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1. Introduction

We consider primarily the simplest type of Round Robin tournament in which
each of t players Al’AZ""’At meets every other player once, and each game
results in a win for one of the players who receives 1 point, the loser scoring
0. The question which concerns us in this paper is how to convert the results
of the tournament into a ranking of the players. A familiar procedure is to
base the ranking on the total number of wins ajs8ose sy of the players, but
how are ties to be resolved? 1In any case, statistics other than total wins may
be used and we shall review critically various methods which have been proposed.
An important part of our approach is to compare methods by their performance in
small tournaments when intuition may be regarded as providing stronger guidance
than some apparently appealing general principle.

Although it is convenient to use the language of tournaments throughout,

 the ranking problem applies immediately to a paired-comparison experiment in

which every object Ai (i=1,2,...,t) is compared once with every other object,
with the results expressed as a preference for one or the other object.

Some extensions to more general situations are indicated.

2. Partial Orderings and Strong Equalities

The results of a Round Robin tournament T consisting of t players are con-

veniently expressed by means of a tournament (or dominance) matrix
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having 0's along the principal diagonal and uij + uji =1 for all 1i,j
(1,j=1,2,...,t; i#j). Throughout most of this paper we take aij =1 if Ai->Aj

(Ai has defeated A,) and aij = Q0 if Aj+Ai, thus precluding any outcome intermediate

3

between win and loss.

At the conclusion of the tournament the players can always be arranged into
disjoint sets Tl’TZ""’Tk (for some k,k=1,2,...,t) with the following properties
(cf. Kadane, 1966):

(a) Each player in T, has defeated all players in Th' for all h<h!

h
(h,h'=1,2,...,k);

, either A

(b) For any two players Ass Aj in the same set T +Aj or there

h i

exist other players A, ,A, ,... in T, such that
i,71, h

Ai->Ai A, >..0A L, (2)
) J
Suppose now that we wish to rank the players on the basis of the tourna-
ment results only, i.e., ignoring any other information on the strength of the
players. Then it is clear that players in Th should rank ahead of those in Th'

for h<h'.l In the extreme case k=t we obtain a complete ordering of all the

players. So much is universally agreed. However, at the other extreme k=1

We are not concerned here with questions of statistical significance (see
David, 1963a, p. 75).



there is no obviously best way of ranking the players or even any subset of them;
for if Ai and A.j are any two players and if AjaAi’ then to make up for the direct
defeat by Aj, player Ai has to his credit an indirect win over Aj in the manner

of (2). It is this case of a strong tournament that we shall need to examine

further. For 1<k<t the sets Tl’TZ""’Tk provide a partial ordering in which

only the rankings within sets remain in doubt. The outcomes of the games among

the players within any one set clearly constitute a strong subtournament.

2.1 Strong tournaments. The smallest strong tournament arises when t=3 and

(1) A1+A2+A3+Al or (i) A1+A3+A2+Al, (3)

the familiar circular triads of Kendall and Babington Smith (1940). In either

case (1) or (ii) there is no justification for preferring any one player and we

must declare them all equal. Since such a verdict is presumably unanimous, we

shall call this strong equality among Al’ AZ’ A3. Nevertheless this is in some
respects an uneasy equality. For suppose that one of the players is to be
selected to participate in a future tournament. Obviously (in the absence of

other information) one of Al’ A2, A3 should be chosen at random. But now it

turns out that A, is unavailable. Then we are likely to prefer Al over A2 for

3

outcome (i) above and A2 over Al for (ii). Some may wish to toss, but no one,
I believe, will prefer Az‘over A1 in case (i).

Are there other instances when we may reasonably speak of strong equality?
The answer is yes if t is odd. For it is then always possible to find a tourna-
ment outcome which is made up of cycles. If t is prime there are }(t-1) cycles,

all of length t. TFor example, if t=7, writing the players as 0,1,...,6 for

short, we have the 3 cycles
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0+152+3+45+6>0,
0+2+4+6>13+5+0,
0>3>6+2->51+4-0.

To generate the 2nd and 3rd cycles we have simply kept on adding, respectively,
2 and 3 mod 7 (cf. David, 1963b)f When t is not prime, we may proceed in a
similar manner, i.e., by repeated addition of r=2,3,...,%(t-1); however, if r
divides t the corresponding cycle will be replaced by r cycles, of length t/r,

starting with 0,1,...,r-1. Thus for t=15 the 3rd cycle is

0>3+6+9>12+0, 1+4>7+10+13+1,
2+5>8->11+14-2,

When the complete tournament results can be resolved intd cycles, tﬁere
will again, I think, be general agreement that the players are equal. One may
perhaps wish to add that some (those occurring in the same cycle) are more
equal than others.

The process fails when t is even because the %t outcomes 0%t ,1-%t+1,...,
Lt-1+t-1 are not part of any cycle.

Strong equality of an odd number of players is also possible within a

larger tournament of any size. For example, if (3) holds and if each of

Al’ A2’ A3 has the same record against each of the remaining players A4,A5,...,At,

then the strong equality of Al’ A2, A3 is clearly preserved. The smallest strong

tournament of this type is that for t=5 with A4 defeating and A5 losing to each

of Al’ A2, A3, but with A_~A A convenient listing of all non-isomorphic tourna-

574"
ments for t<6 is given by Moon (1968, pp. 91-5). For t=3,4,5,6 the list includes

respectively, 1, 1, 6, 35 strong tournaments.



3. Row-Sum Scores

Once all partial orderings, with possible equalities, have been effected
in the manner of section 2, we are faced with the more difficult problem of how
to rank the players within the resultant strong subtournaments. Some readers

may wonder why we do not simply rank the t players on the basis of their number

t
of wins. This familiar method gives Ai the score a, = ) uij’ more fully called
=1
the row-sum score, since ai is the sum of the J#i

ith row of the matrix é-in (1). 1It is easy to verify that this method is in
complete accord with section 2, as any reasonable method must be. There is in-
deed little wrong with the method in the case of a balanced tournament such as
the Round Robin, as we shall see in some detail. However, it is by no means
the only reasonable method and it inevitably produces some tied rankings unless
the original tournament T is transitive. 1In the latter case the row-vector of

scores, arranged in descending order of magnitude is (t-1,t-2,...,1,0). 1In a

‘strong tournament a; = t-1 is impossible, as is a; = 0; hence there remain only

t-2 possible scores for the t players, showing that there must be at least two

tied pairs or a tied triple of players. Corresponding remarks apply to strong

subtournaments.

Other methods have therefore been proposed, probably with the primary aim of
providing tie-breaking mechanisms. The most important of these were originated
by Kendall and Wei (Kendall, 1955), Brunk (1960), and Slater (1961). Of course,
these procedures will leave strong equalities intact. Also they may do more

than break ties and place a 5iayer ahead of one with a larger number of wins.

4, The Method of Kendall and Wei

We illustrate a slightly simpler version of this method (Moon, 1968, p. 44)

on the following tournament matrix
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0 0110
1 00 10
A={0 1 0 1 1 (4)
0 0001
11000

The first column of Table 1 gives the row-sum scores a=Al, where 1 is a column
of t 1's. We note a triple tie. The starting point of the Kendall-Wei method -

(2) by assigning to each player the total

is to obtain a second score vector a
number of games won by all the opponents defeated by him.2 For example,
afz) = 3+l = 4, and in general §(2) = ézg. This gives the second column, with
A2 now behind Al and A5 who are still tied. The idea is to give more credit to
a player for defeating a strong (i.e., high-scoring) opponent than for a win
over a weak opponent. Kendall (1955) writes, "this is as far as one would wish
to go on practical grounds, perhaps' but then investigates continuation of this
process of re-allocation which clearly corresponds to repeated powering of the
matrix A. The score vector 9(3) = ésl is given in the next column, but produces
no change in the ranking. Actually, Kendall powered not A but the matrix A + %I
obtained by giving each player half a point for tieing with himself. The scores
2) + a + %1 appearing in the next column give the same
ranking in this example. Now if this process is continued indefinitely the
rankings will settle down.

In fact, since (Thompson, 1958) for t>3 the matrix A of any strong tourna-

ment is primitive (i.e., A" has all its elements positive from a certain finite

integer n=n_ on) it is known from Frobenius theory (e.g., Brauer, 1961) that

2 This has long been a tie-breaking method (the Sonneborn-Berger system) used
in chess tournaments.
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where A is the unique positive characteristic root of A with the largest absolute

value and s is a vector of positive terms, the column eigenvector satisfying

As = As. (5)

Here s is determined only up to a constant multiplier. Replacing A by A + %

'~

increases A by % but leaves s unchanged. By the Kendall-Wei method we mean the

ranking of the players according to the components of s.

Table 1. Various score vectors for the tournament
with matrix A of (4)

s 2@ ) 3 s s* v
Al 2 4 7 6% L4623 4623 11
A2 2 3 6 5% .3880 .3880 7
A3 3 5 9 8% «5990 .2514 19
A4 1 2 4 34 .2514 .5990 3
A5 2 4 7 6% .4623 4623 9

In Table 1 g has been normalized (g's=l). The rankings given by s are the
same as in the preceding 3 columns. (In other cases it may take a little longer
for the process to settle down.) An incidental feature in this example is that the

tie between Al and A5 remains unbroken by any of the rankings in spite of the

fact that the equality of Al and A5 is not strong (in the sense of section 2).

We omit a formal proof which can be based on induction on n. The present example
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is the smallest where matrix-powering methods fail to break an equality which

is not strong. However, all ties are broken by the method of section 4.2 leading

to equation (8) and to the score vector v given in the last column of Table 1.
The smallest example for which s reverses the order of two players, as

determined by a, is given by

(6)
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Here s' = (.6382, .5400, .3415, .2159, .3712) so that A5 is ranked ahead of A3.
This is a dubious improvement over ranking by a. It is instructive to look in

some detail at the even simpler case t=4.

4.1 The strong tournament of 4 players. Ignoring the transitive tournament for

t=4, we can without loss of generality take Al+A2+A3+Al. Now if A4 wins or

loses all his games against Al’ A2, A3 the equality of this trio is, of course,

unimpaired. The remaining outcomes, leading to a strong tournament, are of two

kinds

(1) ApA,, AoA, A A,

(i1) A A, AgvA,, AA,

and yield, respectively,

(.6256, .5516, 4484, .3213),

2
-

! (.3213, .4484, .6256, .5516).

14
N
L]

We see that the equality of Al and A2 is now broken although they have the same



record against A4; moreover, Al ranks ahead of A2 in (i) and behind A2 in (ii).

Since there is only one distinct type of strong tournament for t=4, the elements

]
.

of §é are simply a permutation of those in 81

The particular permutation and

its inverse are, respectively,

N W
[

) and P = ( g) ’

W =
N

1 2 3
4 3 1

the second row of P ~ giving the ranks of the elements in s Similarly, an

'i
2
interchange of wins and losses in all six games including (i) corresponds to the

permutations

thus reéulting in the ranking (3, 4, 1, 2).
This last example illustrates a feature of the Kendall-Wei method applying
for any t:interchange of wins and losses does not necessarily reverse a ranking.
Thus the Kendall-Wei method has some disconcerting consequences. Similar

remarks hold for other methods based on powering the tournament matrix. The

- idea of giving more credit to a player for defeating a strong (i.e., high—scoring)

opponent than a weak one retains usefulness in breaking ties among top-scorers
(see the Appendix) but I do not find it acceptable for arriving at a complete

ranking.

4.2 Variants. An interesting variant of the Kendall-Wei method has been pro-

posed by Ramanujacharyulu (1964). 1In addition to the nth scores %(n) = Anl,

~ o~

which he calls the 'iterated power of order n', this author suggests scores

% (n)

g*(n) = (A")"1, the 'iterated weakness of order n'. We see that a is the

result of n-1 re-allocations of losses rather than wins. The strongest player
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is now the one suffering the fewest iterated losses, i.e., having the lowest

score. As n> we have, with the same A as in (5),

A'g*®

.0

As*,

or

s*'A

~

!
As*',

i.e., §*' is simply the row-eigenvector of A corresponding to the principal
characteristic root A. Of course, é' may be obtained from A by interchange of
wins and losses. We have already pointed out that this does not necessarily
lead to a reversal of rankings made in the manner of section 4.1, so that s*
does not necessarily give the same rankings as s.

For é of (6) the scores si are given in Table 1. (Since A is self-conjugate

under interchange of wins and losses the s? are permutations of the Si)' They

give the ranking (3%, 2, 1, 5, 3%) instead of the g-ranking (2%, 4, 1, 5, 3%5).

Ramanujacharyulu advocates the 'power-weakness ra;io' r, where r, = si/sg.
In our example this leads right back to the original ranking by a. The same applies
to the difference di = si—si, favored by Hasse already in 1961 on the grounds that
interchange of wins and losses simply reverses the sign of di’ and hence reverses
" the corresponding ranking. This desirable feature of d is, however, hardly deci~

sive. TFor tournament (i) of section 4.1, for example, we have:

8 g* L d

~

.6256  .4484  1.3952 L1772

A2 .5516 .3213 1.7168 .2303
A3 L4484 6256 7168 -.1772
A4 .3213 .5516 .5825 -.2303
‘ Thus s*, r, and d all rank A2 ahead of Al. The rewards of steadiness (not losing

S SN R R 0t 4N o R M
pg
-
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to a weaker player) are greater than we may think reasonable.

Recently other motivations for the Kendall-Wei approach and use of equation
(5) have been put forward by Daniels (1969) and Pullman and Moon (1969). These
authors also suggest a number of modifications, mostlyAbased on the concept of
'fair scores'. Thus, to take the most useful of their proposals, suppose that
A is 'worth' V, in the sense that any player who beats A; wins V, from him.
One way of choosing the Vi is to equate expected gains and losses; i.e., we

require

? ﬂijvj = Vi ? Wji i=1,2,...,t, (7

where My = Pr{Ai+Aj}, i#j, and Tig = 0 by convention.
In a Round Robin of n rounds, ﬂij is estimated by dij/n.. Correspondingly

we may estimate Vi by scores A satisfying

LO0,.V, =V, L O0,,, (8)
j 1373 i ji

or, defining a4 = aij/EGji’ and Q = (qij)’ by

QU = Y. (8")

~

This is, in fact, the characteristic equation corresponding to Q whose largest
eigenvalue is 1 (Pullman and Moon). Daniels points out that for the Bradley-
- N - . .

Terry model ﬂij ﬂi/(ﬂi+ﬂj) (ﬂi__ o, Zﬂi 1) equation (7) gives (apart from
a multiplicative constant) Vi =m,. In that case, the 2 of (8), which may be

obtained without iteration, are therefore simple estimates of the Moo but the v,

This convention is more in line with our previous procedures than ﬂii =%
used by Daniels,
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may, of course, be used quite generally. For the 8 non-isomorphic strong tour-
naments existing for t<5 (n=1), y produces the same rankings as s of (5) except
for breaking a tie in the tournament of Table 1 (see last column, where the A

have been taken as the smallest positive integers satisfying (8)).

4. Inconsistencies, Upsets, and Weak and Strong Orderings

Two distinct lines of approach, different from any of the foregoing, are
taken by Brunk (1960) and Slater (1961). We consider these only briefly, taking
the latter first. Slater points out that corresponding to any tournament out-—
come there is one or more ranking of the players for which the number i of in-
consistencies is minimized. By an inconsistency4 is meant a defeat of a player
by one ranked below him. For example, consider the circular triad A1*A2+A3+Al.
Of the 6 possible rankings, three namely AlA2A3’ AA A, AA A, have i=]1,

27371 737172
whereas A1A3A2, A3A2Al, A2A1A3 have i=2. Slater therefore rules out the second
set but expresses no preference among the members of the first set.5 He proposes
i as a general statistic for a test of randomness in place of Kendall's widely-

used number ¢ of circular triads. Unfortunately i is for all but very small

sample sizes very much more difficult to evaluate than ¢ (nor is it necessarily

~ better than c¢ for being more complicated; cf. David, 1963a, p. 34). Several

interesting methods have been developed to determine i and the associated
ranking(s), e.g., Remage and Thompson (1966) by dynamic progfamming, Phillips
(1969) by ingenious elementary methods, and deCani (1969) by linear programming.
With Slater's approach, as with the methods of section 4, it is possible for the
resultant ranking to be in discord with any row-sum ranking. Finding this aspect

unsatisfactory, Ryser (1964) and Fulkerson (1965) have devised methods leading

Ryser (1964) uses the more evocative word 'upset'.

Since each player is ranked first once, second once, and third once, strong
equality is not really broken.
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to rankings which minimize the number of upsets subject to keeping row-sums
monotone.

The case for Slater's i has been strengthened by a probabilistic basis
provided by Thompson and Remage (1964) who show that Slater's nearest adjoin-
ing order is also the maximum-likelihood weak stochastic order, i.e., the rank-
ing obtained by maximizing the likelihood function

1-a, .

a,.,
L= 1 7w 3¢qr, ) H 1<i<j<t (9)
. 1] ij’ — =
i<j

with respect to the ﬂij’ subject to the restriction that for any ordered triple

> L > % > 15,
T, Z T2 T, & 1 T, . 2 (10)

In contrast, Brunk (1960) maximizes L subject to the strong stochastic

transitivity condition

T, . >%, 7, ., >% w, ., >max (m, ., , W, . ). (11)
i i, = i,i, — i, — 1 i
172 273

It is instructive to compare the two approaches on the circular triad out-

come Al*A2+A3*Al for which (9) reduces to

L= myoMyy(1-m4).

For each of the 6 possible rankings Table 2 shows the estimates pij of the Wij
obtained when L is maximized under (10) and (11), together with corresponding
maximization of L under (10)

2 2
obviously leads to P1,=1, Py3=1s p13=%, whereas under (11) we get P1773s Py3™3

likelihood L. For example, for the ranking A1A2A3
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3 273

2. Probability estimates pij and likelihood values L

for the rankings A, A, A, when A A >A A
i1, 1 1

lo

Under (10) Under (11)
(i,5 10y i) | Py 2 s Pe 5 5 Ps L | P, . s> Ps » 5 Pu L
1 2 3 1112 1213 1113 1112 i1, 1113
1 2 3 1 1 + + £ 2 + 25
S O T S B T
1
301 2 1 1 r |z| % £ ¥ |27
1 1 1 1 1 1
1 1 1 1 1 1
3 2 1 ) > 1 Iy > Y 1 m
1 1
2 1 3 3 + L T 1|5

22
P1373"

The next two rows follow by cyclic

14

interchange. The startling result,

due to Brunk, is that under (11) the last three rankings give the higher value

of L. As he points out, in none of these rankings is a player ranked more than

one place ahead of one to whom he lost.

What conclusions are we to draw from this embarrassment of choices in making

a ranking? Personally, I prefer to leave A, B, C tied although this leads to a

lower valu

, 1 e . . .
e of L, viz., 3" General principles, such as restricted maximization

of L, are, of course, of interest but confidence in them is somewhat undermined

by what they lead to in a situation with which we can really come to grips.

More-

over, the numerical values of the estimates maximizing L under (10) and (11) are

hardly realistic; for example, under (11) the ranking Al A3 A2 gives pl3=%,

=k, and

P3)

Py3=1s Py

ranking.)

yet p12=l, etc. (The unrestricted maximum of L is 1, with p12=l,

=0 which are also unrealistic values providing no guidance for
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‘Theorem 1. In a strong tournament with t>4 the nth score a
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Appendix

We formally establish here some properties of the methods of section 4

based on powering the tournament matrix.

(n) _ ,,n ,
i = (é ,.]:)1 is

for n=1,2,... .

non-decreasing in n (i=1,2,...,t) and a(n+2) > ain)

i

(n)

Proof. a, is the sum of the ith row of én and therefore equals the total number

of paths of length n starting at Ai in the directed graph corresponding to A.
But for each such path there is at least one path of length n+l, since in the

graph of a strong tournament at least one path must leave each vertex. Hence

a§n+l) 2_a§n), with equality holding only when all paths of length n from Ai end

up at vertices of outdegree 1. For t>4 there are at most two such vertices, say

A, and A, with A.»A,. Thus a(® = (™) _ ,(n+2)
1 2 1 72 i i i

paths of length n from Ai become paths of length n+l also ending up at Al or A2.

would imply that all these

This would require all the paths of length n from Ai to end at Al’ which is

(n+2) | _(n)
i

impossible. It follows that a; , which completes the proof.

(nt1) o ()
i i

We may note also that a for n > t+2. This result can be verified
directly for t=4 and follows for t>4 from the fact that all elements of én are

positive for n > t+2 (Moon, §13).

Theorem 2. 1In a strong tournament T with t>4, suppose a =a,=a and A1+A2. Then

the Kendall-Wei method ranks Al ahead of A2 if a=t-2 and A2 ahead of Al if a=1.

Proof. Take a=t-2 first and let A3 be the player who defeated Al“ Then from

As = Ag we have

~e
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s, + +s, + ... +8_=12Xs,,
2 4 t 71 (A1)
83 + 5y, + ... + 8, = lsz, :
so that
S .S = -
7=%3 A(sl s,) - (A2)
Now if A3 had lost only to A2, then Al’ A2, A3 would have been strongly equal.
However, since T is strong,A3 must have lost to at least one other player.
< .
Hence 85 <8, 80 that 8; > 8y by (A2) since A>0.

The case a=1 follows similarly.

Comments.

1. For a=1 the result s, > may be proved directly by noting that

27 %1
instead of (Al) we now have 8, = Asl with A>1, since XA lies (strictly) between
the smallest and the largest row-sums of A (Brauer, 1961).

We see also that in (A2) $,784 > 817555 which is pleasing in so far as A4

has a lower row-sum score than the common score of Al and A2.

2. Similar results hold for other matrix-powering methods of ranking. For

~ example, for a =a2=l and‘Az-rA3 we have from g(n) = én} that

1

a](.n+l) _ aén), a§n+l) _ agn).

From Theorem lvit now follows that

a§n+l) - aén) - agn—l) iaén) _ a§n+l)

and that the inequality is strict for one of any two consecutive values of n.
The last result makes it clear that the original Kendall-Wei powering, with

scores h(n) = (A+ %})n}, gives bin) < bén) for n=2,3,... . Thus this method
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' breaks such ties. However, like the modified method, it may introduce fresh

ties elsewhere in the ranking.



