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ABSTRACT

This paper initiates research on the foundations of ranking
systems, a fundamental ingredient of basic e-commerce and
Internet Technologies. In order to understand the essence
and the exact rationale of page ranking algorithms we sug-
gest the axiomatic approach taken in the formal theory of
social choice. In this paper we deal with PageRank, the
most famous page ranking algorithm. We present a set of
simple (graph-theoretic, ordinal) axioms that are satisfied by
PageRank, and moreover any page ranking algorithm that
does satisfy them must coincide with PageRank. This is
the first representation theorem of that kind, bridging the
gap between page ranking algorithms and the mathematical
theory of social choice.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.2.2 [Discrete Mathematics|:

Graph Theory; H.3.3 [Information Storage and Retrieval]:

Information Search and Retrieval

General Terms

Algorithms, Economics, Theory

Keywords

Pagerank, Axiomatic theory, multi-agent systems

1. INTRODUCTION

The ranking of agents based on other agents’ input is fun-
damental to e-commerce and multi-agent systems (see e.g.
[4, 16]). Moreover, the ranking of agents based on other
agents’ input have become a central ingredient of a variety
of Internet sites, where perhaps the most famous examples
are Google’s PageRank algorithm[11] and ebay’s reputation
system[15]. One important set of such ranking systems are
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page ranking systems. It is well known that page ranking
is fundamental for search technology, as well as for other
applications. A major problem therefore is the study of
the rationale of using a particular page ranking algorithm.
What are the properties of a particular page ranking algo-
rithm that characterize and differentiate it from other page
ranking algorithms? In order to address this challenge we
introduce and adapt the axiomatic approach, adopted in
the mathematical theory of social choice, into the context of
page ranking.

If we treat the Internet as a graph, where the nodes/pages
are agents, and the links originating from node/page p de-
fine the preferences of the corresponding agent (i.e. a page
that p links to is preferable to a page that p does not link
to) then the page ranking problem becomes the problem of
aggregating individual rankings into a global (social) rank-
ing. Hence, the problem of page ranking becomes a (novel)
problem of social choice. In the classical theory of social
choice, as manifested by Arrow[1l], a set of agents/voters is
called to rank a set of alternatives. Given the agents’ in-
put, i.e. the agents’ individual rankings, a social ranking of
the alternatives is generated. The theory studies desired
properties of the aggregation of agents’ rankings into a so-
cial ranking. In particular, Arrow’s celebrated impossibility
theorem[1] shows that there is no aggregation rule that sat-
isfies some minimal requirements, while by relaxing any of
these requirements appropriate social aggregation rules can
be defined. The novel feature of the page ranking setting
is that the set of agents and the set of alternatives coin-
cide. Therefore, in such setting one may need to consider
the transitive effects of voting. For example, if agent (i.e.
page) a reports on the importance of (i.e. links to) page
b then this may influence the credibility of a report by b
on the importance of agent c; these indirect effects should
be considered when we wish to aggregate the information
provided by the agents into a social ranking.

The theory of social choice is an axiomatic theory, and
consists of two complementary perspectives:

e The normative perspective: devise a set of require-
ments that a social aggregation rule should satisfy, and
try to find whether there is a social aggregation rule
that satisfies these requirements.

e The descriptive perspective: given a particular algo-
rithm r for the aggregation of individual rankings into
a social ranking, then r satisfies many properties; the
objective is to find a small set of simple properties(aka



axioms) that are satisfied by r and has the additional
feature that every algorithm that satisfies these prop-
erties must coincide with r. A result showing such
a set of properties is termed a representation theorem
and captures the exact essence of(and assumptions be-
hind) the use of the particular algorithm.

An excellent example for the normative perspective is Ar-
row’s impossibility theorem mentioned above. In [19] we
presented such an approach for ranking systems. Many
efforts have been invested in the descriptive approach in
the framework of the classical theory of social choice. In
that setting, representation theorems have been presented
for classical voting rules such as the majority rule over two
alternatives[8] (see [9] for an overview). Tackling the de-
scriptive approach in the new Internet context, where the
set of voters and the set of alternatives coincide (i.e. the
page ranking context) remained an open major challenge.

In our work we address the above challenge by introducing
a representation theorem for PageRank. Needless to say that
PageRank[11] is the most famous page ranking procedure.
In particular, PageRank is the basis for Google’s search tech-
nology' [2].If we treat the Internet as a strongly connected
graph, where the nodes are the pages and the edges are links
between pages, then PageRank can be defined as the limit
probability distribution reached in a random walk on that
graph. Roughly speaking, page p1 will be ranked higher
than page p2 if the probability of reaching p; is greater than
the probability of reaching p2. We will show several simple
properties (called axioms) one may require a page ranking
algorithm to satisfy and prove that the PageRank algorithm
does satisfy these axioms. Then, we prove our main result:
any page ranking algorithm that does satisfy these axioms
must coincide with PageRank!

The only work that we are familiar with which deals with
a related axiomatization is the recent work on the axiom-
atization of citation indexes [12]. This work deals however
with the case of numeric inputs (e.g. the inputs are not
only graphs, as in page ranking, but include also numeric
measures for the number of citations by each node, and by
each node for each other node), and (most importantly) the
axioms considered are numeric as well (e.g. when defining
the axioms we are allowed for computations such as divi-
sion or matrix multiplication). Our aim is quite different:
we are after ordinal, graph-theoretic requirements that will
provide sound and complete axiomatization for PageRank.
This creates a most significant challenge: while the PageR-
ank algorithm is numeric and is based on the computation of
eigenvectors, we are after simple graph-theoretic properties
that will fully characterize the related ranking procedure.

The classical theory of social choice lay the foundations to
large part of the rigorous work on the design and analysis of
social interactions. Indeed, the most classical results in the
theory of mechanism design (e.g. the Gibbard-Satterthwaite
[5, 17] theorems) are applications of the theory of social
choice. While economic mechanism design had become an
extensive line of study in computer science (see e.g. [10])
and electronic commerce (see e.g. [7, 13, 3]), our work intro-
duces another connection between algorithms and Internet
technologies to the mathematical theory of social choice.

In fact, ranking based on similar ideas can be found in
other contexts as well. See [14] for the use of PageRank-like
procedure in the comparison of journals’ impact.

In the next section we define our setting and some pre-
liminaries, including the PageRank ranking system. In Sec-
tion 3 we introduce five axioms one may require to hold for
any page ranking procedure, and claim that PageRank does
satisfy these axioms. In Section 4 we show some useful prop-
erties implied by the axioms. In Section 5 we use these prop-
erties for proving that any page ranking procedure that does
satisfy the axioms should coincide with PageRank. Further
discussion of the approach taken in this paper is presented
in Section 6.

2. PAGE RANKING

The current practice of the ranking of Internet pages is
based on the idea of computing the limit stationary proba-
bility distribution of a random walk on the Internet graph,
where the nodes are pages, and the edges are links among
the pages. In order for the result of that process will be
well defined, we restrict our attention to strongly connected
graphs:

DEFINITION 2.1. A directed graph G = (V,E) is called
strongly connected if for all vertices vi,v2 € V there exists
a path from vy to ve in E.

The output of a page ranking procedure can be viewed as a
linear ordering of a set of alternatives:

DEFINITION 2.2. Let A be some set. A relation R C A X
A is called an ordering on A if it is reflerive, transitive,
complete and anti-symmetric. Let L(A) denote the set of
orderings on A.

Notation: Let < be an ordering, then ~ is the equality
predicate of <. Formally, a ~ b if and only if a < b and
b<a.

Given the above we can define what a ranking system is:

DEFINITION 2.3. Let Gy be the set of all strongly con-
nected graphs with vertex set V. A ranking system F' is
a functional that for every finite vertex set V. maps every
strongly connected graph G € Gy to an ordering <Ee L(V).

In order to define the PageRank ranking system, we first
recall the following standard definitions:

DEFINITION 2.4. Let G = (V, E) be a directed graph, and
let v € V be a vertex in G. Then: The successor set of v
is Sa(v) = {u|(v,u) € E}, and the predecessor set of v is
P (v) = {ul|(u,v) € E}.

We now define the PageRank matrix which is the matrix
which captures the random walk created by the PageRank
procedure. Namely, in this process we start in a random
page, and iteratively move to one of the pages that are linked
to by the current page, assigning equal probabilities to each
such page.

DEFINITION 2.5. Let G = (V, E) be a directed graph, and
assume V = {v1,v2,...,vn}. the PageRank Matrix Ag (of
dimension n X n) is defined as:

[Aq] _{1/|5G(vj)| (vj,vi) €E

b3 0 Otherwise.



The PageRank procedure will rank pages according to the
stationary probability distribution obtained in the limit of
the above random walk; this is formally defined as follows:

DEFINITION 2.6. Let G = (V, E) be some strongly con-
nected graph, and assume V = {vi,v2,...,un}. Let r be
the unique solution of the system Ag -r = r where r1 = 1.
The PageRank PRg(v;) of a vertex vi € V is defined as
PRg(v;) = ri. The PageRank ranking system is a ranking
system that for the vertex set V maps G to <EF, where <EF
is defined as: for all vi,v; € V: v; <& v; if and only if
PRG(U,') < PRG(UJ').

The above defines a powerful heuristic for the ranking of
Internet pages, as adopted by search engines[11]. This is
however a particular numeric procedure, and our aim is to
treat it from an axiomatic social choice perspective, providing
graph-theoretic, ordinal representation theorem for PageR-
ank.

3. THE AXIOMS

From the perspective of the theory of social choice, each
page in the Internet graph is viewed as an agent, where this
agent prefers the pages (i.e. agents) it links to upon pages it
does not link to. The problem of finding a social aggregation
rule will become therefore the problem of page ranking. The
idea is to search for simple axioms, i.e. requirements we wish
the page ranking system to satisfy. Most of these require-
ments will have the following structure: page a is preferable
to page b when the graph is G if and only if a is preferable
to b when the graph is G’. Our aim is to search for a small
set of axioms that can be shown to be satisfied by PageR-
ank. The axioms need to be simple graph-theoretic, ordinal
properties, which do not refer to numeric computations.

In explaining some of the axioms we will refer to Figure 1.
For simplicity, while the axioms are stated as ”if and only
if” statements, we will sometime emphasize in the intuitive
explanation of an axiom only one of the directions (in all
cases similar intuitions hold for the other direction).

The first axiom is straightforward:

Axiom 3.1. (Isomorphism) A ranking system F satisfies
isomorphism if for every isomorphism function ¢ : Vi — Vs,
and two isomorphic graphs G € Gy, ,p(G) € Gy, ji(c):

o(=8).

The isomorphism axiom tells us that the ranking procedure
should be independent of the names we choose for the ver-
tices.

The second axiom is also quite intuitive. It tells us that if
a is ranked at least as high as b if the graph is G, where in G
a does not link to itself, then a should be ranked higher than
b if all that we add to G is a link from a to itself. Moreover,
the relative ranking of other vertices in the new graph should
remain as before. Formally, we have the following notation
and axiom:?
Notation: Let G = (V, E) € Gy be a graph s.t. (v,v) ¢ E.
Let G’ = (V, EU{(v,v)}). Let us denote SelfEdge(G,v) =

20One may claim that this axiom makes no sense if we do
not allow self loops. This is however only a simple technical
issue. If we do not allow self loops then the axiom should be
replaced by a new one, where the addition of self-loop to a
is replaced by the addition of a new page, a’, where a links
to @’ and where a’ links only to a. Our results will remain
similar.

G’ and SelfEdge ! (G’,v) = G. Note that SelfEdge ! (G’, v)
is well defined.

Axiom 3.2. (Self edge) Let F be a ranking system. F
satisfies the self edge aziom if for every vertex set V' and for
every vertex v € V and for every graph G = (V, E) € Gy
s.t. (v,v) ¢ E, and for every vi,va € V \ {v}: Let G' =
SelfEdge(G,v). If v 55 v then v ﬁg, v1; and v1 55 Vo
iff i =& ve.

The following, third axiom (titled Vote by committee) cap-
tures the following idea, which is illustrated in Figure 1(a).
If page a links to pages b and c, then the relative ranking of
all pages should be the same as in the case where the direct
links from a to b and c are replaced by links from a to a new
set of pages, which link (only) to b and ¢. The idea here
is that the amount of importance a provides to b and ¢ by
linking to them, should not change due to the fact that a
assigns its power through a committee of (new) representa-
tives, all of which behave as a. More generally, and more
formally, we have the following:

Axiom 3.3. (Vote by committee) Let F be a ranking sys-
tem. F' satisfies vote by committee if for every verter set V,
for every vertex v € V, for every graph G = (V, E) € Gy,
for every vi,va € V, and for every m € N: Let G =
(VU {ur,uz,...,umb B\ {(v,2)[z € Sa(0)} U {(v, us)li =
1,...,m}U{(ui,x)|z € Sa(v),i =1,...,m}), where
{ur,ug, ..., um} NV =0. Then, vi <& va iff vi <& va.

The 4th axiom, termed collapsing is illustrated in Figure
1(b). The idea of this axiom is that if there is a pair of
pages, say a and b, where both a¢ and b link to the same
set of pages, but the sets of pages that link to a and b are
disjoint, then if we collapse a and b into a singleton, say a,
where all links to b become now links to a, then the relative
ranking of all pages, excluding a and b of course, should
remain as before. The intuition here is that if there are two
voters (i.e. pages), a and b, who vote similarly (i.e. have
the same outgoing links), and the power of each one of them
stems from the fact a set of other voters have voted for him,
where the sets of voters for a and for b are disjoint, then if
all voters for a and b would vote only for a (dropping b) then
a should provide the same importance to other agents as a
and b did together. This of course relies on having a and b
voting for the same individuals. As a result, the following
axiom is quite intuitive:

Axiom 3.4. (collapsing) Let F be a ranking system. F
satisfies collapsing if for every vertex set V., for every v,v’ €
V, for every vi,v2 € V\ {v,v'}, and for every graph G =
(V, E) € Gy for which Sg(v) = S¢(v'), Pa(v)NPa(v') =0,
and [Pg(v) U Pg(v )] N{v,v'} =0: Let G = (V\{v'}, E\
(v, 2z € Se()}\ {0z € Pa()} U {(zv)lr €
P (v')}). Then, vi =& v iff v1 <&/ va.

The last axiom we introduce, termed the prozry axiom, is il-
lustrated in Figure 1(c). Roughly speaking, this axiom tells
us that if there is a set of k pages, all having the same im-
portance, which link to a, where a itself links to k pages,
then if we drop a and connect directly, and in a 1-1 fashion,
the pages which linked to a to the pages that a linked to,
then the relative ranking of all pages (excluding a) should
remain the same. This axiom captures equal distribution of



Figure 1: Sketch of several axioms
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Figure 2: Sketch of Delete(G, x).

importance. The importance of a is received from k pages,
all with the same power, and is split among k pages; al-
ternatively, the pages that link to a could pass directly the
importance to pages that a link to, without using a as a
proxy for distribution. More formally, and more generally,
we have the following:

Axiom 3.5. (proxy) Let F be a ranking system. F satis-
fies proxy if for every vertex set V', for every vertexr v € V,
for every vi,va € V\{v}, and for every graph G = (V, E) €
Gy for which |Pg(v)| = |Sa(v)|, for allp € Pa(v): Sa(p) =
{v}, and for all p,p’ € Pe(v): p ~& p': Assume Pg(v) =
{p1,p2,---,pm} and Sc(v) = {s1,82,...,8m}. Let G' =
(V\{o}, B\{(2,0), (v, )|z € V}U{(pir 50)li € {1,...,m}}).

Then, v1 =& vo iff v =<cr V2.

3.1 Soundness

Although we have provided some intuitive explanation for
the axioms, one may argue that particular axiom(s) are not
that reasonable. As it turns out however, all the above ax-
ioms are satisfied by the PageRank procedure. In Section
5 we show that the above axioms are not only satisfied by
PageRank, but also completely and uniquely characterize
the PageRank procedure.

ProrosiTION 3.6. The PageRank ranking system PR sat-
isfies isomorphism, self edge, vote by committee, collapsing,
and proxy.

4. SEVERAL USEFUL PROPERTIES

In this section we prove three technical properties which
are implied by our axioms. As a result, these three prop-
erties are satisfied by the PageRank ranking system. The
purpose of presenting them is rather technical: they will be
used in the next section, when we show that the PageRank
ranking system is the only one that satisfies our axioms.
Notation: Let V' be a vertex set and let v € V' be a vertex.
Let G = (V, E) € Gy be a graph where S(v) = {s}, P(v) =
{p}, and (s,p) ¢ E. We will use Del(G,v) to denote the
graph G’ = (V', E’) defined by:

V' = V\{v}
E' = E\{(p,v),(v,9)}U{(p,s)}

The Del(,-) operator simply removes a vertex from the
graph that has an in-degree and out-degree of 1, replacing
it by an edge from its predecessor to its successor. The
following lemma says that when our axioms are satisfied
then this operator does not change the relative ranking of
all (remaining) pages.

DEFINITION 4.1. Let F be a ranking system. F has the
weak deletion property if for every vertex set V, for every
vertez v € V and for all vertices vi,v2 € V' \ {v}, and for
every graph G = (V,E) € Gy s.t. S(v) = {s}, P(v) = {p},
and (s,p) & E: Let G' = Del(G,v). Then, v1 <& vo iff
V1 jG’ V2.

LEMMA 4.2. Let F' be a ranking system that satisfies iso-
morphism, vote by committee and proxy. Then, F has the
weak deletion property.

We now move to a second deletion property satisfied by the
axioms.

Notation: Let V be a vertex set and let v € V be a
vertex. Let G = (V,E) € Gy be a graph where S(v) =
{s1,82,...,8¢} and P(v) = {p;|] =1,...,ti=0,...,m},
and S(p}) = {v} forall j € {1,...t} and i € {0,...,m}. We
will use Delete(G, v, {(s1, {pi]i = 0,...m}),..., (s, {pili =
0,...m})}) to denote the graph G’ = (V’, E') defined by:

Vo= VA{u}
E' = E\{(p)v) (v,5,)li =0,...
u{(}, s)li=0,...

When the grouping of the predecessors is trivial or under-
stood from context, we will sloppily use Delete(G,v).

A sketch of the Delete operator can be found in Figure
2. In this figure we see that node x which links to three
other nodes, and has two sets of three predecessors, where
the nodes in each such set are of the same importance. The
Delete operator will drop x and connect exactly one element
from each of the predecessor sets to exactly one node in
the successor set. The following lemma says that when our
axioms are satisfied then this operator does not change the
relative ranking of all (remaining) pages.

,myj=1,...,t}U
,myj=1,...,t}

DEFINITION 4.3. Let F' be a ranking system. F has the
strong deletion property if for every vertex set V, for ev-
ery vertex v € V, for all vi,v2 € V \ {v}, and for ev-
ery graph G = (V,E) € Gv s.t. S(v) = {s1,52,...,5t},
Pw) ={pjlj =1,...,t;i =0,...,m}, S(pj) = {v} for all
je{l,...t} andi € {0,...,m}, cmdp;v ~E pt for alli €

{0,...,m}andj, k € {1,...t}: Let G’ = Delete(G, v, {(s1, {pili =

0,...m}),...(se,{pi)i = 0,...m}}). Then, vi =& va iff

V1 jG’ V2.

LEMMA 4.4. Let F be a ranking system that satisfies col-
lapsing and proxy. Then, F' has the strong deletion property.

We conclude with a third property which is also satisfied by
the axioms.

Notation: Let V be a vertex set and let G = (V, E) €
Gy be a graph. Let S(v) = {s3,5%,...,5Y}. We will use
Duplicate(G, v, m) to denote the graph G’ = (V' E’) de-
fined by:

Vi = Vu{sili=1,....m—-1j=1,...t}
E = EU{(U,S;)HZ1,...,m—1;j:1,...t}u
U{(shw)li=1,...,m—1;j=1,...t;u € Sa(s)}.

A sketch of the Duplicate operator can be found in Figure
3. In this figure we see that a links to two nodes, each of
which has its own successor set. Then, each node in the



Figure 3: Sketch of Duplicate(G,a, 3).

successor set of a is duplicated by a factor of three, i.e.
for each node a’ in the successor set of a we add two new
nodes to the successor set of a, each of which with the same
successor set as a’. The following lemma says that when our
axioms are satisfied then this operator does not change the
relative ranking of the pages, excluding the ones which have
been duplicated. The proof appears in the Appendix.

DEFINITION 4.5. Let F' be a ranking system. F has the
edge duplication property if for every vertexr set V', for all
vertices v,v1,v2 € V, for every m € N, and for every graph
G = (V,E) € Gv: Let S(v) = {s3,59,...,5%}, and let G' =
Duplicate(G,v,m). Then, vi <& ve iff vi =<5 va.

LEMMA 4.6. Let F' be a ranking system that satisfies iso-
morphism, vote by committee, collapsing, and proxy. Then,
F' has the edge duplication property.

5. COMPLETENESS

We are now ready to show that that our axioms fully
characterize the PageRank ranking system. We can prove:

THEOREM 5.1. A ranking system F' satisfies isomorphism,
self edge, vote by committee, collapsing, and proxy if and
only if F' is the PageRank ranking system.

Given Proposition 3.6, it is enough to prove the following:

ProposITION 5.2. Let Fi and F> be a ranking systems
that have the weak deletion, strong deletion, and edge dupli-
cation properties, and satisfy the self edge and isomorphism
azioms. Then, F1 and F» are the same ranking system (no-
tation: F1 = F»).

We shall now describe a sketch of the proof. The basic
idea of the proof is to begin with a graph G = (V| E)
and two arbitrary vertices a and b in V, and manipulate G
by applying Del(-,-), Delete(:, -, ), Duplicate(:,-, ), and
SelfEdge(-, ) to achieve a new graph G, for which F; and
F, rank a and b the same as in G (Formally a jgn b &
a jg bfor F € {F1, F»}). Afterwards, G, is further manip-
ulated to generate G,s for which a ZEH+5 b, but a jgn

b=1"b ﬁgn+5 a for F € {Fi, F>} or vice versa (with a and
b replaced). So, we conclude that a jgln b&sa jgzn b, and
thus a jgl b&sa jg? b.

The steps required to generate G, from G, and then G,
from G,, may be described algorithmically. These steps are
illustrated in Figure 4:

10.

11.

Add a new vertex on every edge on the initial graph
(Figure 4b), thus splitting each original edge into two
new edges. These vertices do not change the relative
ranking of ¢ and b due to the weak deletion property.

If no original vertices exist in the graph except a and
b, go to step 8. Otherwise, select an original vertex
z ¢ {a,b} (in Figure 4 we start by selecting c).

Remove all vertices that are both predecessors and suc-
cessors of x and all edges connected to these vertices.
All of these are new vertices, which have an in-degree
and out-degree of 1.

Basically, this step removes all self-edges of z (with an
added vertex on them). These deletions do not change
the relative ranking of a@ and b due to the weak deletion
property and the self edge axiom.

Duplicate all predecessors of predecessors of z by z’s
out-degree. This does not change the relative ranking
of a and b due to the duplication property (Figure 4c).

Note that all the vertices we duplicate are original ones
(possibly a or b, but not z), so to add additional in-
between vertices before x, making the in-degree of = a
multiple of its out degree, split into groups of isomor-
phic, and thus equally ranked, vertices.

. Delete z using Delete(G, ) (Figure 4d).

Delete the successors of z (new vertices) to retain the
state of one new vertex between each pair of original
vertices (Figure 4e). These deletions do not change the
relative ranking of a and b due to the strong deletion

property.

Go to step 2 (Figure 4f illustrates the second iteration,
where d is selected).

Now, a and b are the only original vertices remaining
in the graph, and the graph could be defined by the
number of vertices (with edges) between a and b, be-
tween b and a, between a and a, and between b and
b.

Duplicate a by the number of edges with vertices from
b to a and vice versa, thus equalizing the number of
edges with vertices from a to b the number from b to
a (Figure 4g). This relative ranking between a and b
is retained due to the duplication property.

Now, add self edges (with vertices) to the vertex v €
{a,b} with fewer self-edges (with vertices), until the
number of self edges is equal between a and b (Figure
4h). Let v' = {a, b} \ {v}. By the self edge axiom and
the weak deletion property, if v' <¥ v before adding
the self edges, then now v A v’ for F € {F1, F»}.

By the isomorphism axiom, in this graph, a ~ b, there-
fore in the graph after step 9, v’ < v for F € {F, F»}.
But as the relative ranking of a and b did not change
until step 10, v' =& v for F € {Fi, 3}, and thus
a=bbea=xt2o.



(a) Initial (b) After (c) After duplication of (d) After deletion of ¢
graph adding c’s predecessors
vertices

(e) After deletion (f) After deletion of d
of ¢’s intermedi-
ate successors

(g) After duplication of b (h) Final isomorphic graph

Figure 4: Example run of the completeness algorithm. Here a A b.



6. DISCUSSION

Representation theorems are the formal mathematical tool
for the justification of decision and choice rules. We have
already mentioned the formal theory of social choice, but
representation theorems also lay mathematical foundations
for other branches of decision and choice theory. For exam-
ple, the crowning achievement of the theory of (single-agent)
choice is Savage’s representation theorem [18], which pro-
vides sound and complete axiomatization for the expected
utility maximization decision criterion. Here also one looks
for ordinal requirements, which do not refer to numeric com-
putations, under which an agent can be viewed as an ex-
pected utility maximizer. This is similar to our work, where
we considered only graph-theoretic ordinal axioms to justify
the numeric computations done by PageRank.

Although PageRank is probably the most popular page
ranking procedure, it may be interesting to attempt and
provide axiomatization for other page ranking procedures,
such as Hubs and Authorities [6]. Once such axiomatization
is found the different axiomatic systems can be compared as
a basis for rigorous evaluation.

We believe that the problem of ranking of Internet pages
is indeed a fundamental problem. We see the fact that this
central problem is a new type of social choice problem as es-
pecially intriguing. In order to provide mathematical foun-
dations to page ranking systems we therefore need to search
for basic representation theorems that will provide ordinal,
graph theoretic axiomatizations for basic heuristics and ap-
proaches for page ranking. Representation theorems isolate
the ”essence” of particular ranking systems, and provide
means for the evaluation (and potentially comparison) of
such systems. In this paper we initiated work on this topic
by introducing such representation theorem for PageRank.
We hope that others will join us in exploring the connections
between page ranking algorithms and the mathematical the-
ory of social choice.
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