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Abstract

Background: Network meta-analysis is used to compare three or more treatments for the same condition. Within a

Bayesian framework, for each treatment the probability of being best, or, more general, the probability that it has a

certain rank can be derived from the posterior distributions of all treatments. The treatments can then be ranked by

the surface under the cumulative ranking curve (SUCRA). For comparing treatments in a network meta-analysis, we

propose a frequentist analogue to SUCRA which we call P-score that works without resampling.

Methods: P-scores are based solely on the point estimates and standard errors of the frequentist network

meta-analysis estimates under normality assumption and can easily be calculated as means of one-sided p-values.

They measure the mean extent of certainty that a treatment is better than the competing treatments.

Results: Using case studies of network meta-analysis in diabetes and depression, we demonstrate that the numerical

values of SUCRA and P-Score are nearly identical.

Conclusions: Ranking treatments in frequentist network meta-analysis works without resampling. Like the SUCRA

values, P-scores induce a ranking of all treatments that mostly follows that of the point estimates, but takes precision

into account. However, neither SUCRA nor P-score offer a major advantage compared to looking at credible or

confidence intervals.

Keywords: Network meta-analysis, Ranking,‘Probability of being best’-statistic, Surface under the cumulative ranking,

SUCRA, p-value, AUC

Background
An increasing number of systematic reviews use network

meta-analysis to compare three or more treatments to

each other even if they have never been compared directly

in a clinical trial [1–4]. The methodology of network

meta-analysis has developed quickly and continues to be

refined using both Bayesian and frequentist approaches.

Bayesian methods are often preferred in network meta-

analysis for their greater flexibility and more natural

interpretation. It has been argued that ‘Bayesian methods

have undergone substantially greater development’ [3, 5].

One outstanding feature of the Bayesian approach often

noted is that it allows to rank the treatments according
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to their comparative effectiveness [6–9]. From a Bayesian

perspective, parameters such as those describing the rela-

tive effectiveness of two treatments are random variables

and as such have a probability distribution. Thus state-

ments such as ‘treatment A is superior to treatment B with

probability 60 %’ or ‘Treatment A ranges under the three

best of ten treatments with probability 80 %’ are possi-

ble. By contrast, from a frequentist perspective, treatment

effects are thought as fixed parameters and thus, strictly

speaking, a concept like ‘the probability that A is better

than B’ does not make sense.

Within the Bayesian framework, authors have noted

that it is not sufficient and can be misleading to solely

look at the probability of being best, as it does not take

uncertainty into account [7–16]. Salanti et al., introduc-

ing a rank statistic, extended the consideration to the

probabilities that a treatment out of n treatments in a
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network meta-analysis is the best, the second, the third

and so on until the least effective treatment [6]. They

also introduced several graphical presentations of rank-

ing, such as rankograms, bar graphs and scatterplots

[10, 17], and a numerical summary of the rank distribu-

tion, called the Surface Under the Cumulative RAnking

curve (SUCRA) for each treatment [6, 18, 19]. WinBUGS

code for obtaining rank probabilities is given in the sup-

plementary information of [20].

Objective

In this article, we intend a critical appraisal of ranking,

considering both the Bayesian and the frequentist per-

spective. We use a simple analytical argument to show

that the probability of being best can be misleading if we

compare only two treatments. For comparing more than

two treatments, we explain the SUCRA statistic and intro-

duce a quantity, called P-score, that can be considered as

a frequentist analogue to SUCRA. We demonstrate that

the numerical values are nearly identical for a data exam-

ple. Finally we argue that both SUCRA and P-score offer

no major advantage compared to looking at credible or

confidence intervals.

Data

Our first real data example is a network of 10 diabetes

treatments including placebo with 26 studies, where the

outcome was HbA1c (glycated hemoglobin, measured as

mean change or mean post treatment value) [21]. These

data are provided with R package netmeta [22].

The second real data example is a network of 9 phar-

macological treatments of depression in primary care

with 59 studies (including 7 three-arm studies), where the

outcome was early response, measured as odds ratio

(OR) [23].

Methods
Suppose a network meta-analysis has been conducted

using Bayesian methods.We first consider two treatments

A and B. Let μA and μB be independent estimates rep-

resenting the arm-based effects of treatments A and B,

respectively, as estimated in the network meta-analysis.

Let the effects be scaled thus that higher values represent

better success. We are interested in the probability that

A is more effective than B, that is we want to compute

P(μA > μB).

Independent normally distributed posteriors

For simplicity, let us assume normal distributions for

the posteriors, precisely let μA ∼ N(μ̂A, σ
2
A),μB ∼

N(μ̂B, σ
2
B). Then the distribution of μA − μB is normal

with expectation μ̂A − μ̂B and variance σ 2
A + σ 2

B and we

have

P (μA > μB) = P (μA − μB > 0)

= 1 − �
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where � is the cumulative distribution function (cdf) of

the standard normal distribution. It follows that P(μA >

μB) > 0.5 is equivalent to �

(

(

μ̂A − μ̂B

)

/

√

σ 2
A + σ 2
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)

>

0.5, which is true if and only if μ̂A > μ̂B, independently

of σ 2
A + σ 2

B . In other words, whether A or B is thought

more effective (‘better’) depends only on the sign of the

difference of the point estimates: the treatment with the

greater point estimate wins, regardless of the variances.

Fictitious example

Figure 1 shows a fictitious example of two independent

normal distributions with means 0.5 and 0 and variances

4 and 1 for treatments A and B, respectively. The theo-

retical 95 % credible interval of the broader distribution

of treatment A (-3.42 to 4.42) completely covers that of

the narrower distribution of treatment B (-1.96 to 1.96,

dashed). It is natural to conclude that there is no evidence

of a difference between the treatments in effectiveness,

particularly due to the lack of precision in estimating the

effect of A. Note that the densities are cutting each other

at two different points: there are regions both to the right

and to the left hand side where the density of the flat

distribution (treatment A) is greater than that of the dis-

tribution of B. In these regions the flat distribution has

more mass than the precise distribution, just because it is

flat. That is, particularly there is a high probability that A

creates unfavorable effects less than −2, that are unlikely

to occur under treatment B. Nevertheless, the probability

that A is better than B is computed as �(0.5/
√
5) = 0.59.

Since this is greater than 0.5, A is thought better than B.

ROC curve

The probability P(μA > μB) can be interpreted as the

area under the curve (AUC) for the receiver operating

characteristic (ROC) curve defined by

R(t) = 1 − FA(F−1
B (1 − t))

where FA, FB are the cdfs of the posterior distributions of

μA and μB (see Additional file 1 for details). In the diag-

nostic accuracy setting, the AUC provides the probability

that, given a randomly selected pair of a diseased and a

non-diseased individual, the values of the diseased and the

non-diseased individual are in the correct order, e.g., the

value of the diseased individual is greater, if higher values

indicate illness.
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Fig. 1 Fictitious example. Two normal posterior distributions

following N(0,1) (dashed) and N(0.5,22) (continuous) with credible

intervals. The probability that treatment A, corresponding to the flat

distribution, is better than treatment B, corresponding to the steep

distribution, is 59 %

For Bayesian posterior distributions, the AUC provides

the probability that, given that treatment A is truly more

effective than treatment B andwe randomly select a pair of

effect estimates for treatment A and treatment B, A proves

better than B. Figure 2 shows the ROC curve and the AUC

for the fictitious example. The large difference in variances

Fig. 2 Fictitious example: ROC curve. ROC curve and area under the

curve (AUC) corresponding to the example of Fig. 1 (AUC = 0.59)

is reflected by the asymmetric appearance of the curve.

Moreover, the curve cuts the dotted line, which is due to

the above-mentioned region to the left of Fig. 1 where we

observe more unfavorable effects occurring under A. The

AUC is 59 %. If this ROC curve would occur from the dis-

tribution of a potential diagnostic marker, nobody would

trust a diagnostic test based on that marker.

We have seen for normal posterior distributions that

the treatment with the more favorable point estimate will

be ranked first, regardless of the difference that might be

quite small, independently of the variances. If only looking

at the ranks, we inevitably ignore the potential difference

in precision and length of credible intervals between both

posterior distributions.

Comparing more than two treatments

We now consider a network meta-analysis with n treat-

ments and Bayesian posteriors μi with means μ̂i (i =
1, . . . , n). We cannot assume that the μi are independent,

as they are all informed by the whole network. We have,

however, still an estimate for each difference μ̂i − μ̂j with

standard deviation σij. Again assuming normality for the

posteriors, we see as above

P(μi > μj) = �

(

μ̂i − μ̂j

σij

)

(1)

where � is the cdf of the standard normal distribution. It

follows that the order induced to all treatments by pair-

wise comparing two treatments preserves the order of the

means, independently of the variances. However, the vari-

ances enter the above equation and trigger the distance

between the underlying probabilities P(μi > μj): the

greater the variances compared to the difference, themore

the argument in (1) tends to zero and the more P(μi > μj)

tends to 0.5.

Surface under the cumulative ranking (SUCRA)

We here recapitulate the definition and interpretation of

the SUCRA probabilities introduced by Salanti et al. [6].

First, based on the Bayesian posterior distributions, for

each treatment i(i = 1, . . . , n) the probability P(i, k) that

treatment i has rank k(k = 1, . . . , n) is computed. For

each treatment i, these rank probabilities form a discrete

distribution, as
∑n

k=1 P(i, k) = 1. The cdfs for these

distributions can be obtained by

F(i, r) =
r

∑

k=1

P(i, k)

(r = 1, . . . , n). F(i, r) gives the probability that treatment

i has rank r or better and we have F(i, n) = 1 for all
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i. The surface under the cumulative ranking distribution

function for treatment i is then defined by

SUCRA(i) = 1

n − 1

n−1
∑

r=1

F(i, r).

To give an interpretation of SUCRA(i), we remember

that the expectation of a discrete non-negative random

variable with values 1, . . . , n can be expressed by the area

between the cdf F and 1. For the mean rank we have

therefore

E(rank(i)) = n −
n−1
∑

r=1

F(i, r)

= n − (n − 1)SUCRA(i)

whence we obtain

SUCRA(i) = n − E(rank(i))

n − 1
.

It follows that SUCRA(i) is the inversely scaled average

rank of treatment i, scaled such that it is 1 if E(rank(i)) = 1

(that is, i always ranks first) and 0 if E(rank(i)) = n (that

is, i always ranks last) [6, 19].

SUCRA(i) can also be interpreted as the average propor-

tion of treatments worse than i.

The mean SUCRA value is 0.5.

A frequentist version of SUCRA: The P-score

We now look at equation (1) from a frequentist per-

spective. In the frequentist setting, instead of observing

Bayesian posteriors with means and standard deviations,

we suppose to have observed effect estimates, again writ-

ten μ̂i, and standard errors for all pairwise differences μ̂i−
μ̂j, denoted sij. Again assuming normality, the equation

corresponding to (1) is

Pij = �

(

μ̂i − μ̂j

sij

)

.

We give an interpretation for Pij. Apparently, (μ̂i −
μ̂j)/sij is the signed z-score of the contrast between treat-

ments i and j, conditioned on the standard errors. The

two-sided p-value of this comparison is given by

pij = 2

(

1 − �

( |μ̂i − μ̂j|
sij

))

.

It represents the probability that an absolute differ-

ence of the observed size or larger occurs, given the

null-hypothesis of no difference is true. Hence we have

Pij =
{

pij/2, if μ̂i ≤ μ̂j

1 − pij/2, if μ̂i > μ̂j

Thus, Pij is one minus the one-sided p-value of rejecting

the null hypothesis μi ≤ μj in favor of μi > μj. Pij is

at least 0.5 if we observe μ̂i ≥ μ̂j, making it likely that

μi > μj. Pij is less than 0.5 if we observe μ̂i < μ̂j, which

makes it less likely that μi > μj.

We note that, as often, it seems more natural to inter-

pret P(μi > μj) in the Bayesian setting than to explain

themeaning of Pij in the frequentist context. Nevertheless,

they both result in the same decision rule: the greater Pij,

the more certain we are that μi > μj, and vice versa. Fur-

ther we note that we do not claim or need independence

of the differences μ̂i − μ̂j.

We may consider the means

P̄i = 1

n − 1

n
∑

j, j �=i

Pij.

As Pij is interpreted as the extent of certainty that μi >

μj holds, we may interpret P̄i as the mean extent of cer-

tainty that μi is greater than any other μj, averaged over

all competing treatments j (j �= i) with equal weights. In

other words, P̄i represents the rank of treatment i within

the given range of treatments, where 1 means theoreti-

cally best and 0 means worst. This corresponds to the

interpretation of SUCRA(i). We will call P̄i the P-score

of treatment i. P-scores can be seen as the frequentist

equivalent of SUCRA values.

From the definition of Pij it follows that Pji = 1 − Pij.

Thus the sum over all off-diagonal elements of the matrix

(Pij) is n(n − 1)/2. For the mean of the P̄i we obtain

1

n

n
∑

i

P̄i = 1

n(n − 1)

n
∑

i

n
∑

j, j �=i

Pij = 0.5

which is the same as the mean of all SUCRA values. In

Additional file 2 we give a formal proof that P-scores and

SUCRA values are identical if the true probabilities are

known.

Results
We analyzed both data sets with Bayesian as well as

frequentist methods. For the Bayesian analysis, we used

WinBUGS in combination with R package R2WinBUGS,

and for the frequentist analysis we used function netrank

of R package netmeta [24]. All analyses were based on the

random effects model.

Diabetes data

First, we report the analysis of the diabetes data given by

Senn [21]. The results were similar. Figure 3 shows the

results from WinBUGS as a forest plot where all treat-

ments were compared to placebo as a reference, ordered

by their medians. Lower values of HbA1c are thought

better. Figure 4 shows the corresponding results from

netmeta.

The Bayesian rank analysis is based on the probabilities

P(i, k) that treatment i is the k’th best treatment. These are

presented in Table 1. Placebo has a probability of 0 to be a
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Fig. 3 Diabetes data, analyzed with WinBUGS. Diabetes data,

analyzed with WinBUGS and ordered by treatment effects (REM =

random effects model, MCMC = Markov Chain Monte Carlo analysis

with 3 chains, 40000 iterations, 10000 burn in iterations discarded).

CI = credible interval (median and 2.5 % / 97.5 % quantiles). The

estimated common variance between studies was σ 2 = 0.1221

good treatment, but a probability of 86 % to be worst. Con-

versely, rosiglitazone has a probability of (41 + 32 + 17)%

= 90 % to be under the best three treatments. Pioglitazone

has a higher probability of being best (23 %) compared to

metformin (15 %). This is due to its slightly better point

estimate, in spite off its clearly lower precision. We have

already seen this phenomenon in our fictitious example.

However, metformin has the greater probability (15 % +

23 % + 29 % = 67 %) to be under the best three treatments,

compared to pioglitazone (23 % + 20 % + 21 % = 64 %).

For the frequentist analysis, Table 2 gives the matrix Pij
of one-sided p-values of rejecting the true null hypothesis

of non-inferiority of i compared to j in favor of the alter-

native hypothesis that the treatment in the row (i) is worse

than the treatment in the column (j). Small Pij-values

mean rejection, that is i is worse than j. For example,

we see that the values in the placebo row all are very

small, meaning that it is unlikely that placebo is better

than any of the other treatments. Conversely, the values in

Fig. 4 Diabetes data, analyzed with R package netmeta. Diabetes

data, analyzed with R package netmeta and ordered by treatment

effects (REM = random effects model, CI = confidence interval). The

estimated common between study variance was τ 2 = 0.1087

the rosiglitazone row are all greater than 0.8 except those

comparing rosiglitazone with metformin and pioglitazone

that are themost promising competitors.When compared

to each other, these two are nearly head to head (Pij = 0.5),

as expected due to their very similar point estimates.

Table 3 shows the Bayesian and frequentist point esti-

mates (see also Figs. 3 and 4), the SUCRA values and

the P-scores (obtained as row means from Table 2), the

treatments now ordered with decreasing rank. The results

confirm that the rankingmainly depends on the point esti-

mates, with the exception of metformin and pioglitazone

that change places, now accounting for the greater preci-

sion of metformin. Moreover, we see that SUCRA values

and P-scores, in addition to their corresponding interpre-

tation, also have very similar numeric values. R code for

the diabetes example is provided in function netrank of

the netmeta package, Version 0.8-0 [22].

Depression data

For the depression data [23], the Bayesian MCMC

approach (Fig. 5) and the frequentist approach (Fig. 6)

showed results slightly more different. Particularly, the

point estimates of TCA and SNRI are similar for the

Bayesian approach, but different when using our frequen-

tist approach. Accordingly, the ranking differs (Table 4):

For the Bayesian approach with SUCRA, TCA benefits

from its higher precision, for the frequentist approach (P-

score), SNRI benefits from its larger point estimate. We

attribute this difference to difference in point estimation

rather than the different ranking methods.

We analysed these data with a third approach, the fre-

quentist resampling method by White et al. [25, 26]. In

themvmeta function of Stata, rankings are constructed via

a parametric bootstrap procedure in analogy to drawing

from a Bayesian posterior distribution. For each param-

eter vector drawn from the multivariate distribution, the

treatment that ranks first is identified, and the proba-

bility of being best for each treatment is estimated by

the proportion of samples where this treatment ranks

first. SUCRA values are calculated as for the Bayesian

approach. The results for the depression data were very

similar to those of our own method. The point estimates

were identical and the SUCRA values nearly identical to

the P-Score values. This corroborates our conclusion that

both P-scores and SUCRA values are mainly driven by the

point estimates and that P-scores are a good approxima-

tion to values generated by resampling methods.

Discussion
It has been argued that ranking treatments by the proba-

bility of being best and SUCRA is an originally Bayesian

concept, and this has been claimed to be a reason to

prefer Bayesian methodology when performing network

meta-analysis [3, 7, 9]. In this article, we reassessed these
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Table 1 Bayesian analysis of the diabetes data [21]. The entry in row i and column k gives the probability that treatment i is the k’th best

Rank 1 2 3 4 5 6 7 8 9 10

acar 0.04 0.04 0.06 0.14 0.23 0.25 0.15 0.07 0.02 0.00

benf 0.02 0.04 0.05 0.10 0.16 0.20 0.19 0.15 0.09 0.01

metf 0.15 0.23 0.29 0.20 0.08 0.03 0.01 0.00 0.00 0.00

migl 0.07 0.12 0.13 0.19 0.20 0.14 0.10 0.04 0.01 0.00

piog 0.23 0.20 0.21 0.16 0.09 0.06 0.02 0.01 0.00 0.00

plac 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 0.86

rosi 0.41 0.32 0.17 0.08 0.02 0.00 0.00 0.00 0.00 0.00

sita 0.03 0.02 0.03 0.04 0.09 0.12 0.17 0.23 0.22 0.05

sulf 0.00 0.00 0.00 0.01 0.02 0.05 0.18 0.30 0.40 0.04

vild 0.05 0.03 0.05 0.08 0.11 0.15 0.18 0.18 0.14 0.04

arguments. First, we have shown that for the normal

distribution the probability P(μA > μB) is larger than

P(μB < μA) if and only if the expectation of μA is greater

than that of μB. Though the probabilities depend on the

variances, the ranking order does not. We gave a ficti-

tious example where there was no evidence of a relevant

difference between treatments A and B. The correct inter-

pretation is that the uncertainty in estimating the effect

of A is too large to make us take the slightly better point

estimate very serious, and we should attribute this slight

superiority to the lack of precision. We compared the

situation to the diagnostic test setting, where the AUC

measures the probability that two values of a marker are

in correct order. It is known that ROC curves may become

asymmetrical with respect to the diagonal if one distri-

bution has a much greater variance than the other. In

extreme cases of one distribution with long tails in either

direction, the AUC makes no sense anymore.

Further, we introduced a frequentist analogue to

SUCRA. It is based solely on the point estimates and

standard errors of the frequentist network meta-analysis

estimates. From these, we derived P-scores that represent

means of one-sided p-values under normality assump-

tion. The P-scores have an interpretation analogous to the

SUCRA values and measure the extent of certainty that

a treatment is better than another treatment, averaged

over all competing treatments. The numerical values of

SUCRA and P-score were similar. Like the SUCRA values,

the P-scores induce a ranking of all treatments that mostly

follows that of the point estimates, but takes precision into

account.

It is important to consider the numerical values them-

selves, not only their ranks. For both our examples, there

are treatments (rosiglitazone and hypericum, respectively)

with an average probability of 89 % of being superior to a

competing treatment. These values are considerably high,

but they do not exceed 90 % or 95 %. Also in both exam-

ples, some other treatments have ranks quite similar to

each other. We have shown that the mean value of the

P-scores is always 0.5; however, the variance may vary

Table 2 Frequentist analysis of the diabetes data [21]. The entry in row i and column j gives one minus the one-sided p-value of

rejecting the null hypothesis that the treatment in the row (i) is worse than the treatment in the column (j) in favor of superiority of i

compared to j

acar benf metf migl piog plac rosi sita sulf vild

acar – 0.62 0.13 0.37 0.18 1.00 0.07 0.74 0.95 0.63

benf 0.38 – 0.11 0.28 0.13 0.99 0.05 0.64 0.80 0.53

metf 0.87 0.89 – 0.74 0.50 1.00 0.26 0.93 1.00 0.87

migl 0.63 0.72 0.26 – 0.29 1.00 0.14 0.82 0.94 0.72

piog 0.82 0.87 0.50 0.71 – 1.00 0.32 0.91 0.99 0.85

plac 0.00 0.01 0.00 0.00 0.00 – 0.00 0.05 0.04 0.02

rosi 0.93 0.95 0.74 0.86 0.68 1.00 – 0.96 1.00 0.92

sita 0.26 0.36 0.07 0.18 0.09 0.95 0.04 – 0.64 0.40

sulf 0.05 0.20 0.00 0.06 0.01 0.96 0.00 0.36 – 0.25

vild 0.37 0.47 0.13 0.28 0.15 0.98 0.08 0.60 0.75 –

Abbreviations: acar acarbose, benf benfluorex,metf metformin,miglmiglitol, piog pioglitazone, plac placebo, rosi rosiglitazone, sita sitagliptin, sulf sulfonylurea alone, vild

vildagliptin
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Table 3 Bayesian and frequentist point estimates, SUCRA values

and P-scores for the diabetes data [21]

Point estimates Ranks

Bayesian Frequentist SUCRA P-score

WinBUGS netmeta WinBUGS netmeta

rosiglitazone -1.24 -1.23 0.890 0.893

metformin -1.12 -1.13 0.780 0.782

pioglitazone -1.12 -1.13 0.773 0.775

miglitol -0.95 -0.95 0.620 0.614

acarbose -0.83 -0.84 0.520 0.520

benfluorex -0.74 -0.73 0.439 0.436

vildagliptin -0.68 -0.70 0.413 0.423

sitagliptin -0.56 -0.57 0.334 0.333

sulfonylurea -0.42 -0.42 0.213 0.210

placebo 0 0 0.018 0.014

greatly. All P-score values may just as well scatter tightly

around 50 %, indicating that all treatments are of simi-

lar efficacy. This is the case for the example of dietary

fat given in the supplement of [20], where the P-scores

for three treatments are 0.58 (diet 2), 0.51 (diet 1) and

0.41 (control). In such a case, simple ranks are likely to be

misinterpreted.

Salanti [1] criticized that ‘Presentation of results on the

basis of the statistical significance of pairwise compar-

isons, as suggested by Fadda et al. [27], may be misleading

as it overemphasizes the importance of p-values’. We have

shown that, somewhat ironically, a concept like SUCRA

that originates from a Bayesian point of view has a fre-

quentist analogue that in fact is simply based on p-values.

P-values are frequently used in a different context when

ranking very large gene lists in gene expression anal-

ysis and genome-wide association studies where very

Fig. 5 Depression data, analyzed with WinBUGS. Depression data,

analyzed with WinBUGS (REM = random effects model, MCMC =

Markov Chain Monte Carlo analysis with 3 chains, 40000 iterations,

10000 burn in iterations discarded). CI = credible interval (median and

2.5 % / 97.5 % quantiles). The estimated common between study

variance was σ 2 = 0.2011

Fig. 6 Depression data, analyzed with R package netmeta. Depression

data, analyzed with R package netmeta (REM = random effects

model, CI = confidence interval). The estimated common between

study variance was τ 2 = 0.1875

small two-sided p-values indicate different gene expres-

sion between groups of patients [28–30]. By contrast, our

approach leads to sums of one-sided p-values where large

values indicate higher-ranking treatments.

Kibret et al. in a simulation study [9] have shown

that unequal numbers of studies per comparison resulted

in biased estimates of treatment rank probabilities. The

expected rank was overestimated for treatments that were

rarely investigated and underestimated for treatments

occurring in many studies. This finding is probably due to

the differences in precision of estimates between rare and

frequent treatments.

Jansen et al. [31] mentioned the possibility to ‘approxi-

mate the results of a Bayesian analysis [. . . ] in a frequentist

setting’, but did not descibe details. One possible choice

is the mvmeta function of Stata we applied to our second

example.

With this method, a data augmentation step was neces-

sary to impute data for a chosen reference treatment for all

studies even if they did not have that treatment arm [25].

To the best of our knowledge, a simple analytical

method like ours, based on frequentist p-values and

bypassing the probabilities of being k’th best, has not been

described.

In this article, we limited our considerations to the

normality assumption, because in frequentist statistics

confidence intervals usually are based on a normal or t-

distribution assumption. In the Bayesian framework, pos-

terior distributions, though depending on prior assump-

tions, are not restricted to be normal, particularly, they

may be skew. We did not investigate the behaviour of

the ranking probabilities for skewed or other types of

distributions.

In a Bayesian context, probably the most straightfor-

ward question with respect to ranking treatments is the

probability of each treatment being best. However, the

concept is not so straightforward from the frequentist
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Table 4 Columns 2-4: Bayesian and frequentist point estimates (OR). Columns 5-7: SUCRA values based on MCMC analysis using

WinBUGS (SUCRA-1), P-scores, SUCRA values based on resampling using Stata function mvmeta (SUCRA-2) for the depression data [23]

Point estimates Ranks

Bayesian Frequentist SUCRA-1 P-score SUCRA-2

WinBUGS netmeta mvmeta WinBUGS netmeta mvmeta

Hypericum 2.03 1.99 1.99 0.897 0.894 0.895

Low-dose SARI 1.79 1.78 1.78 0.714 0.720 0.719

TCA 1.74 1.72 1.72 0.690 0.680 0.680

SNRI 1.74 1.74 1.74 0.681 0.689 0.689

SSRI 1.70 1.68 1.68 0.610 0.616 0.617

NRI 1.40 1.42 1.42 0.447 0.445 0.444

NaSSa 1.13 1.14 1.14 0.207 0.213 0.213

rMAO-A 1.05 1.05 1.05 0.157 0.152 0.152

Placebo 1 1 1 0.096 0.091 0.092

Abbreviations: SARI serotonin antagonist and reuptake inhibitor, TCA tricyclic and tetracyclic antidepressant, SNRI serotonin-noradrenaline reuptake inhibitor, SSRI selective

serotonin reuptake inhibitor, NRI noradrenaline reuptake inhibitor, NaSSa specific serotonergic antidepressant agents, rMAO-A reversible inhibitors of monoaminoxidase A

perspective. We explicitly note that here lies a differ-

ence between our approach and others: we completely

avoid to compute ranking probabilities (i.e., the probabil-

ity of being best, second-best, and so on). Because of the

dependence between all NMA estimates, this would be

difficult or even impossible without resampling methods.

We replace this by looking at all pairwise comparisons.

These are easy to implement, because independence is not

needed in the first step when computing the p-values of

the contrasts. We do not sum up independent quantities

when summing up the p-values in the second step, as they

all rely on estimation of the network as a whole. Never-

theless, it turns out that the interpretation of this sum is

quite similar to the interpretation of SUCRA: for treat-

ment i, it is the mean certainty that treatment i is better

than another treatment j. In a way, looking at all pairwise

comparisons is a trick for getting a ranking list without

asking for the probability of being k’th under n.

Ranking, however done, depends on the criteria. In both

our examples, this was the primary efficacy outcome of

the NMA. In practice there are almost always multiple

outcomes. A treatment may be best for efficacy, but worst

for safety, or best for short-term survival, but worse for

long-term survival.

Before ranking treatments, we have to choose criteria,

or we may give separate ranking lists for different out-

comes, or we may combine several criteria to a joint score.

The problem is known from diagnostic testing, where a

trade-off between sensitivity and specificity is made, e.g.,

by taking their sum (equivalent to the Youden index) or

a weighted sum with a combination of prevalence and

utilities as weights.

We distinguish two issues: the choice of the outcome

and how to rank treatments, given the outcome is fixed.

In the present paper, we only looked at the second

topic, assuming that a specific outcome has been selected

beforehand.

Conclusions
We introduced a frequentist analogue, called P-scores, to

the SUCRA concept in Bayesian network meta-analysis

methodology. Whereas Bayesian ranking is based on the

posterior distribution, P-scores are based on the fre-

quentist point estimates and their standard errors. Both

concepts, the Bayesian SUCRA and the frequentist P-

scores, allow ranking the treatments on a continuous

0-1 scale. The numerical values are similar. We should

keep in mind that, at least under normality assumption,

the order depends largely on the point estimates. Sim-

ply ranking treatments based on SUCRA or P-scores has

no major advantage compared to ranking treatments by

their point estimates. The values themselves of the P-score

should be taken into account. Precision should also be

taken into account by looking at credible intervals or con-

fidence intervals, whether one opts for ranking or not.

When reporting a network meta-analysis, we recommend

that authors should always present credible or confidence

intervals, for example in form of a forest plot comparing

all treatments to a chosen reference.

Availability of supporting data
The diabetes data are published [21] and also available as

part of R package netmeta [22]. The depression data are

published in the supplemental material of [23], Fig. 1. The

dietary fat data are provided in the supplement of [20].

Ethical approval was not necessary, as this is a method-

ological study.
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