
Ranking Preserving Hashing for Fast Similarity Search

Qifan Wang, Zhiwei Zhang and Luo Si

Computer Science Department, Purdue University

West Lafayette, IN 47907, US

wang868@purdue.edu, zhan1187@purdue.edu, lsi@purdue.edu

Abstract

Hashing method becomes popular for large scale
similarity search due to its storage and compu-
tational efficiency. Many machine learning tech-
niques, ranging from unsupervised to supervised,
have been proposed to design compact hashing
codes. Most of the existing hashing methods
generate binary codes to efficiently find similar
data examples to a query. However, the ranking
accuracy among the retrieved data examples is
not modeled. But in many real world applications,
ranking measure is important for evaluating the
quality of hashing codes. In this paper, we pro-
pose a novel Ranking Preserving Hashing (RPH)
approach that directly optimizes a popular ranking
measure, Normalized Discounted Cumulative Gain
(NDCG), to obtain effective hashing codes with
high ranking accuracy. The main difficulty in
the direct optimization of NDCG measure is
that it depends on the ranking order of data
examples, which forms a non-convex non-smooth
optimization problem. We address this challenge
by optimizing the expectation of NDCG measure
calculated based on a linear hashing function. A
gradient descent method is designed to achieve the
goal. An extensive set of experiments on two large
scale datasets demonstrate the superior ranking
performance of the proposed approach over several
state-of-the-art hashing methods.

1 Introduction

Similarity search is an important problem in many machine
learning applications. The purpose of similarity search is to
identify similar data examples to a given query example.
Due to the explosive growth of data on the Internet, a huge
amount of data has been generated, which indicates that it
is important to design efficient solutions of similarity search
for large scale data. Traditional similarity search methods
are difficult to be used directly for large scale data since
computing the similarity using the original features (usually
in high dimensional space) exhaustively between the query
example and every candidate example is impractical for large
applications. Recently, hashing methods [Liu et al., 2013;

Kong and Li, 2012a; Wang et al., 2014a; Zhang and Li, 2014;
Bergamo et al., 2011; Kong and Li, 2012b; Xia et al., 2014;
Rastegari et al., 2013; Lin et al., 2014; Wang et al., 2014c;
Zhai et al., 2013; Wang et al., 2013c] have been proposed for
fast similarity search in many large scale problems including
document retrieval [Wang et al., 2013b], object recognition
[Torralba et al., 2008], image matching [Strecha et al., 2012],
etc. These hashing methods design compact binary code
in a low-dimensional space for each data example so that
similar data examples are mapped to similar binary codes.
In the retrieval process, these hashing methods first transform
each query example into its corresponding binary code. Then
similarity search can be simply conducted by calculating
the Hamming distances between the codes of available data
examples and the query, and selecting data examples within
small Hamming distances. In this way, data examples are
encoded and highly compressed within a low-dimensional
binary space, which can usually be loaded in main memory
and stored efficiently. The retrieval process can be conducted
efficiently as the Hamming distance between two codes is
simply the number of bits that differ and can be calculated
using bitwise operation XOR. Existing hashing methods
can be divided into two groups: unsupervised and semi-
supervised/supervised.

Unsupervised hashing methods generate hashing codes
without the requirement of supervised information (e.g.,
tags). Locality-Sensitive Hashing (LSH) [Datar et al., 2004]

is one of the most popular methods, which simply uses
random linear projections to map data examples from a high
dimensional Euclidean space to a low-dimensional binary
space. The work in [Kulis and Grauman, 2009] extended LSH
by exploiting kernel similarity for better retrieval efficacy.
The Principle Component Analysis (PCA) Hashing [Lin et
al., 2010] method utilize the coefficients from the top k
principal components to represent each example, and the
coefficients are further binarized using the median value.
Recently, Spectral Hashing (SH) [Weiss et al., 2008] is
proposed to design compact binary codes with balanced and
uncorrelated constraints. Isotropic Hashing (IsoHash) [Kong
and Li, 2012b] tries to learn an orthogonal matrix to make
the data variance as equal as possible along each projection
dimension. The work in [Wang et al., 2015] proposes to learn
the binary codes on structured data.

Semi-supervised or supervised hashing methods utilize

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3911

some supervised information such as semantic labels for
generating effective hashing codes. Iterative Quantization
(ITQ) method has been proposed in [Gong et al., 2012] that
treats the content features and tags as two different views, and
the hashing codes are then learned by extracting a common
space from these two views. This method has been extended
to multi-view hashing [Gong et al., 2013]. A semi-supervised
hashing (SSH) method is proposed in [Wang et al., 2010]

which utilizes pairwise knowledge between data examples
besides their content features for learning more effective
hashing codes. A kernelized supervised hashing (KSH)
framework proposed in [Liu et al., 2012] imposes pairwise
relationship between data examples to obtain hashing codes.
More recently, a ranking-based supervised hashing (RSH)
[Wang et al., 2013a] method is proposed to leverage listwise
ranking information to preserve the ranking order.

Although existing hashing methods have achieved promis-
ing results, very limited work explores the ranking accuracy,
which is important for evaluating the quality of hashing codes
in real world applications. Consider the following scenario:
given a query example xq and three relevant/similar data
examples x1, x2, x3 but with different relevance values as
r1 > r2 > r3 to the query. Most existing hashing methods
only model the relevance of a data example to a query in
a binary way, i.e., each example is either relevant to the
query or irrelevant. In other words, these methods treat x1,
x2 and x3 as relevant examples to xq with no difference.
But in practice it will be more desirable if x1 could be
presented before x2 and x3 since it is more relevant to xq

than the other two. Some ranking based hashing methods
[Wang et al., 2013a; Yagnik et al., 2011; Zhang et al., 2013]

have been recently proposed to improve the hashing code
performance by modeling the ranking order with respect to
relevance values. However, these methods do not differentiate
the situations where (r1, r2, r3) = (3, 2, 1) and (r1, r2, r3) =
(10, 2, 1) due to their identical ranking orders, i.e., r1 >
r2 > r3. But ideally, the Hamming distance between the
learned hashing codes of x1 and xq should be smaller in
the later situation than in the former one since the relevance
value of x1 to xq is much larger in the later situation (10
versus 3). Therefore, these methods may fail to preserve the
specific relevance values in the learned hashing codes, while
the relevance values are important in evaluating the search
accuracy.

This paper proposes a novel Ranking Preserving Hashing
(RPH) approach that directly optimizes the popular ranking
accuracy measure, Normalized Discounted Cumulative Gain
(NDCG), to learn effective ranking preserving hashing codes
that not only preserves the ranking order but also models
the relevance values of data examples to the queries in the
training data. The main difficulty in direct optimization of
NDCG is that it depends on the rankings of data examples
rather than their hashing codes, which forms a non-convex
non-smooth objective. We then address this challenge by
optimizing the expectation of NDCG measure calculated
based on a linear hashing function to convert the problem into
a smooth and differentiable optimization problem. A gradient
descent method is applied to solve this relaxed problem. We
conduct an extensive set of experiments on two large scale

datasets of both images and texts to demonstrate the superior
search accuracy of the proposed approach over several state-
of-the-art hashing methods.

2 Ranking Preserving Hashing

2.1 Approach Overview

The proposed Ranking Preserving Hashing (RPH) approach
via optimizing NDCG measure mainly contains three ingre-
dients as shown in Figure 1: (1) Ground-truth relevance list
to a query, which is constructed from the training data (the
left part in Fig.1). (2) Ranking positions of data examples
to a query, which are computed based on the hashing codes
(the right part in Fig.1). (3) NDCG value, which measures
the consistency between the ground-truth relevance list and
the calculated ranking positions (the middle part in Fig.1).
In other words, the more the hashing codes agree with the
relevance list, the higher the NDCG value will be. Then the
ranking preserving hashing codes are learned by optimizing
the NDCG measure on the training data.

2.2 Problem Statement

We first introduce the problem of RPH. Assume there
are n data examples in the dataset, denoted as: XXX =
{x1, x2, . . . , xn} ∈ R

d×n, where d is the dimensionality
of the features. In addition, there is a query set QQQ =
{q1, q2, . . . , qm} and for each query example qj , we have a
relevance list of nj data examples from XXX , which can be
written as:

r(qj ,XXX) = (rj1, r
j
2, . . . , r

j
nj
) (1)

where each element r
j
i represents the relevance of data

example x
j
i to the query qj . If rju > rjv , it indicates that data

example xj
u is more relevant or more similar to qj than xj

v and

xj
u should rank higher than xj

v . The goal is to obtain a linear
hashing function f : Rd → {−1, 1}B , which maps each data
example xi to its binary hashing code ci (B is the number of
hashing bits) to maximize the search/ranking accuracy. The
linear hashing function is defined as:

ci = f(xi) = sgn(WWWxi) (2)

where WWW ∈ R
B×d is the coefficient matrix representing the

hashing function and sgn is the sign function. ci ∈ {−1, 1}B

is the binary hashing code of xi.
Note that the ground-truth relevance list can be easily

obtained if a relevance measure between data examples is
predefined, e.g., l2 distance in Euclidean space. On the other
hand, if given the semantic label/tag information, it is also
fairly straightforward to convert semantic labels to relevance
values through counting the number of shared labels between
the query and the data example.

2.3 Problem Formulation

Hashing methods are popularly used for large scale similarity
search. As aforementioned, most of existing hashing methods
only focus on retrieving all relevant or similar data examples
to a given query without exploring the ranking accuracy.

3912

Figure 1: An overview of the proposed RPH approach.

However, in many real world applications, it is desirable and
important to present a more relevant example to a query in
front of a less relevant one. Different from existing hashing
method, in this work, we propose to learn ranking preserving
hashing codes that not only retrieve all possible relevant
examples but at the same time preserve their rankings based
on their relevance values to the query.

Given the binary hashing codes, the ranking positions of
data examples to a query q are determined by the Hamming
distances between their hashing codes and the query code.
Specifically, if a data example is similar or relevant to a
query, then their Hamming distance should be small. In other
words, the higher the rank of a data example to a query, the
smaller the Hamming distance between the hashing codes is.
The Hamming distance between two binary hashing codes is
given by the number of bits that are different between them
and can be calculated as:

Ham(cq, ci) =
1

4
‖cq − ci‖

2 =
1

2
(B − cTq ci) (3)

Then the ranking position π(xi) can be calculated as:

π(xi) = 1 +
n
∑

k=1

I (Ham(cq, ci) > Ham(cq, ck))

= 1 +
n
∑

k=1

I
(

cTq (ck − ci) > 0
)

(4)

where I(s) is the indicator function that outputs 1 when
statement s is true and 0 otherwise. Intuitively, the ranking
position of a data example to a query is equivalent to 1 plus
the number of data examples whose hashing codes are closer
to the query code.

In order to achieve high ranking quality hashing codes, we
want the ranking positions calculated in the Hamming space
in Eqn.4 to be consistent with the ground-truth relevance list
in Eqn.1. Then a natural question to ask is how to measure
the ranking consistency? In this paper, we use a well-known
measure, Normalized Discounted Cumulative Gain (NDCG)
[Qin et al., 2010; Wang et al., 2013d] which is widely
applied in many information retrieval and machine learning

applications, to evaluate the ranking consistency as:

NDCG =
1

Z

n
∑

i=1

2rπ−1(i) − 1

log(1 + i)
=

1

Z

n
∑

i=1

2ri − 1

log(1 + π(xi))

(5)

where Z is the normalization factor so that the maximum
value of NDCG is 1, which can be calculated by ranking
the examples based on their relevance to the query. π(xi)
is the ranking position of xi to the query based on the
Hamming distance of their hashing codes and π−1(i)
denotes the data example at i-th ranking position. ri is the
corresponding relevance value. 1

log(1+i) can be viewed as the

weight of the i-th rank data example, which indicates that
NDCG emphasizes the importance of the higher ranked data
examples than those examples with lower ranks. Therefore,
NDCG is usually truncated at a particular rank level (e.g.,
top K retrieved examples) instead of all n examples. From
the above definition of NDCG, it can be seen that the larger
the NDCG value is, the more the hashing codes agree with
the relevance list, and the maximal NDCG value is obtained
when the ranking positions of data examples are completely
consistent with their relevance values to the query. By
optimizing the NDCG measure, the learned hashing function
not only preserves the ranking order of the data examples but
also ensures that the hashing codes are consistent with the
relevance values in the training data. Then the entire objective
is to minimize the negative summation of NDCG values on all
training queries:

J(WWW) = −
m
∑

j=1

1

Zj

nj
∑

i=1

2r
j

i − 1

log(1 + πj(x
j
i))

(6)

Directly minimizing the objective function in Eqn.6 is
intractable since it depends on the ranking positions of data
examples (Eqn.4), resulting in a non-convex non-smooth
optimization problem. We then address this challenge by

using the expectation of ranking position π̂j(x
j
i) instead of

3913

πj(x
j
i) as:

π̂j(x
j
i) = 1 + E

[

n
∑

k=1

I(cTqj (ck − ci) > 0)

]

= 1 +
n
∑

k=1

Pr
(

cTqj (ck − ci) > 0
)

(7)

where Pr(cTqj (ck − ci) > 0) means the probability that

the ranking position of data example xk is higher than the
position of xi to query qj and we use a logistic function to
model this probability as:

Pr
(

cTqj (ck − ci) > 0
)

=
1

1 + exp(−cTqj (ck − ci))

=
1

1 + exp(−sgn(WWWqj)T (sgn(WWWxk)− sgn(WWWxi)))

(8)

The motivation of the derivation in Eqn.7 and Eqn.8 is
that we approximate the intractable optimization for NDCG
with a tractable probabilistic framework. Firstly, the ranking
position of each data example can be calculated exactly
based on Eqn.4. However, due to the intractability, we model
the problem in a probabilistic framework by computing the
expectation of the ranking position. The using of expectation
to represent the true ranking position is widely adopted
in learning to rank approaches due to its good probability
approximation and computational tractability. Secondly, the
using of logistic function in Eqn.8 to model the probability is
based on the intuition that a data example should be ranked
higher if its hashing code is closer to the query. There are
also other alternatives to model the probability. Due to the
popularity of logistic function used in learning to rank, we
adopt it in our formulation.

The above probability function is still non-differentiable
with respect to WWW due to the embedded sign function.
Therefore, as suggested in [Wang et al., 2013a; 2014b], we
drop off the sign function and use the signed magnitude in
the probability function as:

Pr
(

cTqj (ck − ci) > 0
)

=
1

1 + exp(−qTj WWW
TWWW (xk − xi))

(9)

By substituting the expected ranking position into the
NDCG measure, the final objective in Eqn.6 can be rewritten
as:

min J(WWW) = −
m
∑

j=1

1

Zj

nj
∑

i=1

2r
j

i − 1

log(1 + π̂j(x
j
i))

s.t. WWWWWWT = III

(10)

where WWWWWWT = III is the orthogonality constraint which
ensures the learned hashing codes to be uncorrelated with
each other and hold least redundant information.

2.4 Optimization

We first convert the hard constraint into a soft penalty term
by adding a regularizer to the objective. The reason is that

most of the variance is contained in a few top projections
for many real world datasets. The orthogonality constraint
forces hashing methods to choose those directions with very
low variance progressively, which may substantially reduce
the quality of hashing codes. This issue is also pointed out
in [Liu et al., 2012; Wang et al., 2012]. Therefore, instead
of adding hard orthogonality constraint, we impose a soft
orthogonality/penalty term as:

J(WWW) = −
m
∑

j=1

1

Zj

nj
∑

i=1

2r
j

i − 1

log(1 + π̂j(x
j
i))

+ α‖WWWWWWT − III‖2F

(11)

where α is a trade-off parameter to balance the weights
between the two terms. Although the objective in Eqn.11
is still non-convex, it is smooth and differentiable which
enables gradient descent methods to be applied for efficient
optimization. The gradients of the two terms with respect to
WWW are given below:

dπ̂j(x
j
i)

dWWW
=

nj
∑

k=1

exp(−qTj WWW
TWWW (xk − xi))

WWW
(

(xk − xi)q
T
j + qj(xk − xi)

T
)

(1 + exp(−qTj WWW
TWWW (xk − xi)))2

(12)

d‖WWWTWWW − III‖2F
dWWW

= 4WWWT (WWWWWWT − III) (13)

Then the gradient of
dJ(WWW)
dWWW

can be computed by combining
the above two gradients with some additional mathematical
calculation. With this obtained gradient, L-BFGS quasi-
Newton method [Liu and Nocedal, 1989] is applied to
solve the optimization problem. The full RPH approach is
summarized in Algorithm 1.

Algorithm 1 Ranking Preserving Hashing (RPH)

Input: Training examples XXX , query examples QQQ and param-
eters α.

Output: Hashing function WWW and hashing codes CCC.

1: Compute the relevance vector r
j
i in Eqn.1.

2: Initialize WWW .
3: repeat Gradient Descent
4: Compute the gradient in Eqn.12.
5: Compute the gradient in Eqn.13.
6: Update WWW by optimizing the objective function.
7: until the solution converges
8: Compute the hashing codes CCC using Eqn.2.

2.5 Discussion

The idea of modeling the NDCG measure to maximize
the search/ranking accuracy is also utilized in learning
to rank [Valizadegan et al., 2009; Weimer et al., 2007].
However, these learning to rank methods are not based on
binary hashing codes, but on learning effective document
permutation. Unlike in our formulation, the NDCG measure
modeled in learning to rank methods does not involve linear-
projection based hashing function, on which the ranking

3914

NUSWIDE Flickr1m
Methods NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20

RPH 0.2570.2570.257 0.2490.2490.249 0.2340.2340.234 0.3130.3130.313 0.2980.2980.298 0.2830.2830.283

RSH 0.242 0.238 0.226 0.288 0.271 0.259

KSH 0.223 0.217 0.198 0.265 0.252 0.237

SSH 0.216 0.209 0.195 0.251 0.242 0.230

SH 0.193 0.185 0.172 0.250 0.234 0.221

Table 1: Results of NDCG@K using Hamming Ranking on both datasets, with 64 hashing bits.

position is determined. Moreover, we need to find the
expected ranking position of each data example according to
the Hamming distance between the hashing codes, which is
very different to learning to rank methods.

The learning algorithm of RPH for deriving the optimal
hashing function is fairly fast. During each iteration of the
gradient descent method, we need to compute the gradients in
Eqns.12 and 13, which involves some matrix multiplications.
The complexity for calculating the gradient in Eqn.12 is
bounded by O(mnjdB) since both WWW (xk −xi) and WWW (xk −
xi)q

T
j requires O(dB). The complexity for calculating the

gradient in Eqn.13 is simply O(d2B) which only involves
WWWWWWT . Therefore, the total complexity of each iteration of
the gradient descent method is O(mn̂dB + d2B) and the
learning algorithm is fairly scalable since its time complexity
is linear in the number of training queries m and the average
number of data examples n̂ associated with each query.

3 Experiment

3.1 Datasets and Setting

We evaluate proposed research on two image benchmarks:
NUSWIDE and Flickr1m, which have been widely used in
the evaluation of hashing methods. NUSWIDE1 [Chua et al.,
2009] is created by NUS lab for evaluating image retrieval
techniques. It contains 270k images associated with about
5k different tags. We use a subset of 110k image examples
with the most common 1k tags in our experiment. Flickr1m2

[Huiskes et al., 2010] is collected from Flicker images for
image annotation and retrieval tasks. This dataset contains
1 million image examples associated with more than 7k
unique semantic tags. A subset of 250k image examples with
the most common 1k tags is used in our experiment. 512-
dimensional GIST descriptors [Oliva and Torralba, 2001] are
used as image features. Since both datasets are associated
with multiple semantic labels/tags, the ground-truth relevance
values can be naturally derived based on the number of shared
semantic labels between data examples.

We implement our algorithm using Matlab on a PC with
Intel Duo Core i5-2400 CPU 3.1GHz and 8GB RAM. The
parameter α is tuned by cross validation through the grid
{0.01, 0.1, 1, 10, 100} and we will discuss more details on
how it affects the performance of our approach later. For
each experiment, we randomly choose 1k examples as testing
queries. Within the remaining data examples, we randomly

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://press.liacs.nl/mirflickr/

sample 500 training queries and for each query, we randomly
sample 1000 data examples to construct the ground-truth
relevance list. We will discuss the performance with different
number of training queries later in our experiments. Finally,
we repeat each experiment 10 times and report the result
based on the average over the 10 runs.

The proposed RPH approach is compared with four
different hashing methods, including Spectral Hashing (SH)
[Weiss et al., 2008], Semi-Supervised Hashing (SSH) [Wang
et al., 2010], Kernel Supervised Hashing (KSH) [Liu et al.,
2012] and Ranking-based Supervised Hashing (RSH) [Wang
et al., 2013a]. SH is an unsupervised method and does not
use any label information. We use the standard settings in
[Weiss et al., 2008] in our experiments. For SSH and KSH,
we randomly sample 2k data examples and use their ground-
truth labels to generate pairwise similarity matrix as part of
the training data. Gaussian RBF kernel is used in KSH. To get
a fair comparison, for RSH, we randomly sample 500 query
examples and 1000 data examples to compute the ground-
truth ranking lists.

3.2 Evaluation Metrics

To conduct fair evaluation, we follow two criteria which are
commonly used in the literature: Hamming Ranking and
Hash Lookup. Hamming Ranking ranks all the candidate
examples according to their Hamming distance from the
query and the top K examples are returned as the desired
neighbors. We use NDCG@K to evaluate the ranking quality
of the top K retrieved examples. Hash Lookup returns
all the examples within a certain Hamming radius r of the
query. We use average cumulative gain (ACG) to measure
the quality of these returned examples, which is calculated
as: ACGr = 1

|Nr|

∑

xi∈Nr
ri, where Nr is the set of the

retrieved data examples within a Hamming radius r and ri
is the relevance value of a retrieved data example xi. A
hamming radius of r = 2 is used to retrieve the neighbors
in the experiments.

3.3 Results and Discussion

We first report the results of NDCG@5, NDCG@10 and
NDCG@20 of different hashing methods using Hamming
Ranking on two datasets with 64 hashing bits in Table
1. From these comparison results, it can be seen that RPH
gives the overall best performance among all five hashing
methods on both datasets. For example, the performance of
our method boosts about 4.6% on NUSWIDE dataset, with
9.9% improvement on Flickr1m dataset compared to RSH

3915

Figure 2: Performance evaluation on both datasets with
different number of hashing bits. (a)-(b): NDCG@10 using
Hamming Ranking. (c)-(d): ACG with Hamming radius 2
using Hash Lookup.

under NDCG@10 measure. We can see from Table 1 that
SH does not perform well in all cases. This is because SH
is an unsupervised hashing method which does not utilize
any supervised information into learning hashing codes. For
methods SSH and KSH, they both achieve better results
than SH since these methods incorporate some pairwise
knowledge between data examples in addition to the content
features for learning effective hashing codes. However, the
ranking order is not preserved in the learned hashing codes
of these two methods and thus, the ranking-based supervised
hashing method RSH which models the listwise ranking
information can generate more accurate hashing codes with
larger NDCG values than SSH and KSH. On the other hand,
RPH method substantially outperforms RSH since it directly
optimizes the NDCG measure to learn high quality hashing
codes that not only preserve the ranking order but also
preserve the relevance values of data examples to the query
in the training data. Therefore, the search/ranking accuracy
can be maximized which is coincides with our expectation.

The second set of experiments evaluate the performance
of different hashing methods by varying the number of
hashing bits in the range of {16, 32, 64, 128, 256}. The
results of NDCG@10 using Hamming Ranking on both
datasets are reported in Fig.2(a)-(b), with the ACG results of
Hamming radius 2 using Hash Lookup shown in Fig.2(c)-
(d). Not surprisingly, from Fig.2(a)-(b) we can see that the
performance of different methods improves when the number
of hashing bits increases from 16 to 256 and our RPH
method outperforms the other compared hashing methods
which is consistent with the results in Table 1. However,
we can also observe from Fig.2(c)-(d) that the ACG result

Figure 3: Parameter sensitivity results of NDCG@10 on both
datasets with 64 hashing bits.

of most compared methods decreases when the number of
hashing bits increases after 64. The reason is that when
using longer hashing bits, the Hamming space becomes
increasingly sparse and very few data examples fall within
the Hamming ball of radius 2, resulting in many queries
with empty returns (we count the ACG as zero in this case).
Similar behavior is also observed in [Wang et al., 2013a;
2014b]. In this situation, however, the ACG results of RPH
are still consistently better than other baselines.

To prove the robustness of the proposed method, we
conduct parameter sensitivity experiments on both datasets.
In each experiment, we tune the trade-off parameter α from
the grid {0.5, 1, 2, 4, 8, 32, 128}. We report the results of
NDCG@10 with 64 hashing bits in Fig.3. It is clear from
these experimental results that the performance of RPH
is relatively stable with respect to α in a wide range of
values. The results also prove that using soft penalty with an
appropriate weight parameter is better than enforcing the hard
orthogonality constraint (corresponds to infinite α).

4 Conclusion

This paper proposes a novel Ranking Preserving Hashing
(RPH) approach that directly optimizes the ranking accuracy
measure, Normalized Discounted Cumulative Gain (NDCG).
We handle the difficulty of non-convex non-smooth optimiza-
tion by using the expectation of NDCG measure calculated
based on the linear hashing function and then solve the
relaxed smooth optimization problem with a gradient descent
method. Experiments on two large scale datasets demonstrate
the superior performance of the proposed approach over
several state-of-the-art hashing methods. In future, we plan
to investigate generalization error bound for the proposed
learning method. We also plan to apply some sequential
learning approach to accelerate the training speed.

5 Acknowledgments

This work is partially supported by NSF research grants IIS-
0746830, DRL-0822296, CNS-1012208, IIS-1017837, CNS-
1314688 and a research grant from Office of Naval Research
(ONR-11627465). This work is also partially supported by
the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-
0939370.

3916

References
[Bergamo et al., 2011] Alessandro Bergamo, Lorenzo Torresani,

and Andrew W. Fitzgibbon. Picodes: Learning a compact code
for novel-category recognition. In NIPS, pages 2088–2096, 2011.

[Chua et al., 2009] Tat-Seng Chua, Jinhui Tang, Richang Hong,
Haojie Li, Zhiping Luo, and Yantao Zheng. Nus-wide: a real-
world web image database from national university of singapore.
In CIVR, 2009.

[Datar et al., 2004] Mayur Datar, Nicole Immorlica, Piotr Indyk,
and Vahab S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Symposium on Computational
Geometry, pages 253–262, 2004.

[Gong et al., 2012] Yunchao Gong, Svetlana Lazebnik, Albert
Gordo, and Florent Perronnin. Iterative quantization: A
procrustean approach to learning binary codes for large-scale
image retrieval. IEEE TPAMI, 2012.

[Gong et al., 2013] Yunchao Gong, Qifa Ke, Michael Isard, and
Svetlana Lazebnik. A multi-view embedding space for modeling
internet images, tags, and their semantics. IJCV, 2013.

[Huiskes et al., 2010] Mark J. Huiskes, Bart Thomee, and
Michael S. Lew. New trends and ideas in visual concept
detection: the mir flickr retrieval evaluation initiative. In
Multimedia Information Retrieval, pages 527–536, 2010.

[Kong and Li, 2012a] Weihao Kong and Wu-Jun Li. Double-bit
quantization for hashing. In AAAI, 2012.

[Kong and Li, 2012b] Weihao Kong and Wu-Jun Li. Isotropic
hashing. In NIPS, pages 1655–1663, 2012.

[Kulis and Grauman, 2009] Brian Kulis and Kristen Grauman.
Kernelized locality-sensitive hashing for scalable image search.
In ICCV, pages 2130–2137, 2009.

[Lin et al., 2010] Ruei-Sung Lin, David A. Ross, and Jay Yagnik.
Spec hashing: Similarity preserving algorithm for entropy-based
coding. In CVPR, pages 848–854, 2010.

[Lin et al., 2014] Guosheng Lin, Chunhua Shen, and Jianxin Wu.
Optimizing ranking measures for compact binary code learning.
In ECCV, pages 613–627, 2014.

[Liu and Nocedal, 1989] Dong C. Liu and Jorge Nocedal. On
the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

[Liu et al., 2012] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang,
and Shih-Fu Chang. Supervised hashing with kernels. In CVPR,
pages 2074–2081, 2012.

[Liu et al., 2013] Xianglong Liu, Junfeng He, and Bo Lang.
Reciprocal hash tables for nearest neighbor search. In AAAI,
2013.

[Oliva and Torralba, 2001] Aude Oliva and Antonio Torralba. Mod-
eling the shape of the scene: A holistic representation of the
spatial envelope. IJCV, 42(3):145–175, 2001.

[Qin et al., 2010] Tao Qin, Tie-Yan Liu, and Hang Li. A general
approximation framework for direct optimization of information
retrieval measures. Inf. Retr., 13(4):375–397, 2010.

[Rastegari et al., 2013] Mohammad Rastegari, Jonghyun Choi,
Shobeir Fakhraei, Daume Hal, and Larry S. Davis. Predictable
dual-view hashing. In ICML (3), pages 1328–1336, 2013.

[Strecha et al., 2012] Christoph Strecha, Alexander A. Bronstein,
Michael M. Bronstein, and Pascal Fua. Ldahash: Improved
matching with smaller descriptors. IEEE TPAMI, 34(1):66–78,
2012.

[Torralba et al., 2008] Antonio Torralba, Robert Fergus, and
William T. Freeman. 80 million tiny images: A large data set
for nonparametric object and scene recognition. IEEE TPAMI,
30(11):1958–1970, 2008.

[Valizadegan et al., 2009] Hamed Valizadegan, Rong Jin, Ruofei
Zhang, and Jianchang Mao. Learning to rank by optimizing ndcg
measure. In NIPS, pages 1883–1891, 2009.

[Wang et al., 2010] Jun Wang, Ondrej Kumar, and Shih-Fu Chang.
Semi-supervised hashing for scalable image retrieval. In CVPR,
pages 3424–3431, 2010.

[Wang et al., 2012] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang.
Semi-supervised hashing for large-scale search. IEEE TPAMI,
34(12):2393–2406, 2012.

[Wang et al., 2013a] Jun Wang, Wei Liu, Andy Sun, and Yu-Gang
Jiang. Learning hash codes with listwise supervision. In ICCV,
2013.

[Wang et al., 2013b] Qifan Wang, Dan Zhang, and Luo Si. Seman-
tic hashing using tags and topic modeling. In SIGIR, pages 213–
222, 2013.

[Wang et al., 2013c] Qifan Wang, Dan Zhang, and Luo Si.
Weighted hashing for fast large scale similarity search. In CIKM,
pages 1185–1188, 2013.

[Wang et al., 2013d] Yining Wang, Liwei Wang, Yuanzhi Li,
Di He, and Tie-Yan Liu. A theoretical analysis of ndcg type
ranking measures. In COLT, pages 25–54, 2013.

[Wang et al., 2014a] Qifan Wang, Bin Shen, Shumiao Wang, Liang
Li, and Luo Si. Binary codes emmbedding for fast image tagging
with incomplete labels. In ECCV, 2014.

[Wang et al., 2014b] Qifan Wang, Luo Si, and Dan Zhang. Learn-
ing to hash with partial tags: Exploring correlation between tags
and hashing bits for large scale image retrieval. In ECCV, pages
378–392, 2014.

[Wang et al., 2014c] Qifan Wang, Luo Si, Zhiwei Zhang, and Ning
Zhang. Active hashing with joint data example and tag selection.
In SIGIR, 2014.

[Wang et al., 2015] Qifan Wang, Luo Si, and Bin Shen. Learning
to hash on structured data. In AAAI, 2015.

[Weimer et al., 2007] Markus Weimer, Alexandros Karatzoglou,
Quoc V. Le, and Alex J. Smola. Cofi rank - maximum margin
matrix factorization for collaborative ranking. In NIPS, 2007.

[Weiss et al., 2008] Yair Weiss, Antonio Torralba, and Robert
Fergus. Spectral hashing. In NIPS, pages 1753–1760, 2008.

[Xia et al., 2014] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu,
and Shuicheng Yan. Supervised hashing for image retrieval via
image representation learning. In AAAI, pages 2156–2162, 2014.

[Yagnik et al., 2011] Jay Yagnik, Dennis Strelow, David A. Ross,
and Ruei-Sung Lin. The power of comparative reasoning. In
ICCV, pages 2431–2438, 2011.

[Zhai et al., 2013] Deming Zhai, Hong Chang, Yi Zhen, Xianming
Liu, Xilin Chen, and Wen Gao. Parametric local multimodal
hashing for cross-view similarity search. In IJCAI, 2013.

[Zhang and Li, 2014] Dongqing Zhang and Wu-Jun Li. Large-
scale supervised multimodal hashing with semantic correlation
maximization. In AAAI, pages 2177–2183, 2014.

[Zhang et al., 2013] Lei Zhang, Yongdong Zhang, Jinhui Tang,
Ke Lu, and Qi Tian. Binary code ranking with weighted hamming
distance. In CVPR, pages 1586–1593, 2013.

3917

