
Ranking Services Using Fuzzy HEX Programs�

Stijn Heymans1,2 and Ioan Toma3

1 Knowledge-Based Systems Group, Institute of Information Systems, Vienna
University of Technology, Austria

heymans@kr.tuwien.ac.at
2 Computational Web Intelligence, Department of Applied Mathematics

and Computer Science, Ghent University, Belgium
3 Semantic Technology Institute (STI) Innsbruck, University of Innsbruck, Austria

ioan.toma@sti-innsbruck.at

Abstract. The need to reason with knowledge expressed in both Logic
Programming (LP) and Description Logics (DLs) paradigms on the Se-
mantic Web lead to several integrating formalisms, e.g., Description
Logic programs (dl-programs) allow a logic program to retrieve results
from and feed results to a DL knowledge base. Two functional extensions
of dl-programs are hex programs and fuzzy dl-programs. The former ab-
stract away from DLs, allowing for general external queries, the latter
deal with the uncertain, vague, and inconsistent nature of knowledge on
the Web by means of fuzzy logic mechanisms. In this paper, we gener-
alize both hex programs and fuzzy dl-programs to fuzzy hex programs:
a LP-based paradigm, supporting both fuzziness as well as reasoning
with external sources. We define basic syntax and semantics and ana-
lyze the framework semantically, e.g., by investigating the complexity.
Additionally, we provide a translation from fuzzy hex programs to hex
programs, enabling an implementation via the dlvhex reasoner. Finally,
we illustrate the use of fuzzy hex programs for ranking services by using
them to model non-functional properties of services and user preferences.

1 Introduction

Logic Programming (LP) [2] and Description Logics (DLs) [1] are two of the main
underlying knowledge representation and reasoning paradigms of the Semantic
Web, a machine-understandable instead of just machine-readable Web [4]. Logic
Programming underlies, for example, several variants of the Web Service Model-
ing Language WSML [6] and Description Logics form the basis of the ontology
language OWL-DL [3].

As the Semantic Web is about understanding knowledge and automatizing
inferences from this knowledge, it is not surprising that there is a lot of interest

� Stijn Heymans is partially supported by the Austrian Science Fund (FWF) under
project P20305-N18 and the Fund for Scientific Research Flanders (FWO Vlaan-
deren) under project 3G010107. Ioan Toma is supported by the EU FP7 IST project
27867, SOA4ALL - Service Oriented Architectures For All.

D. Calvanese and G. Lausen (Eds.): RR 2008, LNCS 5341, pp. 181–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

182 S. Heymans and I. Toma

in the integration of these paradigms (see, e.g., [5] for an overview). One of these
integrating approaches are Description Logic Programs, dubbed dl-programs [11],
that take a LP view on a DL knowledge base: logic programs are able to query
DL knowledge bases via dl-atoms. Moreover, dl-atoms can stream knowledge
from the logic program to the DL knowledge base, where it can be used to make
additional DL inferences (which can then in turn be used in the LP deduction
process). In effect, there is a bi-directional stream of information between the
logic program and the DL knowledge base.

In [10], dl-programs were generalized to hex programs. hex programs combine
higher-order reasoning - naively put, they allow for variables to appear in the
predicate position, enabling thus meta-reasoning over concepts - and external
atoms. The latter generalize dl-atoms as they do not just access DL knowledge
bases but are associated with any external function - one can use them, e.g., to
query RDF repositories or SQL databases.

Another extension to dl-programs was inspired by the uncertainty, vagueness,
and inconsistency of the (Semantic) Web. As anyone can produce knowledge on
the Web, it is impossible to ensure that all knowledge on the Web is logically true.
Moreover, often there is a need (as there is in real-life) to express vague concepts,
such as very, beautiful, or old/young; a need that is not met by traditional two-
valued logics like LP or DLs. And finally, the Web is inconsistent: source A
might have another (contradicting) opinion than source B on a topic. Together
with the need for integrating approaches, this lead to so-called fuzzy dl-programs
[14,12]. Fuzzy dl-programs extend dl-programs by allowing to query fuzzy DLs
[17] and by using fuzzy dl-rules on the LP side.

Intuitively, fuzzy dl-rules use combination strategies instead of the usual con-
junction, disjunction, and negation in normal LP rules. Those combination strate-
gies do nothing else than computing a resulting truth value based on two (or one,
in the case of the negation strategy) input truth values, where truth values, in
contrast with two-valued logics, range over the interval [0, 1]. For example, in nor-
mal LP, a rule fail ← not study, smart where study is false (or 0) and smart is
true, results in a truth value of 1 for fail . A fuzzy variant could be fail ←⊗G

not�L study ⊗G smart ≥ 0.5 where ⊗G is the Gödel conjunction (which takes
the minimum of two values) and �L is the Lukasiewizc negation (which takes the
complement of a value w.r.t. 1). If study has a fuzzy value of 0.4 and smart of 0.9,
we would have that not�L study has a value of 0.6. The value 0.5 indicates to what
extent the rule should be satisfied. Using ⊗G we would have that the value of the
body (the part to the right of ←) has to be 0.5 ⊗G 0.6 ⊗G 0.9 = 0.5 and that
the value of fail should be at least this value (0.5) in order to make the fuzzy rule
satisfied. Note that the value 0.5 that indicates to which degree a rule should be
satisfied is used to calculate the value of the body.

In this paper, we generalize both extensions - from dl-programs to hex pro-
grams and from dl-programs to fuzzy dl-programs - to fuzzy hex programs.
Fuzzy hex programs thus support higher-order reasoning, reasoning with exter-
nal sources like DL knowledge bases or in general with external functions (e.g.,
sum, max), and fuzzy reasoning. We establish the basic syntax and semantics

Ranking Services Using Fuzzy Hex Programs 183

of such programs and show that the complexity of disjunction-free fuzzy hex
programs, under equal conditions for the external predicates and appropriately
behaving fuzzy combination strategies, is the same as for disjunction-free hex
programs, namely NEXPTIME-complete.

We furthermore establish a translation from fuzzy hex programs to hex pro-
grams, basically writing the combination strategies as external predicates that
can be computed by external functions. This enables reasoning with fuzzy hex
programs using the dlvhex [9] reasoner for hex programs.

To show the applicability of fuzzy hex programs, we use them to describe
non-functional properties of Web services, enabling better ranking of services.
A service is a provision of value to a client [15], e.g., the delivery of a package
with some specified constraints. Service ranking is then the process which gen-
erates an ordered list of services out of the candidate services set according to
user’s preferences. As ranking criteria, specified by the user, various aspects of a
service description can be used. We differentiate between (1) functional, (2) be-
havioral, and (3) non-functional. The functional description contains the formal
specification of what exactly the service can do. The behavioral description is
about how the functionality of the service can be achieved in terms of interaction
with the service as well as in terms of functionality required from other services.
Finally, the non-functional description captures constraints over the previous
two [7]. For example, in case of a shipping service, invoking its functionality
(shipping a package) might be constrained by paying a certain amount (price as
non-functional property).

As part of our previous work [18], we have proposed an approach for the service
ranking problem based on the evaluation of non-functional properties such as
price, response time, liability, etc. Rules encoding conditions and constraints
over multiple non-functional properties are used to model both users and service
provides perspectives. Although this modeling approach is useful for modeling
some of the multitude of non-functional properties such as liability/contractual
obligations, for properties, like price or delivery time, a more natural choice to
express requests and preferences requires a formalism for handling vagueness and
imprecision, e.g., imagine a provider advertising ”the cheapest service”. Another
issue is that service descriptions, besides fuzzy information, often need to refer
to external libraries and data sources. Fuzzy hex programs address exactly these
requirements.

The remainder of the paper starts with an introduction to hex programs
in Section 2. Section 3 defines fuzzy hex programs with its basic properties.
In Section 4, we show that fuzzy hex programs generalize both hex programs
and fuzzy dl-programs, and Section 5 gives complexity results for fuzzy hex
programs as well as a translation from fuzzy hex programs to hex programs,
allowing an implementation using dlvhex. Section 6 contains an application of
fuzzy hex programs to the problem of ranking services and we give directions
for further research in Section 7. Proofs of the key results can be found at
http://www.kr.tuwien.ac.at/staff/heymans/fuzzy-hex-proofs.pdf.

http://www.kr.tuwien.ac.at/staff/heymans/fuzzy-hex-proofs.pdf

184 S. Heymans and I. Toma

2 Preliminaries: HEX Programs

We introduce hex programs as in [10]. Assume the existence of 3 mutually dis-
joint sets C,X , and G, consisting of constants, variables, and external predicates
respectively. A term is either a constant a ∈ C or a variable X ∈ X , denoted with
symbols starting with lower-case or upper-case letters respectively. A higher-order
atom is of the form t0(t1, . . . , tn) for terms ti, 0 ≤ i ≤ n. If t0 is a constant, we
call t0(t1, . . . , tn) an ordinary atom. An external predicate from G starts with the
symbol #, e.g., #g or #sqrt , where each external predicate has an associated in-
put and output arity. An external atom is of the form #g[t1, . . . , tn](s1, . . . , sm)
where t1, . . . , tn is the input list of terms for the input arity n of #g and s1, . . . , sm

is the output list of terms for the output arity m of #g.
A rule r is of the form:

a1 ∨ . . . ∨ ak ← b1 , . . . , bn ,not bn+1 , . . . ,not bm (1)

where a1, . . . , ak are higher-order atoms, and b1, . . . , bm are higher-order or ex-
ternal atoms. The head of r is head(r) = {a1, . . . , ak}, and the body of r is
body(r) = body+(r) ∪ body−(r) with body+(r) = {b1, . . . , bn} and body−(r) =
{bn+1, . . . , bm}. A rule is ordinary if it only contains ordinary atoms. If k = 1
we call the rule disjunction-free. A (disjunction-free) hex program is a finite set
P of (disjunction-free) rules.

An atom (higher-order or external), rule, or program, is ground if no variables
appear in it. A grounding of a program P is a ground program gr(P) that
contains all possible ground rules resulting from replacing the variables in those
rules with all possible constants from C. The Herbrand Base of P , denoted BP ,
is the set of all possible ground versions of atoms (higher-order or external)
occuring in P using constants of C. Note that the Herbrand Base only contains
ordinary atoms and external atoms. If C, X , or G are not explicitly given, we
assume they are implicitly given by the program P under consideration.

An interpretation I of a program P is a set I ⊆ BP of ordinary atoms (i.e., no
external atoms). We say that I is a model of a ground ordinary atom a, denoted
I |= a, if a ∈ I.

We associate with every external predicate symbol #g ∈ G, an (n +m +1)-ary
function f#g , that assigns a tuple (I, y1, . . . , yn, x1, . . . , xm) to 0 or 1, with n the
input arity of #g and m the output arity of #g, I an interpretation, and yi, xj con-
stants. I is then amodel of a ground external atom a = #g[y1, . . . , yn](x1, . . . , xm),
denoted I |= a, if and only if f#g(I, y1, . . . , yn, x1, . . . , xm) = 1. For a ground atom
(possibly external) a, we have I |= not a iff I �|= a. This definition extends for sets
containing ground ordinary and ground external atoms as usual.

We say that a ground rule r is satisfied by I, denoted I |= r, if, whenever
I |= body+(r) ∪ not body−(r), we have that there is a ai, 1 ≤ i ≤ k, such that
I |= ai. For a hex program P , I is a model of P , denoted I |= P , iff I |= r for each
r ∈ gr(P). We define the FLP-reduct P I of a program w.r.t an interpretation I
as all rules r ∈ gr(P) such that I |= body+(r)∪not body−(r). An interpretation
I of P is an answer set of P iff I is a minimal model of P I .

Ranking Services Using Fuzzy Hex Programs 185

3 Fuzzy HEX Programs

We use the definition of fuzzy dl-rules from [14,12] as an inspiration to extend
hex programs to fuzzy hex programs, and we start by identifying different
combination strategies :

– The negation strategy � : [0, 1] → [0, 1], where we call �v, v ∈ [0, 1], the
negation of v. The negation strategy has to be antitonic, i.e., if v1 ≤ v2,
then �v1 ≥ �v2. Furthermore, we have that �1 = 0 and �0 = 1. Particular
negation strategies ([17]) are, for example, the Lukasiewizc negation �L,
defined by �Lx = 1 − x, or the Gödel negation �G, defined by �0 = 1 and
�x = 0 if x > 0.

– The conjunction strategy ⊗ : [0, 1] × [0, 1] → [0, 1], where we call v1 ⊗ v2,
v1, v2 ∈ [0, 1], the conjunction of v1 and v2. The conjunction strategy has to
be commutative, associative, and monotone (if v1 ≤ v′1 and v2 ≤ v′2, then
v1⊗v2 ≤ v′1⊗v′2). Furthermore, we need to have that v⊗1 = v and v⊗0 = 0.
Particular conjunction strategies (also called t-norms [17]) are, for example,
the Lukasiewizc conjunction ⊗L, defined by x ⊗L y = max (x + y − 1, 0),
the Gödel conjunction ⊗G, defined by x⊗G y = min (x, y), and the product
conjunction ⊗P , defined by x⊗P y = x.y.

– The disjunction strategy ⊕ : [0, 1] × [0, 1] → [0, 1], where we call v1 ⊕ v2,
v1, v2 ∈ [0, 1], the disjunction of v1 and v2. The disjunction strategy has
to be commutative, associative, and monotone (if v1 ≤ v′1 and v2 ≤ v′2,
then v1 ⊕ v2 ≤ v′1 ⊕ v′2). Furthermore, we need to have that v ⊕ 1 = 1 and
v⊕0 = v. Particular disjunction strategies (also called s-norms [17]) are, for
example, the Lukasiewizc disjunction ⊕L, defined by x⊕Ly = min (x + y, 1),
the Gödel disjunction ⊕G, defined by x ⊕G y = max (x, y), and the product
disjunction ⊕P , defined by x⊕P y = x + y − x.y.

Definition 1. A fuzzy rule r is of the form

a1 ⊕1 . . .⊕k−1 ak ←⊗0 b1 ⊗1 . . .⊗n−1 bn

⊗nnot�n+1 bn+1 ⊗n+1 . . .⊗m−1 not�m bm ≥ v (2)

where a1, . . . , ak are higher-order atoms, b1, . . . , bm are higher-order, external
atoms, or elements from [0, 1], and v ∈ [0, 1]. The head and body of r is
defined as before. A (disjunction-free) fuzzy hex program is a finite set P of
(disjunction-free) fuzzy rules.

Note that a fuzzy rule can contain different negation strategies; the order of
evaluation of such strategies will be left-to-right.

Ground atoms, rules, programs, as well as a grounding are defined similarly
as for hex programs.

A fuzzy interpretation of a fuzzy hex program is a mapping I : OP ⊆ BP →
[0, 1] where OP are the ordinary atoms in BP . Define I ⊆ J for fuzzy interpre-
tations I and J of P , if I(a) ≤ J(a) for each a ∈ OP . We call I minimal if
there is no interpretation J �= I such that J ⊆ I. The fuzzy value vI of a ground
ordinary atom a w.r.t. an interpretation I is vI(a) = I(a).

186 S. Heymans and I. Toma

We associate with every external predicate symbol #g ∈ G, an (n + m + 1)-
ary function f#g , that assigns a tuple (I, y1, . . . , yn, x1, . . . , xm) to [0, 1], with n
the input arity of #g and m the output arity of #g, I a fuzzy interpretation, and
yi, xj constants. The fuzzy value vI of a ground external atom a = #g[y1, . . . , yn]
(x1, . . . , xm) w.r.t. an interpretation I is vI(a) = f#g(I, y1, . . . , yn, x1, . . . , xm).
We complete the definition of vI by defining it for values v from [0, 1] as
vI(v) = v.

A fuzzy interpretation I satisfies a ground fuzzy rule (2) iff

vI(a1)⊕1 . . .⊕k−1 vI(ak) ≥ v ⊗0 vI(b1)⊗1 . . .⊗n−1 vI(bn)
⊗n�n+1vI(bn+1)⊗n+1 . . .⊗m−1 �mvI(bm) . (3)

A fuzzy interpretation I is a fuzzy model1 of a fuzzy hex program P if it satisfies
every rule in gr(P).

The FLP-reduct P I of a fuzzy hex program w.r.t a fuzzy interpretation I are
all rules r ∈ gr (P) of the form (2) where

v ⊗0 vI(b1)⊗1 . . .⊗n−1 vI(bn)⊗n�n+1vI(bn+1)⊗n+1 . . .⊗m−1 �mvI(bm) > 0 .

We can then define fuzzy answer sets as follows:

Definition 2. Let P be a fuzzy hex program. A fuzzy interpretation I of P is
a fuzzy answer set of P iff I is a minimal fuzzy model of P I .

Example 1. Take P with rules a←⊗P not�L b ≥ 1 and b←⊗P not�L a ≥ 1 . One
can check that a fuzzy interpretation I1 with I1(a) = 0.8 and I1(b) = 0 is not
a model of P and thus not a fuzzy answer set. On the other hand, I2 with
I2(a) = 0.6 and I2(b) = 0.4 is a fuzzy answer set.

Example 2. Take the program P with rule a←⊗P not�L a ≥ 1 . Although the
normal program a ← not a has no answer sets, the fuzzy version of this program
has a fuzzy answer set I where I(a) = 1

2 , i.e., if one is equally unsure about a
as about not a, the contradicting rule is no longer relevant.

A positive fuzzy hex program is a program without negation strategies.
We have that for positive programs the FLP-reduct has no influence on the

fuzzy answer sets:

Proposition 1. Let P be a positive fuzzy hex program. Then, M is a fuzzy
answer set of P iff M is a minimal fuzzy model of P .

Proposition 1 does not necessarily hold if P is not positive as one can see from the
fuzzy program a←⊗P not� a ≥ 1 where we define � as follows: �x = 1 for x <
0.1 and x = 0 for x ≥ 0.1.

1 We will omit the modifier fuzzy if it is clear from the context.

Ranking Services Using Fuzzy Hex Programs 187

4 Fuzzy HEX Programs Generalize HEX Programs and
Fuzzy dl-Programs

To show that hex programs are properly embedded in fuzzy hex programs
we introduce a crisp conjunction x ⊗c y = 1 if x = 1 ∧ y = 1 and 0 else, a
crisp disjunction x ⊕c y = 1 if x = 1 ∨ y = 1 and 0 else, and a crisp negation
�cx = 0 if x = 1 and 1 else.

Proposition 2. The crisp conjunction (disjunction, negation) is a well-defined
conjunction (disjunction, negation) strategy.

For a hex program P we define its fuzzy version P f as follows:

Definition 3. Let P be a hex program. Then, P f consists of the rules

a1 ⊕c . . .⊕c ak ←⊗c bf
1 ⊗c . . .⊗c bf

n⊗cnot�c bf
n+1 ⊗c . . .⊗c not�c bf

m ≥ 1 (4)

for every rule of the form (1) in P , where bf
i , 1 ≤ i ≤ m, is defined such that

bf
i = bi when bi is not external, and, if bi = #g[t1, . . . , tn](s1, . . . , sm) then bf

i =
#gf [t1, . . . , tn](s1, . . . , sm) where #gf is associated with the external function f#gf

that assigns, for any fuzzy interpretation I, the tuple (I, y1, . . . , yn, x1, . . . , xm) to
the value f#g(I ′, y1, . . . , yn, x1, . . . , xm) where a ∈ I ′ iff I(a) = 1, a ∈ OP .

Proposition 3. Let P be a hex program. Then, M is an answer set of P iff
Mf is a fuzzy answer set of P f where Mf : OP → [0, 1] is such that Mf (a) = 1
if a ∈M and Mf (a) = 0 otherwise.

Proposition 3 shows that fuzzy hex programs are layered on hex programs.
Description Logic Programs (dl-programs for short) [11] is a formalism that

allows to combine DL knowledge bases with logic programs. Roughly, in a dl-
program the logic program can query the DL knowledge base, while possibly
feeding deductions from the logic program as input to it. As dl-programs can be
embedded in hex programs [10], and the fuzzy rules we consider are syntactically
and semantically similar in spirit as the fuzzy rules used in [12], it comes as no
surprise that the so-called fuzzy dl-programs from [12] can be embedded in fuzzy
hex programs.

We briefly introduce fuzzy dl-programs and refer the reader for more details
to [12]. A fuzzy dl-program (L, P) consists of a fuzzy description logic knowledge
base L and a finite set of ground fuzzy rules P . We again refer to [12] for more
details on fuzzy DLs, and retain from [12] that L comes associated with a models
operator |= such that one can express statements L |= C(t) ≥ v for a concept C
and a term t and statements L |= R(t1, t2) ≥ v for a role R and terms t1 and
t2; v is a value from some [0, 1]2. Intuitively, one can deduce statements from L

2 Note that [12] restricts itself to a set TVn = {0, 1
n
, . . . , 1}. We will later restrict

ourselves also to this set instead of considering [0, 1], but for showing that fuzzy dl-
programs are embedded in fuzzy hex programs we can safely take the more general
interval [0, 1].

188 S. Heymans and I. Toma

that indicate to what fuzzy degree v, the term t belongs to the concept C (or
(t1, t2) belongs to R).

Fuzzy dl-rules in P are of the form (2) with the following modifications:

– No non-ordinary higher-order or external atoms appear in P ,
– Atoms may also be dl-atoms DL[S1 ∪ p1, . . . , Sn ∪ pn; Q](d), where Si are

concepts or roles, pi are unary or binary predicates (unary if Si is a concept,
binary if Si is a role), Q and d are either a concept and a term or a role and
a pair of terms. .

For a fuzzy interpretation I of P , the value vI(a) of a ground dl-atom a =
DL[S1 ∪ p1, . . . , Sn ∪ pn; Q](d) w.r.t. L is defined as the maximum value
v ∈ [0, 1] such that L∪⋃m

i=1 Ai(I) |= Q(d) ≥ v with Ai(I) = {Si(ei) ≥ I(pi(ei)) |
I(pi(ei)) > 0} where ei is a constant or a pair of constants depending on the ar-
ity of pi. Intuitively, we query the DL knowledge base L where the fuzzy degrees
of the concepts/roles Si are augmented with what we know from P (i.e., via the
pi predicates) to find out what the fuzzy degree v is of membership of d in Q.

A fuzzy answer set of such a fuzzy dl-program is then defined analogous to
our fuzzy answer sets where dl-atoms a have the value vI(a) w.r.t. L as defined
above.

Similar as in [10], we can replace dl-atoms a = DL[S1∪p1, . . . , Sn∪pn; Q](d) by
external atoms #aL[](d) such that the associated external function f#aL(I, d) =
v iff L ∪⋃m

i=1 Ai(I) |= Q(d) ≥ v. For a fuzzy dl-program (L, P), let P# be the
program obtained from P by replacing all dl-atoms a = DL[S1 ∪ p1, . . . , Sn ∪
pn; Q](d) by their external version #aL[](d).

Proposition 4. Let (L, P) be a fuzzy dl-program. Then, M is a fuzzy answer
set of (L, P) iff M is a fuzzy answer set of P#.

5 Complexity and Reasoning

We restrict ourselves in the following to the fixed set TVn = {0, 1
n , 2

n , . . . , 1} in-
stead of the interval [0, 1], and we assume, similar as in [13], that the combination
strategies are closed in TVn. Note that the Lukasiewizc and Gödel combination
strategies are all closed, but, for example, the production conjunction is not: on
TV3 we have that 1

3 ⊗P
2
3 = 2

9 �∈ TV3. Additionally, we assume that external
functions f#g, associated with external predicates #g, are defined as functions
f#g : TVn → TVn.

For combination strategies ⊗ and �, we assume the existence of external
atoms #⊗[X, Y](Z) and #�[X](Z), with associated external functions to {0, 1}
defined as follows for a fuzzy interpretation I: f#⊗(I, X, Y, Z) = 1 iff X⊗Y = Z
and f#�(I, X, Z) = 1 iff �X = Z.

Additionally, we define a #max [X](Y) atom such that f#max (I, X, Y) = 1 if
Y = max {v | X(v) ∈ I}, i.e., Y is the maximum value that the argument of an
X-atom can take.

Ranking Services Using Fuzzy Hex Programs 189

We transform a disjunction-free fuzzy hex program P in a hex program P h:

Definition 4. Let P be a disjunction-free fuzzy hex program. We take C = TVn.
Then P h consists of rules

σa (x)← (5)

for each non-external atom a ∈ gr(P)3 where x = a if a ∈ TVn and x = 0
otherwise, rules

σa(X)← #gh [y1 , . . . , yn](x1 , . . . , xm ,X) (6)

for each external atom a = #g[y1, . . . , yn](x1, . . . , xm) ∈ gr(P), where

f#gh (Ih, y1, . . . , yn, x1, . . . , xm, x) = 1 iff f#g(I, y1, . . . , yn, x1, . . . , xm) = x ,

for any interpretation Ih of P h and I its fuzzy variant defined such that, for a
non-external atom a, I(a) = max {y | σa(y) ∈ Ih}, and for each rule with non-
empty body of the form (2) in gr (P), rules

σa(Um) ←
σb1(X1), #max [σb1](X1), . . . ,
σbm(Ym), #max [σbm](Ym), #�m[Ym](Xm), #⊗0[Um−1, v](Um),
#⊗1[X1, X2](U1), #⊗2[U1, X3](U2), . . . , #⊗n−1[Um−2, Xm](Um−1)

(7)

for rules with empty body, we introduce σa(Um) ← #⊗0[1, v](Um), and finally
rules

σa (x − 1
n

)← σa (x) (8)

for all non-external atoms a ∈ gr(P) and for all x �= 0 ∈ TVn.

Intuitively, the rules (5) make sure that the initial fuzzy value of a non-external
atom a is equal to its fuzzy value if a ∈ TVn or 0 otherwise, where the value
of an atom a is encoded using the binary predicate σa. Note that atoms from
P are treated as constants in P h (that are, however, not used to ground the
transformed program, see the defintion of C for P h). Similarly, the rules in (6)
ensure that the values of the external atoms are correctly set. The rules in (7)
compute the value of the head atom a based on the maximum values of its body
atom, i.e., we assume implicitly that the actual fuzzy value of an atom is the
maximum value that is present in the interpretation for that atom (using again
the σ-encoding for values). We use the external atoms that correspond to the
combination strategies to compute the value of the body and impose that the
value of the body is equal to the value of the head, namely Um. Note that for
satisfaction of fuzzy rules the value of the head just needs to be greater than
or equal the value of the body; we impose equality to ensure minimality of the
fuzzy interpretation. The case where the value of an a is actually bigger than
3 Grounding w.r.t. the original C of P , i.e., not w.r.t. the new C = TVn.

190 S. Heymans and I. Toma

Um is covered by the rules in (8) that also introduce any lower values for a
value x.

Note that this is a different reduction than the one in [13] from fuzzy dl-
programs to dl-programs, where additionally to the closedness restrictions, all
combination strategies have to be the ones from Zadeh’s logic (i.e., ⊗ = min,⊕ =
max, and � = complement). Our reduction is more general in this sense as it
only requires closedness. However, the reduction in [13] allows for disjunctive
program, which we do not handle.

We can compute fuzzy answer sets of a fuzzy hex program by computing the
answer sets of the corresponding hex program:

Proposition 5. Let P be a disjunction-free fuzzy hex program with closed com-
bination strategies. Then, M is a fuzzy answer set of P iff Mh = {σ(a, x) |
M(a) = y, 0 ≤ x ≤ y} is an answer set of P h. Vice versa, Mh is an an-
swer set of P h iff M is a fuzzy answer set of P where M is defined such that
M(a) = max {y | σa(y) ∈Mh}.
Using the dlvhex [9] reasoner for reasoning with hex programs, this proposition
thus gives us a method to reason with fuzzy hex programs as well, in particular
by translating them first to hex programs. Some provisos we have to make in this
respect are that the original external functions have to be computable, as well as
the external functions associated with the combination strategies. Moreover, the
sets of constants, variables, and external predicates under consideration should
be finite in order to ensure a finite P h (note that P itself is by definition finite).

Using the complexity results for hex programs in [10] and the reduction of
hex programs to fuzzy hex programs in Proposition 3 we get the following
hardness results for different classes of fuzzy hex programs.

Proposition 6. Deciding whether a fuzzy hex program without external atoms
has a fuzzy answer set is NEXPTIMENP-hard and NEXPTIME-hard if the program
is disjunction-free.

For programs with external atoms #g, we can deduce the same hardness results
if the corresponding function f#g is decidable in exponential time in |C|.
Proposition 7. Deciding whether a fuzzy hex program, where for every #g ∈ G
the function f#g is decidable in exponential time in |C|, has a fuzzy answer set
is NEXPTIMENP-hard and NEXPTIME-hard if the program is disjunction-free.

From the complexity perspective, we even introduce in the absence of external
atoms in a fuzzy hex program P external atoms in the translation P h to compute
the combination strategies as well as the maximum value of an atom. The #max
external function is not introducing extra complexity as the maximum can be
calculated in linear time in the size of gr(P). However, the combination strategies
can add extra complexity, or lead to undecidability of checking whether there
exists a fuzzy answer set in case they are undecidable - note, however, they do
not depend on the program at hand. We restrict ourselves thus to combination-
computable combination strategies:

Ranking Services Using Fuzzy Hex Programs 191

Definition 5. A combination strategy ⊗ (⊕,�) on TVn is combination-
computable if it is closed and its corresponding external function f#⊗ (f#⊕,
f#�) is decidable in polynomial time. We call a fuzzy hex program combination-
computable if its combination strategies are combination-computable.

Note that for all the combination strategies we treated in this paper the corre-
sponding functions are decidable in polynomial time, assuming the numbers are
encoded in unary format.

Proposition 8. Deciding whether a combination-computable disjunction-free
fuzzy hex program without external atoms has a fuzzy answer set is in NEXPTIME.

Proof. The size of the program P h is linear in the size of gr(P), such that, since
the size of gr(P) is in general exponential in the size of P and C, the size of
P h is exponential in the size of P and C. Since we assume that TVn is fixed, we
get that the size of gr(P h) is polynomial in the size of P h, and thus, the size of
gr(P h) is exponential in the size of P and C.
Using Proposition 5, checking whether there is a fuzzy answer set of a fuzzy
hex program P , amounts to checking whether there is an answer set of gr(P h),
the latter can be done by a non-deterministic Turing machine in time that is
polynomial in the size of gr(P h) (see, e.g., [10] and [8]). Since the size of gr(P h)
is exponential in the size of P and C, we have that checking whether there is
an answer set of gr(P h) can be done by a non-deterministic Turing machine in
time that is exponential in the size of P and C, i.e., in NEXPTIME. ��
Using Propositions 6 and 8, we have the following:

Corollary 1. Deciding whether a combination-computable disjunction-free fuzzy
hexprogramwithoutexternalatomshasafuzzyanswer set, isNEXPTIME-complete.

External atoms in the fuzzy hex program can introduce complexity, or even
undecidability. For fuzzy hex programs where each external predicate #g cor-
responds to a function f#g that is decidable in a complexity class C in the size
of C, we have the following results, again using Proposition 5 and [10]:

Proposition 9. Deciding whether a combination-computable disjunction-free
fuzzy hex program where each external predicate #g corresponds to a function
f#g that is decidable in a complexity class C in the size of C has a fuzzy answer
set is in NEXPTIMEC .

If we restrict ourselves to functions decidable in exponential time, we get, sim-
ilar as in [10], that the exponential grounding covers for the complexity of the
functions:

Proposition 10. Deciding whether a combination-computable disjunction-free
fuzzy hex program where each external predicate #g corresponds to a function
f#g that is decidable in exponential time in the size of C has a fuzzy answer set
is in NEXPTIME.

192 S. Heymans and I. Toma

Using Propositions 7 and 10, we then have the following:

Corollary 2. Deciding whether a combination-computable disjunction-free fuzzy
hex program where each external predicate #g corresponds to a function f#g that is
decidable in exponential time in the size of C has a fuzzy answer set is NEXPTIME-
complete.

6 Applications: Service Ranking

In this section, we illustrate the use of fuzzy hex programs to rank services.
We model non-functional properties of services and user preferences as fuzzy
hex programs. For each fuzzy hex program containing both service description
and user preferences represented as rules, the ranking mechanism finds the fuzzy
answer sets and their degree of fuzzy match. Based on these degrees, as a final
step, the ranked list of corresponding services is constructed.

Assume a user wants to ship a package from Innsbruck to Vienna. The object
to be shipped has a value of around 1000 euro according to user’s estimation. The
weight of the package is 3 Kg and the dimensions are 10/20/10 cm. Furthermore,
the user has the following preferences: (1) he wants to pay at most around 70
euro for the service, (2) he wants to pay cash, (3) he wants the package to be
ensured in case lost or damage, and (4) he expects the package to be delivered
in at most around 36 hours.

Additionally, we have two shipping services Muller and Runner that poten-
tially could satisfy the user’s request. The delivery price for each of the two
services depends on the weight, dimension of the package, the distance and de-
livery time requested by the client. The Muller provider presents the following
conditions: (1) if the value of the package is at least around 1200 euro and the
client payment method is cash the client gets at most 3% discount or free dam-
age insurance, (2) the client has to buy both lost and damage insurances, (3)
if the delivery time requested by the user is at least around 40 hours, the user
gets a 2% discount from the delivery price. The Runner provider presents the
following ones: (1) if the value of the package is at least around 1100 euro and
the client payment method is cash the client gets at most 4% discount, (2) the
client has to buy at least the damage insurance.

The following set of rules represent the background, shared knowledge:

distance(vienna, innsbruck , 485) ←⊗L ≥ 1

hasWeight(pack , 3) ←⊗L ≥ 1

hasDimension(pack , 10 , 20 , 10) ←⊗L ≥ 1

hasValue(pack) ←⊗L around1000 (pack) ≥ 1

hasInsurance(package, lost , 5) ←⊗L ≥ 0.8

hasInsurance(package, damage, 5) ←⊗L ≥ 0.8

hasInsurance(X , full ,A) ←⊗L

hasInsurance(X , lost , B)⊗L

hasInsurance(X , damage, C)⊗L

#sum[B, C](A) ≥ 1

Ranking Services Using Fuzzy Hex Programs 193

paymentCash ←⊗L ≥ 1

paymentCreditcard ←⊗L ≥ 1

hasPayment(X , paymentCash)

⊕LhasPayment(X , paymentCreditcard) ←⊗L ≥ 1

where around1000 = Tri(900 , 1000 , 1100), and Tri is the triangle function spec-
ified in [14]. Note that the rules defining the insurance values in case of lost or
damage package have a degree of truth of 0.8. This because, e.g., the exact insur-
ance values are provided by third parties, such as external insurance companies,
and service providers have an imprecise knowledge about these values.

The user request and preferences can be encoded as follows:

query(X) ←⊗L package(X) ⊗L hasDeliveryPrice(X , PD)⊗L

leqAbout70 (PD)⊗L hasInsurance(X , full , IF)⊗L

hasDeliveryTime(X ,TD)⊗L leqAbout36 (TD)

hasPayment(X , paymentCash) ≥ 1

In the previous program, we again use a function defined in [14], namely the
L-function: leqAbout36 = L(36, 43) and leqAbout70 = L(70, 75) to specify that
the expected delivery time to be at most around 36 hours and the expected
delivery price to be at most around 70 euro. The predicate query collects all
packages that fulfill the constraints mentioned above.

The Muller service provider restrictions and preferences are encoded as
follows:

discountV (X , 3)⊕LhasInsurance(X , damage, 0) ←⊗L around1200 (X)⊗L

hasPayment(X , paymentCash) ≥ 1

discountT (X , 2) ←⊗L not�L leqAbout40 (TD)⊗L

hasDeliveryTime(X ,TD) ≥ 1

totalDiscount(X ,D) ←⊗L discountV (X ,B)⊗L discountT (X ,C)⊗L

#sum[B, C](D) ≥ 1

price(X ,P) ←⊗L hasWeight(X ,W)⊗L hasDimension(X ,DL,DW ,DH)⊗L

distance(Start ,End ,Dist)⊗L hasDeliveryTime(X ,TD)⊗L

#deliveryP [W ,DL,DW ,DH ,Dist ,TD , fM](PD)⊗L

#disc[PD ,D](P1)⊗L hasInsurance(X , damage,P2)⊗L

hasInsurance(X , lost ,P3)⊗L #sum[P1 ,P2 ,P3](P) ≥ 1

The first rule contains a disjunction in the head used to specify that either a 3%
discount for shipping or a free damage insurance is offered. The delivery price
computation is done by an external predicate #deliveryP [w, diml, dimw, dimh,
dis, timereq

del , f](P), where w is the weight of the package, [diml ,dimw ,dimh] is
the dimension of the package, dis is the distance from source to destination,
timereq

del is the delivery time requested by the client, f is the formula that defines
the price computation and P is the computed delivery price for the package.
External predicate #disc computes a discounted price given an initial price

194 S. Heymans and I. Toma

Algorithm 1: Fuzzy Ranking
Data: Set of services SSer, User request Q, Background knowledge K,

represented all as fuzzy hex programs.
Result: Order list of services LSer.
begin

1 Ω ←− ∅, where Ω is a set of tuples [service,score] , λ - the set of NFPs
user is interested in;

2 β ←− ∅, is a set of quadruples [service,nfp,nfpvalue,degree];
3 for s ∈ SSer do
4 for nfp ∈ λ do
5 if nfp ∈ s.nfps then
6 fuzzyprog = extractNfp(s, nfp) ∪K;
7 [s, nfp, nfpvalue, degree]⇐ evaluate(fuzzyprog, Q);

10 β = β ∪ [s, nfp, nfpvalue, degree];
end
else

11 β = β ∪ [s, nfp, 0, 1];
end

end

end
12 for s ∈ β do
13 scores = 0;
14 for nfp ∈ β do
15 nfpvalue = β.getNFPV alue(s, nfp);
16 nfpvaluemax = max(β.npf);
17 scores = scores + degree ∗ nfpvalue

nfpvaluemax
;

end
18 Ω = Ω ∪ [s, scores];

end
19 LSer ←− sort(Ω);

end

and a discount. fM is the formula used by service Muller to define how the
delivery price should be computed. around1200 (X) is defined similarly as the
other around predicates, i.e., around1200 (X) = Tri(1000 , 1200 , 1300).

Note that the used combination strategies used so far are Lukasiewizc strate-
gies. However, in our example, one could have used different combination strate-
gies, yielding different results though. The Runner service conditions can be
encoded similarly as the Muller descriptions.

We assume that prior to the service ranking process a discovery process is per-
formed. The discovery process identifies relevant services given a user request by
considering semantic descriptions of functional and non-functional aspects of both
services and requests. The actual ranking process is presented in Algorithm 1.

First, a fuzzy hex program containing the background knowledge and a ser-
vice non-functional property description is created for each service and each of
its non-functional properties requested by the user (line 6). In the next step

Ranking Services Using Fuzzy Hex Programs 195

(line 7), the query representing user preferences is evaluated given each program
created before. The atoms representing non-functional properties of service are
grounded as a result of the previous step and a degree of truth is associated with
each of them. Quadruples of form [service, nfp, nfpvalue, degree] are generated.
If the non-functional property is not present in the service description the gen-
erated quadruple is of form [service, nfp, 0, 1] - the degree of truth is 1 since
we know for sure that the value of the NFP is 0 for the given service. The final
part of the algorithm (line 15 - line 17) computes an aggregated score for each
services, performing first a normalization of the NFPs values and incorporating
the degree of truth of every ground atom (line 7). The results are collected in
a set of tuples, where each tuple contains the service id and the service score
(line 18). Finally, service scores are sorted and the final ranked list of services is
returned (line 19).

The problems of service ranking and selection has been addressed in numerous
approaches. Many of them have pointed out the need of fuzzy logic in modeling
service descriptions and user preferences. For example, in [16] a fuzzy description
logic approach is proposed for automating matching in e-marketplaces. In [19]
multiple Quality of Service (QoS) values of services are evaluated and a fuzzy
multi-attribute decision making algorithm is proposed to select the best ser-
vices. The approach does not provide a flexible enough mechanism to model
user preferences and services as proposed in our current work. In [20] fuzzy logic
is used to evaluate the degree of matching between QoS provided by services and
requested by clients. However, the approach is UDDI-based lacking sufficient ex-
pressivity for declarative reasoning with user preferences. Furthermore, none of
the approaches mentioned before provides support for integration of external
data sources or libraries, which is often required in real world settings.

7 Directions for Further Research

As future work, we plan to develop a reasoner for fuzzy hex programs based
on the dlvhex reasoner, using the translation of fuzzy hex programs to hex
programs presented in this paper. The implementation of the service ranking
algorithm presented in Section 6 together with the evaluation of the approach is
also left for the future.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2003)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Press (2003)

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American,
34–43 (May 2001)

196 S. Heymans and I. Toma

5. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about
combinations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F.,
Wang, J. (eds.) KSEM 2006. LNCS (LNAI), vol. 4092, pp. 1–22. Springer, Heidel-
berg (2006)

6. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage: An overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 590–604. Springer, Heidelberg (2006)

7. Chung, L.: Non-Functional Requirements for Information Systems Design. In: An-
dersen, R., Solvberg, A., Bubenko Jr., J.A. (eds.) CAiSE 1991. LNCS, vol. 498,
pp. 5–30. Springer, Heidelberg (1991)

8. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Computing Surveys (CSUR) 33(3), 374–425 (2001)

9. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R., Tompits, H.: dlvhex,
http://con.fusion.at/dlvhex/

10. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Proc. of
IJCAI 2005 (2005)

11. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with DLs for the Semantic Web. In: Proc. of KR 2004, pp. 141–151
(2004)

12. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic web. In: RULEML 2006, pp. 89–96. IEEE Computer Society Press,
Los Alamitos (2006)

13. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. Technical Report 1843-0703

14. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In: Marchiori, M., Pan,
J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer,
Heidelberg (2007)

15. Preist, C.: A conceptual architecture for semantic web services. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298. Springer,
Heidelberg (2004)

16. Ragone, A., Straccia, U., Bobillo, F., Di Noia, T., Di Sciascio, E., Donini, F.M.:
Fuzzy description logics for bilateral matchmaking in e-marketplaces. Description
Logics (2008)

17. Straccia, U.: Fuzzy Logic and the Semantic Web, ch. 4
18. Toma, I., Roman, D., Fensel, D., Sapkota, B., Gomez, J.M.: A multi-criteria service

ranking approach based on non-functional properties rules evaluation. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 435–441.
Springer, Heidelberg (2007)

19. Tong, H., Zhang, S.: A fuzzy multi-attribute decision making algorithm for web ser-
vices selection based on qos. In: Proc. of APSCC 2006, pp. 51–57. IEEE Computer
Society Press, Los Alamitos (2006)

20. Wang, H.-C., Lee, C.-S., Ho, T.-H.: Combining subjective and objective qos factors
for personalized web service selection. In: Expert Systems with Applications, pp.
571–584. Elsevier, Amsterdam (2007)

http://con.fusion.at/dlvhex/

	Introduction
	Preliminaries: HEX Programs
	Fuzzy HEX Programs
	Fuzzy HEX Programs Generalize HEX Programs and Fuzzy dl-Programs
	Complexity and Reasoning
	Applications: Service Ranking
	Directions for Further Research

