers valuable insight into its health, as it aggregates the most relevant LTE 

radio KPIs. For example, the KPIs values of the worst cells from Table 5 show 

that the network problems are concentrated in handover and SRVCC indicators, 

meaning that mobility is the key issue to address.  
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5  Conclusion 

 

This paper proposes using an innovative application of MCDM methods for 

radio access network analysis and cell failure management by ranking the worst-

performing LTE cells. This is the first attempt to use discrete MCDM methods to 

solve problems with quantifiable objectives where the alternatives are numerous 

and not predetermined. 

As shown in the previous section, we could identify very poorly performing 

cells with no active operational alarms that could not be identified through tradi-

tional fault management. By ranking cells based on a utility function U that ag-

gregates the main radio QoS KPIs, the proposed method automatically indicates 

the global worst cells to be repaired, improving network quality more efficiently. 

Furthermore, the utility function U can filter cells based on performance objec-

tives to be analyzed and repaired by network engineers. This approach may  

reduce the time consumed in identifying faulty cells that affect the end-user per-

formance, improving the perceived LTE network performance.  

Repairing the most critical performance cells quickly and efficiently helps 

operators and cell optimization service providers with network performance 

management. It satisfies quality requirements set by the government or by other 

inspection agencies. The weights defined by the AHP method can also be 

adapted to the operators’ needs − for example, by switching priorities from voice 

to data or mobility − making the method customizable. 

The proposed method may also be used to rank a group of cells (e.g., clusters 

or cities), aggregating the selected KPIs and calculating the utility function for 

each defined group, helping to identify performance variations in that group. 

Furthermore, the method can be adapted to rank cells of other radio access tech-

nologies, such as 3G (WCDMA) and 5G NR (New Radio), selecting the most 

important KPIs for each technology and applying the weights and the utility 

function. Hence, the method described in this paper is a framework that can be 

adapted to different performance management systems. 

The above advantages could be verified in a live LTE network. The time to 

detect a failing cell and the number of non-detected failing cells in the network 

were significantly reduced. Furthermore, the weights and KPIs prioritization can 

be changed according to the customer’s priorities, being a flexible framework 

that fits network management. Some disadvantages of the method were also 

perceived during the tests, as sleeping cells, cells hanging resources, and low- 

-traffic cells could not be well-detected. Cells off also become unreachable and 

undetected by the method, which doesn’t replace traditional faulty cell detection 

systems. 
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The proposed approach can contribute significantly to cell performance man-

agement in radio access networks. We have presented a new method of KPI 

aggregation to rank the worst-performing LTE cells based on MCDM methods. 

This paper also contributes to the MCDM literature, introducing its methods  

to SON functionalities and applying them to a large set of non-predetermined 

options. 
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