
Title
Ranking Significance of Software Components
Based on Use Relations

Author(s) Inoue, Katsuro

Citation
Annual report of Osaka University : academic
achievement. 2004-2005 P.22-P.25

Issue Date 2003-08

Text Version publisher

URL http://hdl.handle.net/11094/51062

DOI

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



22

Engineering

ANNUAL REPORT OF OSAKA UNIVERSITY—Academic Achievement—2004-2005

Ranking Significance of Software Components Based on Use Relations

Paper in journals: this is the first page of a paper published in IEEE Transactions on Software Engineering.

[IEEE Transactions on Software Engineering] 31,213-225 (2005)

� © [2005] IEEE & IEEE Computer Society. Reprinted, with permission, from Transactions on Software Engineering, Vol. 31 (2005) .



23

Osaka University 100 Papers : 10 Selected Papers 

ANNUAL REPORT OF OSAKA UNIVERSITY—Academic Achievement—2004-2005

The following is a comment on the published paper shown on the preceding page.

Ranking Significance of Software Components Based on Use
Relations
INOUE Katsuro

(Graduate School of Information Science and Technology)

Introduction

Collections of already developed programs are important

resources for efficient development of reliable software sys-

tems. In this paper, we propose a novel graph-representation model

of a software component library (repository), called component

rank model[1]. This is based on analyzing actual usage relations

of the components and propagating the significance through the

usage relations. 

Using the component rank model, we have developed a Java

class retrieval system named SPARS-J and applied SPARS-J to

various collections of Java files. The result shows that SPARS-J

gives a higher rank to components that are used more frequently.

As a result, software engineers looking for a component have a

better chance of finding it quickly. SPARS-J has been used by two

companies, and has produced promising results.

Component Rank Model

Software systems are modeled by a weighted directed graph,

called a component graph. A node in a graph represents a software

component, and a directed edge e from node x to y represents a

use relation, meaning that component x uses component y. Fig. 1

shows a component graph with computed weights, where v1 has

two outgoing edges, and weight 0.4 is evenly divided between two

outgoing edges with 0.2 each. Here, v3 has two incoming edges,

each with a weight of 0.2, so that the weight of v3 is 0.4. The weight

of each node w(vi) is determined by the following equation, and

it is computed as the eigenvector.

© [2005] IEEE & IEEE Computer Society

Fig. 1

If we assume that the movement of a software developer’s focus

on the target components is represented by a probabilistic state

transition, the component graph is understood as a Markov chain

model. Thus, computing the weights of the nodes in the graph cor-

responds to attaining a stationary distribution of the chain. This

model is inspired by computing the impact factor of publications[2]

and the rank of HTML documents[3].

Fig. 2

As a specific feature of software components, we have devised

a method of clustering similar software components. In many sys-

tems, components are duplicated inside a single system and also

they are shared with other systems. To remove the effect of com-

ponent duplication, we merge similar components into a single

one. Figure 2 shows this process. In the left-hand side graph, we

detect similar components B and F, and also A and D. Those pairs

are merged into single nodes BF and AD, as shown in the right-

hand side. 



24 ANNUAL REPORT OF OSAKA UNIVERSITY—Academic Achievement—2004-2005

SPARS-J

Based on the component rank model, we have designed and

implemented SPARS-J (Software Product Archiving and Retriev-

ing System for Java) to compute the component rank and to search

components for Java programs. Fig. 3 shows the architecture of

SPARS-J. Fig. 4a shows an example screenshot of the resulting

component list for given query keywords. The details of a com-

ponent can be seen by clicking an item on the list, as shown in Fig.

4b. On this screen, we can obtain various views of the component,

such as its source code (A), similar components (B), components

that use this component (C), components used by this component

(D), metrics values of the component (E), and others.

© [2005] IEEE & IEEE Computer Society

Fig. 3

Fig. 4 a © [2005] IEEE & IEEE Computer Society



25

Osaka University 100 Papers : 10 Selected Papers 

ANNUAL REPORT OF OSAKA UNIVERSITY—Academic Achievement—2004-2005

References

[1] Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto,

T., Matsushita, M., and Kusumoto, S., “Component

Rank: Relative Significance Rank for Software Com-

ponent Search,” Proc. 25th Int’l Conf. Software Eng.

(ICSE2003), 14-24 (2003)

[2] Pinski, G. and Narin, F., “Citation Influence for Jour-

nal Aggregates of Scientific Publications: Theory, with

Application to the Literature of Physics,” Information

Processing and Management, 12, 297-312 (1976)

[3] Brin, S. and Page, L., “The Anatomy of a Large-Scale

Hypertextual Web Search Engine,” Computer Net-

works and ISDN Systems, 30, 107-117 (1998)

Experiment with JDK

All source programs of Java 2 Software Development Kit, Stan-

dard Edition 1.3.0 are the target of the application. It is composed

of 1877 .java files of totally 575,000 lines of code in Java. These

files include the classes which are very important and fundamen-

tal ones to develop various Java applications.

Table 1 shows the resulting Component Rank values for each

file, listed from the highest rank to the lowest one. The highest

one, java.lang.Object class, is the superclass of any class in

Java, so that this class is used directly or indirectly by any class,

causing it on the top of the ranking. Other highly ranked classes

are also fundamental ones that are possibly invoked or inherited

from many other classes. The 3rd class, java.lang.Throwable,

is the superclass of any error or exception handlers so that it is used

by many classes with error or exception handling. There are 622

classes with the lowest (1256th) rank. These classes are not used

by any other classes at all. The overall result of Component Rank

for JDK 1.3.0 matches to our intuition such that very general and

core classes are ranked high, and specific and independent class-

es are ranked low.

Case Study at Daiwa Computer

Daiwa Computer, located in Osaka, Japan, is a software com-

pany with about 180 engineers. In this company, five Web-based

data management applications have been developed. These five

applications and the framework itself form the target software

library of the ranking. The number of components in the frame-

work is 250, and the overall library contains 1,538 components in

total, which are clustered into 339 nodes. We investigated the high-

ly-ranked classes and found that those classes are the definition of

data structures and their containers. For example, the first-ranked

class is the definition of a record class for database management.

These results confirm our approach, i.e., it is easy to identify core

and fundamental components by their ranking.

Case Study at Suntory Ltd.

Suntory Limited is Japan’s leading producer and distributor of

alcoholic and nonalcoholic beverages, where hundreds of Java

applications have been developed for various activities such as sales,

deliveries, accounts, and so on. To evaluate SPARS-J, the com-

pany provided about 2,400 components (classes) that are used in

the many application programs developed in the company. The

evaluation result shows that the SPARS-J was supported by the

engineers and managers. The display features provided by SPARS-

J (such as using and used-by relations) score highly, as the rank-

ing feature does. Furthermore, some engineers reported that it is

easy to grasp the structure of the application and to perform an

impact analysis for modification of a component. Currently,

SPARS-J is daily used in Suntory as a company-wide software

component repository.

Conclusion

The approach of SPARS-J shows a lot of promise for use in var-

ious situations of software development, such as searching, explor-

ing, checking, investigating, reminding, or referring to software

components, as we use dictionaries and libraries when writing a

composition. SPARS-J can be considered as a Google-like system

for software engineers.

Fig. 4 b © [2005] IEEE & IEEE Computer Society

Table 1


