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ABSTRACT
This paper introduces RankSQL, a system that provides a system-
atic and principled framework to support efficient evaluations of
ranking (top-k) queries in relational database systems (RDBMS),
by extending relational algebra and query optimization. Previously,
top-k query processing is studied in the middleware scenario or in
RDBMS in a “piecemeal” fashion, i.e., focusing on specific oper-
ator or sitting outside the core of query engines. In contrast, we
aim to support ranking as a first-class database construct. As a
key insight, the new ranking relationship can be viewed as another
logical property of data, parallel to the “membership” property of
relational data model. While membership is essentially supported
in RDBMS, the same support for ranking is clearly lacking. We ad-
dress the fundamental integration of ranking in RDBMS in a way
similar to how membership, i.e., Boolean filtering, is supported.
We extend relational algebra by proposing a rank-relational model
to capture the ranking property, and introducing new and extended
operators to support ranking as a first-class construct. Enabled by
the extended algebra, we present a pipelined and incremental exe-
cution model of ranking query plans (that cannot be expressed tra-
ditionally) based on a fundamental ranking principle. To optimize
top-k queries, we propose a dimensional enumeration algorithm to
explore the extended plan space by enumerating plans along two
dual dimensions: ranking and membership. We also propose a
sampling-based method to estimate the cardinality of rank-aware
operators, for costing plans. Our experiments show the validity of
our framework and the accuracy of the proposed estimation model.

1. INTRODUCTION
Ranking queries (or top-k queries) are dominant in many emerg-

ing applications, e.g., similarity queries in multimedia databases,
searching Web databases, middlewares, and data mining. Top-k
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queries aim at providing only the top k query results, according to
a user-specified ranking function, which in many cases is an aggre-
gate of multiple criteria.

The increasing importance of top-k queries warrants an efficient
support of ranking in the relational database management system
(RDBMS) and has recently gained the attention of the research
community. However, most of the available solutions to supporting
ranking queries are in the middleware scenario [10, 26, 16, 11, 2,
4], or in RDBMS in a “piecemeal” fashion, i.e., focusing on spe-
cific types of operator [3, 22, 23] and queries [25, 21], or sitting
outside the core of query engines [6, 5, 29, 14, 15, 20, 31]. Hence,
top-k queries are not treated as first-class query type, losing the
advantages of integrating top-k operations with other relational op-
erations.

Fundamental support of ranking queries is lacking mainly be-
cause relational algebra has no notion for ranking. Therefore, sup-
porting ranking queries in RDBMS’s as a first-class query type
is a significant research challenge. In this paper, we present the
RankSQL system, which aims at providing a seamless support and
integration of top-k queries with the existing SQL query facility in
relational database systems. The following is an example of top-k
query.

Example 1: Consider user Amy, who wants to plan her trip to
Chicago. She wants to stay in a hotel, have lunch in an Italian
restaurant (condition c1: r.cuisine=Italian), and walk to a mu-
seum after lunch; the hotel and the restaurant together should cost
less than $100 (c2: h.price+r.price<100); the museum and the
restaurant should be in the same area (c3: r.area=m.area). Fur-
ther, to rank the qualified results, she specifies several ranking crite-
ria, or “predicates”– for low hotel price, with p1: cheap(h.price);
for close distance between the hotel and the restaurant, with p2:
close(h.addr, r.addr); and for matching her interests with the mu-
seum’s collections, with p3: related (m.collection, “dinosaur”).
These ranking predicates return numeric scores and the overall scor-
ing function sums up their values. The query is shown below in
PostgreSQL syntax.

SELECT ∗
FROM Hotel h, Restaurant r, Museum m
WHERE c1 AND c2 AND c3

ORDER BY p1 + p2 + p3

LIMIT k

With current relational query processing capabilities, the only
way to execute the previous query is to: (1) consume all the records
of the three inputs; (2) join the three inputs and materialize the
whole join results; (3) evaluate the three predicates p1, p2, and p3

for each valid join result; (4) sort the join results on p1 + p2 + p3;



and (5) report only the top k results to the user. Processing the
query in this way suffers from the following problems:

• The three inputs can be arbitrarily large, hence joining these
inputs can be very expensive. Moreover, it may be infeasible
to assume that we can consume the whole inputs, e.g., if these
inputs are from external sources such as Web databases.
• The user is not interested in a total order of all possible com-

binations (hotel, restaurant, museum). Hence, the aforemen-
tioned processing is an overkill with unnecessary overhead.
• The ranking predicates can be very expensive to compute,

and hence should be evaluated only when they affect the or-
der (rank) of the results. Current query processing must eval-
uate all the predicates against every valid join result to be
able to sort these results.

Our proposed general approach for supporting ranking in rela-
tional query engines is based on extending relational algebra to be
rank-aware. In the rest of this paper, we show that by taking ranking
into account as a basic logical property, efficient query processing
and optimization techniques can be devised to efficiently answer
top-k queries such as the one in Example 1. We summarize the
contributions of RankSQL as follows:

• Extended algebra: We propose a “rank-relational” algebra,
by extending relational algebra to capture ranking as a first-
class construct.

• Ranking query execution model: We present a pipelined
and incremental execution model, enabled by the rank-relational
algebra, to efficiently process ranking queries.

• Rank-aware query optimization: We present a rank-aware
query optimizer, by addressing the key challenges in plan
enumeration and cost estimation, to construct efficient rank-
ing query plans.

We conduct an experimental study on our initial implementa-
tion of RankSQL in PostgreSQL, for verifying the effectiveness of
the extended algebra in enabling the generation of efficient ranking
plans, and for evaluating the validity of our cardinality estimation
method in query optimization.

The rest of the paper is organized as follows. We start in Sec-
tion 2 by defining and motivating ranking queries as first-class con-
struct. Section 3 introduces the rank-relational algebra. Section 4
introduces the execution model and physical implementation of
ranking query plans. We present our proposed rank-aware query
optimization in Section 5. We describe the experimental evalua-
tion in Section 6 and review related work in Section 7. Finally, we
conclude the paper in Section 8.

2. RANKING QUERY MODEL
This section defines rank-relational queries (Section 2.1), and

motivates the need for supporting ranking as a first-class construct
(Section 2.2).

2.1 Rank-Relational Queries
A rank-relational query Q, as illustrated by Example 1, is a tradi-

tional SPJ query augmented with ranking predicates. Conceptually,
such queries have the “canonical” form of Eq. 1 in terms of rela-
tional algebra:

Q = π∗λkτF(p1,...,pn)σB(c1,...,cm)(R1 × · · · ×Rh) (1)

That is, upon the product of the base relations (R1 × . . . × Rh),
the following two types of operations are performed, before the top

k tuples (which we denote by λk) with projected attributes (as π∗

indicates) are returned as the results.

• Filtering: a Boolean function B(c1, . . . , cm) filters the re-
sults by the selection operator σB (e.g., B = c1 ∧ c2 ∧ c3 for
Example 1), and

• Ranking: a monotonic scoring functionF(p1, . . . , pn) ranks
the results by the sorting1 operator τF (e.g.,F = p1+p2+p3

for Example 1).

Formally, Q returns k top tuples ranked by F , from the qual-
ified tuples RB = σB(c1,...,cm)(R1 × · · · × Rh). Each tuple u
has a predicate score pi [u] for every pi and an overall query score
F(p1 , . . . , pn )[u] = F(p1 [u], . . . , pn [u]). As a result, Q returns
a sorted list K of k top tuples2, ranked by F scores, such that
F [u] ≥ F [v], ∀u ∈ K and ∀v /∈ K. As a standard assump-
tion, F is monotonic, i.e., F(x1, . . . , xn) ≥ F(y1, · · · , yn) when
∀i : xi ≥ yi. Note that we use summation as the scoring function
throughout the paper, although F can be other monotonic functions
such as multiplication, weighted average, and so on.

Observe that, as Example 1 shows, a rank-relational query has
four types of predicates: For filtering, as traditionally supported,
the query has Boolean-selection predicates (e.g., c1) and Boolean-
join predicates (e.g., c2, c3). For ranking, according to our pro-
posal, it has rank-selection predicate (e.g., p1, p3) and rank-join
predicate (e.g., p2).

We note that, the new ranking predicates, much like their Boolean
counterparts, can be of various costs to evaluate: Some predicates
may be relatively cheap, e.g., p1 may simply be attribute or expres-
sion such as (200−h.price)×0.2. However, in general, predicates
can be expensive as they can be user-defined or built-in functions.
For instance, p1 may as well require accessing on-line sources (e.g.,
a Web hotel database) for the current price; p2 may involve com-
paring h.addr with r.addr according to geographical data; and p3

may perform an Information Retrieval style operation to evaluate
the relevance.

Our goal is to support such rank-relational queries efficiently. As
our discussion above reveals, such queries add a ranking dimension
to query processing and optimization, which in many ways parallels
the traditional dimension of filtering: While filtering restricts tuple
“membership” by applying a function B of Boolean selection or
join predicates, ranking restricts “order” by applying a function F
of corresponding ranking predicates. While Boolean predicates can
be of various costs, ranking predicates share the same concern. We
thus ask, while conceptually parallel, are they both well supported
in RDBMS?

2.2 Ranking as First-Class Construct
Unlike Boolean “filtering” constructs, which are essentially sup-

ported in RDBMS, the same support for “ranking” is clearly lack-
ing. To motivate, observe that as Eq. 1 shows, relational algebra
provides the selection operator σB for filtering, and the sorting op-
erator τF for ranking. However, as we will see, there is a significant
gap between their support in current systems.

Relational algebra models Boolean filtering, i.e., σB(c1,...,cm), as
a first-class construct in query processing. (Such filtering includes
both selections on a single table as well as joins.) With algebraic
support for optimization, Boolean filtering is virtually never pro-
cessed in the canonical form (of Eq. 1)– Consider, for instance,
B = c1 ∧ c2, for c1 as a selection over R and c2 a join condition
1Note that sorting is defined in the extended relational algebra to
model the ORDER BY of SQL.
2More rigorously, it returns min(k, |RB|) tuples.



over R × S. The algebra framework supports splitting of selec-
tions (e.g., σc1∧c2(R × S) ≡ σc1σc2 (R × S) ≡ σc1(R ./c2 S))
and interleaving them with other operators (e.g., σc1(R ./c2 S) ≡
σc1 (R) ./c2 S). These algebraic equivalences thus enable query
optimization to transform the canonical form into efficient query
plans by splitting and interleaving.

However, in a clear contrast, such algebraic support for optimiza-
tion is completely lacking for ranking, i.e., τF(p1,...,pn). The sort-
ing operator τ is “monolithic”: The scoring function F(p1, . . .,
pn), unlike its Boolean counterpart B(c1, . . . , cm), is evaluated at
its entirety, after the rest of the query is materialized– essentially as
“naı̈ve” as in the canonical form.

Such naı̈ve materialize-then-sort scheme should not be the only
choice– in fact, in many cases, it can be prohibitively expensive.
If we want only the top k results, full materialization may not be
necessary. As we shall see in Section 4, ranking predicates can
significantly cut the cardinality of intermediate results. Moreover,
all the ranking predicates have to be evaluated against every results
of the full materialization under this naı̈ve scheme. With the var-
ious costs, it may be beneficial in many cases to evaluate ranking
predicates one by one, and interleave them with Boolean filtering.
Thus, in a clear departure from the monolithic sorting τ , we be-
lieve rank-relational queries call for essentially supporting ranking
as a first-class construct– in parallel with filtering. Such essential
support, as we have observed, consists of two requirements:

1. Splitting: Ranking should be evaluated in stages, predicate by
predicate– instead of monolithic.

2. Interleaving: Ranking should be interleaved with other operators–
instead of always after filtering.

There are two major challenges in supporting ranking as a first-
class operation. First, as foundation, we must extend relational al-
gebra to handle ranking and define algebraic laws for equivalence
transformations (Section 3). Meanwhile, to realize the algebra, we
must define the corresponding query execution model and physi-
cal operators in which “rank-relations” are processed incrementally
(Section 4). Second, we need to generalize query optimization tech-
niques for integrating the parallel dimensions of Boolean filtering
(e.g., join order selection) and ranking (Section 5).

3. RANK-RELATIONAL ALGEBRA
To enable rank-aware query processing and optimization, we ex-

tend relational algebra to be rank-relational algebra, where the re-
lations, operators, and algebraic laws “respect” and take advantage
of the essential concept of “rank”. In this section, we define rank-
relational model (Section 3.1) and extend relational algebra (Sec-
tion 3.2). The new rank-relational algebra enables and determines
our query execution model and operator implementations. We also
discuss several laws (Section 3.3) of the new algebra to lay the
foundation of query optimization.

3.1 Rank-Relations: Ranking Principle
To fundamentally support ranking, the notion of rank must be

captured in the relational data model. Thus, to start with, we must
extend the semantics of relations to be rank-aware. In this extended
model, we define rank-relation as a relation with its tuples scored
(by some ranking function) and ordered accordingly.

In this model, how should we rank a relation?– Note that our al-
gebra extension is to support rank-relational queries: Given a scor-
ing function F(p1, . . . , pn) for such a query (as in Eq.1), what are
the rankings of tuples as they progress in processing? Consider a
base relation R. Figure 1 conceptually illustrates the query tree.

Figure 1: Ranking of intermediate relations.

To begin with, when no ranking predicate pi is evaluated, R as
tuples “on the disk” has an arbitrary order. As the splitting require-
ment (Section 2.2) motivates, these ranking predicates will gener-
ally be processed in stages. We thus ask, when some predicates,
say P = {p1, . . . , pj} (for j < n) are evaluated (Figure 1, cloud
“A”), what should be the ranking? Note that although the final re-
sults are to be ranked by F(p1, . . . , pn), at this stage we do not
have the complete scores of all the predicates. Therefore, we want
to define a partial ranking of tuples by their current incomplete
scores, so that the resulted order is consistent with their “desired”
order of further processing. As queries are evaluated incrementally
by “iterators” (Section 4), this ranking will order the output tuples
to subsequent operations (Figure 1, cloud “B”). Thus, refer to Fig-
ure 1, when should a tuple t1 be ranked before t2? It turns out that
we have the following ranking principle.

Property 1 (Ranking Principle): With respect to a scoring func-
tion F(p1, . . . , pn), and a set of evaluated predicates P = {p1,
. . ., pj}, we define the maximal-possible score (or upper-bound) of
a tuple t, denoted FP [t], as

FP(p1 , . . . , pn )[t] = F

(

pi = pi[t] if pi ∈ P
pi = 1 otherwise3.

∀i

)

Given two tuples t1 and t2, if FP [t1] > FP [t2], then t1 must
be further processed if we necessarily further process t2 for query
answering.

The proof is straightforward. Intuitively, the maximal-possible
score of a tuple t defines what t can achieve, with P already evalu-
ated, by assuming unknown predicates are of perfect scores. (Since
F is monotonic, this substitution will result in its upper bound.)
Therefore when FP [t1] > FP [t2], whatever score t2 can achieve,
t1 can possibly do even better. Refer to Figure 1, the subsequent
operation “B” cannot process only t2 but not t1. Therefore it is de-
sirable that “B” draws outputs from “A” in this order, i.e., t1 should
precede t2. By this ranking principle, Definition 1 formalizes rank-
relations.

Definition 1 (Rank-Relation): A rank-relation RP
4, with respect

to relation R and monotonic scoring function F(p1, . . . , pn), for
P ⊆ {p1, . . . , pn}, is the relation R augmented with the following
ranking induced by P .

• (Scores) The score for a tuple t is the maximal-possible score
of t under F , when the predicates in P have been evaluated,
i.e., FP [t]. It is an implicit attribute of the rank-relation.

• (Order) An order relationship <RP is defined over the tuples
in RP by ranking their scores, i.e., ∀t1, t2 ∈ RP : t1 <RP t2
iff FP [t1] < FP [t2].

3More rigorously, it should be the application-specific maximal-
possible value of pi. We assume 1 without losing generality.
4To be more rigorous, it should be notated as RF

P . We omit F for
simplicity.



TID a b p1 p2

r1 1 2 0.9 0.65

r2 2 3 0.8 0.5

r3 3 4 0.7 0.7

TID a b p1 p2

r
′

1
1 2 0.9 0.65

r
′

2
3 4 0.7 0.7

r
′

3
5 1 0.75 0.6

TID a c p3 p4 p5

s1 4 3 0.7 0.8 0.9

s2 1 1 0.9 0.85 0.8

s3 1 2 0.5 0.45 0.75

s4 4 2 0.4 0.7 0.95

s5 5 1 0.3 0.9 0.6

s6 2 3 0.25 0.45 0.9

(a) R (b) R′ (c) S

TID a b F1{p1}

r1 1 2 1.9

r2 2 3 1.8

r3 3 4 1.7

TID a b F1{p2}

r
′
2

3 4 1.7

r
′
1

1 2 1.65

r
′
3

5 1 1.6

TID a c F2{p3}

s2 1 1 2.9

s1 4 3 2.7

s3 1 2 2.5

s4 4 2 2.4

s5 5 1 2.3

s6 2 3 2.25

(d) R{p1} (e) R′
{p2} (f) S{p3}

Figure 2: Examples of rank-relations.

Note that, when there are ties in scores, an arbitrary deterministic
“tie-breaker” function can be used to determine an order, e.g., by
unique tuple IDs.

The extended rank-relational algebra generally operates on rank-
relations. Thus, base relations, intermediate relations, and the re-
sults are all rank-relations. That is, rank-relations are closed under
the algebra operators, which Section 3.2 will define, since all op-
erators will account for the new ranking property (in addition to
“membership”). Note that a base or intermediate relation, when no
predicates are evaluated (P = φ), is consistently denoted Rφ or
simply R. On the other hand, when P = {p1, . . . , pn}, the par-
tial score is effectively complete, resulting in the final ranking with
respect to F .

Example 2: As our running example, Figure 2(a)-(c) show three
base relations, R, R′, and S (i.e., Rφ, R′

φ, Sφ), with their schemas,
tuple IDs, and ranking predicate scores. Note that tuple IDs and
predicate values are shown for pedagogical purpose only. (These
predicate values are unknown until evaluated.) For our discussion,
as we will illustrate various operators, we assume R and R′ have
the same schema (e.g., to be unioned later) and predicates. S is used
later to show join operator. Suppose the scoring function for R and
R′ is F1 =

∑

(p1, p2), and for S is F2 =
∑

(p3, p4, p5). Fig-
ure 2(d)-(f) show three rank-relations, R{p1}, R

′
{p2}, S{p3}, with

tuples ranked by maximal-possible scores.

3.2 Operators
We next extend the relational-algebra operators for manipulat-

ing rank-relations. Recall that, by Definition 1, a rank-relation
RP essentially possesses two logical properties– 1) membership
as defined by the relation R, and 2) order induced by predicates
P (with respect to some scoring function F). For manipulating
these two properties, we extend relational algebra by adding a new
rank operator µ and generalizing the existing operators to be “rank-
aware”. Figure 3 summarizes the definitions of these operators, and
Figure 4 illustrates them with examples (as continued from Exam-
ple 2), which we explain below in more details.

New Operator µ: For supporting ranking as a first-class construct,
we propose to add a new operator, rank or µ. As Section 2.2 mo-
tivated, our goal is to satisfy the two requirements: splitting and
interleaving. Essentially, we must be able to evaluate ranking pred-
icates (pi’s in F) one at a time– thus ranking is effectively split and
can be interleaved with other operations.

The new rank operator (µ) is thus a critical basis of our alge-
bra. As Figure 3 defines, µp(RP) evaluates an additional predicate
p upon rank-relation RP , ordered by evaluated predicate set P as
Definition 1 states, and produces a new order by P ∪ {p}– That is,

Rank : µ, with a ranking predicate p

• t ∈ µp(RP) iff t ∈ RP

• t1 <µp(RP ) t2 iffFP∪{p}[t1] < FP∪{p}[t2]

Selection : σ, with a boolean condition c

• t ∈ σc(RP ) iff t ∈ RP and t satisfies c

• t1 <σc(RP ) t2 iff t1 <RP t2, i .e.,FP [t1] < FP [t2]

Union : ∪

• t ∈ RP1
∪ SP2

iff t ∈ RP1
or t ∈ SP2

• t1 <RP1
∪SP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Intersection : ∩

• t ∈ RP1
∩ SP2

iff t ∈ RP1
and t ∈ SP2

• t1 <RP1
∩SP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Difference : −

• t ∈ RP1
− SP2

iff t ∈ RP1
and t 6∈ SP2

• t1 <RP1
−SP2

t2 iff t1 <RP1
t2, i .e.,FP1

[t1] < FP1
[t2]

Join : ./, with a join condition c

• t ∈ RP1
./c SP2

iff t ∈ RP1
× SP2

and satisfies c

• t1 <RP1
./cSP2

t2 iff FP1∪P2
[t1] < FP1∪P2

[t2]

Figure 3: Operators defined in the algebra.

by definition, µp(RP) = RP∪{p}. For instance, when µp2 oper-
ates on R{p1} in Figure 2(d), the result rank-relation is shown in
Figure 4(a), which equals R{p1,p2}. Note that R{p1,p2} is already
the final result for ranking R with F1 because F1 =

∑

(p1, p2).

Extended Operators π, σ,∪,∩,−, ./: We extend the original se-
mantics of existing operators with rank-awareness, and thus enable
the interaction between the new µ and traditional Boolean oper-
ations. As we will see, in the extended algebra, the operations
will now be aware of and compute on dual logical properties– both
membership (by Boolean predicate) and order (by ranking predi-
cate). (Note that we omit projection π in Figure 3, since it is ob-
vious. We also omit the discussion on Cartesian-product since it is
similar to join.)

To begin with, unary operators such as selection (and π not shown
in Figure 3) process the tuples in the input rank-relation as in their
original semantics, and simply maintains the same order as the in-
put. Thus, in our notation, σc(RP ) ≡ (σcR)P . That is, the se-
lection with c on RP manipulates only the membership of R, by
applying c, and maintains the same order as induced by P . An
example is shown in Figure 4(b).

Further, most binary operators, such as union (∪), intersection
(∩), and join (./), perform their normal Boolean operations, and at
the same time output tuples in the “aggregate” order of the operands–
Such aggregate order is induced by all the evaluated predicates
from both operands. Thus, for instance, RP1 ∩ SP2 ≡ (R ∩
S){P1∪P2}, which similarly holds for ∪ and ./. Examples are
shown in Figure 4(c), (d), and (f).

Finally, difference (−) outputs tuples in the order of the outer in-
put operand– since the other is effectively discarded. Thus, RP1 −
SP2 ≡ (R− S)P1 . An example is shown in Figure 4(e).

3.3 Algebraic Laws
Query optimizers essentially rely on algebraic equivalences to

enumerate or transform query plans in search of efficient ones. In



TID a b F1{p1,p2}

r1 1 2 1.55

r3 3 4 1.4

r2 2 3 1.3

TID a b F1{p1}

r2 2 3 1.8

r3 3 4 1.7

(a) µp2 (R{p1}) (b) σa>1(R{p1})

TID a b F1{p1,p2}

r1/r′
1

1 2 1.55

r3/r′
2

3 4 1.4

TID a b F1{p1,p2}

r1/r′
1

1 2 1.55

r3/r′
2

3 4 1.4

r′
3

5 1 1.35

r2 2 3 1.3

(c) R{p1} ∩ R′
{p2} (d) R{p1} ∪R′

{p2}

TID a b F1{p1}

r2 2 3 1.8

TIDR TIDS a b c F3{p1,p3}

r1 s2 1 2 1 4.8

r1 s3 1 2 2 4.4

(e) R{p1} −R′
{p2} (f) R{p1} ./θ S{p3},

where θ is R{p1}.a = S{p3}.a,
F3 =

∑

(p1, p2, p3, p4, p5).

Figure 4: Results of operators.

the extended rank-relational model and algebra, as the dual logical
properties dictate, algebraic equivalences should result in not only
the same membership but also the same order. By definition of
our algebra, as just discussed, we can assert many algebraic equiv-
alence laws. As we extended the algebra specifically to support
ranking, Figure 5 gives several such equivalences relevant to rank-
ing. Essentially, these laws concretely state the new freedom of
splitting and interleaving, thus achieving our motivating require-
ments (Section 2.2)– That is, the rank-relational algebra indeed
supports ranking as first-class, in parallel with Boolean filtering.
These laws are directly from the definition of the algebra, therefore
to save space, we leave the proof to the extended version of this
paper and only briefly discuss their usage in query optimization.
In particular, we explain the laws specifically centering around our
two requirements:

First, rank splitting: Proposition 1 allows us to split a scoring
function with several predicates (p1, ..., pn) into a series of rank
operations (µ1, ..., µn). This splitting is useful for processing the
predicates individually– Our splitting requirement is thus satisfied.

Second, interleaving: Propositions 4 and 5 together assert that
rank operations can swap with other operators, thus achieving the
interleaving requirement. In particular, Proposition 4 deals with
swapping µ with other unary operators (µ or σ)– thus, we can
schedule µ freely with σ. Further, Proposition 5 handles swapping
with binary operators– we can thus push down µ across ./, ∩, and
others.

The new algebraic laws lay the foundation for query optimiza-
tion of ranking queries as algebraic equivalences define equivalent
plans in the search space of query optimizers. As we will see in
Section 5, these algebraic laws guide the designing of transforma-
tion rules in rule-based optimizers, as well as the plan enumeration
and heuristics in bottom-up optimizers.

4. RANKING QUERY PLANS: EXECUTION
MODEL AND PHYSICAL OPERATORS

In common database query engines, a query execution plan is a
tree of physical operators as iterators, which have three interface
methods that allow the consumer operator of a physical operator
to fetch one result tuple at a time. The three basic interface meth-
ods are: (1) Open method that initializes the operator and prepares
its internal state; (2) GetNext method that reports the next result
upon each request; (3) Close method that terminates the operator
and performs the necessary cleanup. During the execution, query
results are drawn from the root operator, which draws tuples from

Proposition 1 : Splitting law for µ

• R{p1,p2,...,pn} ≡ µp1
(µp2

(...(µpn
(R))...))

Proposition 2 : Commutative law for binary operator

• RP1
ΘSP2

≡ SP2
ΘRP1

, ∀Θ ∈ {∩,∪, ./c}

Proposition 3 : Associative law

• (RP1
ΘSP2

)ΘTP3
≡ RP1

Θ(SP2
ΘTP3

), ∀Θ ∈ {∩,∪, ./c
a}

Proposition 4 : Commutative laws for µ

• µp1
(µp2

(RP )) ≡ µp2
(µp1

(RP))

• σc(µp(RP )) ≡ µp(σc(RP))

Proposition 5 : Pushing µ over binary operators

• µp(RP1
./c SP2

)

≡ µp(RP1
) ./c SP2

, if only R has attributes in p

≡ µp(RP1
) ./c µp(SP2

), if both R and S have

• µp(RP1
∪ SP2

) ≡ µp(RP1
) ∪ µp(SP2

) ≡ µp(RP1
) ∪ SP2

• µp(RP1
∩ SP2

) ≡ µp(RP1
) ∩ µp(SP2

) ≡ µp(RP1
) ∩ SP2

• µp(RP1
− SP2

) ≡ µp(RP1
) − SP2

≡ µp(RP1
) − µp(SP2

)

Proposition 6 : Multiple-scan of µ

• µp1
(µp2

(Rφ)) ≡ µp1
(Rφ) ∩r µp2

(Rφ)

aWhen join columns are available.

Figure 5: Some algebraic equivalence laws.

underlying operators recursively, till the scan operators. This pro-
vides an efficient pipelining evaluation strategy, unless the flow of
tuples is stopped by a blocking operator such as sort or a blocking
join implementation, in which case, intermediate results have to be
materialized.

The nature of ranking query lends itself to pipelined and incre-
mental plan execution. We desire that the small number k not only
reduces the size of results presented to users, but also allows less
work to be done, i.e., we want the execution cost to be proportional
to k. In interactive applications, k may be only an estimate of the
desired result size or not even specified beforehand. Hence, it is es-
sentially desirable to support incremental processing– for returning
top results progressively upon user requests.

Unfortunately traditional implementation of ranking by sticking
a sorting operation on top of the execution plan is an overkill so-
lution to the problem and can be prohibitively expensive. Such
materialize-then-sort scheme is undesirably blocking, as the first
result is reported after all results (much more than k in general)
are produced and sorted. The cost is independent from k and the
startup cost is almost equal to the total cost.

Fortunately rank-relational algebra both advocates and enables
non-blocking plans. In this section, we show how ranking query
plans, consisting of the new and extended operators, execute ac-
cording to the ranking principle (Property 1) in Section 4.1 and
present their physical implementations in Section 4.2.

4.1 Incremental Execution Model
To realize the rank-relational algebra, we extend the common

execution model to handle ranking query plans, with two differ-
ences from traditional plans. First, operators incrementally output
rank-relations RP (Definition 1), i.e., tuple streams pass through
operators in the order of maximal-possible scores (upper-bounds)
FP [t] with respect to the associated ranking predicate set P . As
the ranking principle indicates, it is desirable that t1 precedes t2
in further processing if FP [t1] > FP [t2]. Second, the query has



an explicitly requested result size, k. The execution stops when k
results are reported or no more results are available.

For an operator to output its intermediate result as a rank-relation,
as Definition 1 requires, the output must be in the order by the as-
sociated predicate set. That is, a tuple can be output to the upper
operator if its upper-bound score is guaranteed to be higher than
that of all future output tuples. Therefore the key capability of a
rank-aware operator is to decide if enough information has been
obtained from its input tuples in order to incrementally produce the
next ranked output tuple.

To illustrate, consider a µp operator upon the input RP as the
result of its preceding operator x. In order to produce outputs in
the correct order by P∪{p}, µp cannot immediately output a tu-
ple t once t is obtained from x, because there may exist some t′

such that FP∪{p}[t] < FP∪{p}[t
′], although FP [t] ≥ FP [t′]

(therefore t′ has not been “drawn” from x yet). Instead, µp has to
evaluate p[t] to get FP∪{p}[t] and to buffer t in a ranking queue
(implemented as priority queue) that maintains tuples in the order
by P∪{p}. At any time, the top tuple t in the queue can be output
when a t′ is drawn from x such that FP∪{p}[t] ≥ FP [t′], thus
FP∪{p}[t] ≥ FP [t′] ≥ FP [t′′] for any future tuple t′′ from x.
Note that FP [t′′] ≥ FP∪{p}[t

′′] according to Definition 1. There-
fore µp can conclude that FP∪{p}[t] ≥ FP∪{p}[t

′′], thus it can
output t.

Example 3: We continue the running example in Example 2, to
show how ranking query plans execute differently from traditional
plans. Consider a very simple top-k query over base table S (Fig-
ure 2(c)) and the ranking function F2 in Example 2,

Select ∗ From S Order By p3 + p4 + p5 Limit 1.
Figure 6 illustrates three equivalent plans. Plan (a) is a tradi-
tional plan consisting of a sorting and a sequential scan operator.
It scans tuples from S, evaluates all predicates (p3,p4,p5) for each
tuple, buffers and sorts them based on their scores till all tuples are
scanned. Plan (b) is a new plan enabled by the rank-relational al-
gebra, with an index scan followed by two µ operators. The index
scan accesses tuples in the order of p3 values, where p3 can be as
simple as attribute or as complex as external or built-in function.
(Such index is supported in DBMS’s such as PostgreSQL.)

In these plans, the rank-relation R above each operator op con-
tains the tuples that have ever been processed by op. The portion of
R in gray color is the incremental output rank-relation from op to
its upper operator op′, thus is the incremental input rank-relation to
op′. Therefore the rank-relation R′ above op′ contains the same tu-
ples as the gray portion of R, although may in different order, since
op′ can apply one more predicate and thus result in a new order.

For example, consider µp4 in plan (b). It processed 3 tuples
(s2,s1,s3) during execution. Among them, s2 and s1 were drawn
to µp5 , which processed 2 tuples (s2 and s1) and output s2 as the
top-1 answer since µp5 is the top operator in the plan tree.

Note that the order of tuples in the rank-relations are decided by
semantics, according to the definition of rank-relation (Definition
1) and operators (Section 3.2). For example, µp4 must output tu-
ples in the order by F2{p3,p4}

since p3 is accessed by the underly-
ing operator idxScanp3(S) and p4 is evaluated by µp4 . Therefore
s2 must precede s1 when output from µp4 since F2{p3 ,p4 }

[s2] =

2.75 > F2{p3 ,p4 }
[s1] = 2.5.

We further illustrate how tuples flow, still using plan (b) as an
example. The operator µp5 first draws s2 from µp4 , then evalu-
ates p5 [s2] and gets F2{p3 ,p4 ,p5 }

[s2] = 2.55. At this point µp5

cannot output s2 yet (refer to our explanation in the paragraph
right above Example 3). Therefore µp5 buffers s2 in its ranking

TID a c F2{p3,p4,p5}

s2 1 1 2.55

s1 4 3 2.4

s4 4 2 2.05

s5 5 1 1.8

s3 1 2 1.7

s6 2 3 1.6

TID a c F2φ
s1 4 3 3.0

s2 1 1 3.0

s3 1 2 3.0

s4 4 2 3.0

s5 5 1 3.0

s6 2 3 3.0

sortp3+p4+p5

seq-scan(S)
(a)

TID a c F2{p3,p4,p5}

s2 1 1 2.55

s1 4 3 2.4

TID a c F2{p3,p4}

s2 1 1 2.75

s1 4 3 2.5

s3 1 2 1.95

TID a c F2{p3}

s2 1 1 2.9

s1 4 3 2.7

s3 1 2 2.5

µp5

µp4

idxScanp3 (S)
(b)

TID a c F2{p3,p4,p5}

s2 1 1 2.55

s1 4 3 2.4

s4 4 2 2.05

TID a c F2{p3,p5}

s2 1 1 2.7

s1 4 3 2.6

s4 4 2 2.35

s3 1 2 2.25

s5 5 1 1.9

TID a c F2{p3}

s2 1 1 2.9

s1 4 3 2.7

s3 1 2 2.5

s4 4 2 2.4

s5 5 1 2.3

µp4

µp5

idxScanp3 (S)
(c)

Figure 6: Ranking query plans vs. traditional plan.

queue and draws the next tuple, s1, from µp4 . It is sure at this
point that µp5 can output s2 as the top answer (again, refer to the
paragraph above Example 3). After evaluating p5 [s1] and getting
F2{p3 ,p4 ,p5}

[s1] = 2.4, s1 is buffered. The execution goes on in
this way to get more query results. Other operators in plan (b) work
in the same way and the whole plan tree is executed in pipeline by
recursively drawing tuples, resulting in the diagram in Figure 6(b).

Binary operators such as join work in the same principle as µ,
except that they obtain inputs from two streams, combine the scores
from the two inputs to get updated upper-bound scores for seen and
unseen output tuples.

Illustrated by the previous example, the execution model indi-
cates that rank-aware operators are selective, i.e., they reduce the
cardinality of intermediate results as they do not output all of their
processed tuples. For instance, the selectivity of µp4 in Figure 6(b)
is 2/3 as the rank-relation above it clearly shows.

In contrast to traditional operators, the selectivity of rank-aware
operators is context-sensitive. The reason is, selectivities of rank-
aware operators are dependent on k, and furthermore, cannot be
assumed to be independent from their locations in a whole plan,
as assumed for selection and join selectivities traditionally. For
instance, plan (c) in Figure 6 is similar to plan (b) except that the
order of µp4 and µp5 is reversed. The selectivities of µp4 , µp5 ,
and idxScanp3(S) in this plan are 1/3, 3/5, and 5/6 respectively,
while they are 2/3, 1/2, and 3/6 in plan (b) (remember there are 6
tuples in S).

Being selective enables operators to both reduce the evaluation
of predicates that have various costs and reduce the cost of join,
therefore ranking query plans do not need to materialize a query,
in contrast to the traditional materialize-then-sort scheme of pro-
cessing ranking queries. This makes ranking query plans much
more efficient than traditional ones, which can be prohibitively ex-
pensive. Moreover, different scheduling and interleaving of rank-
aware operators will result in different number of tuples being pro-
cessed, therefore query optimizers have to non-trivially explore the
new type of ranking plans (Section 5). Furthermore, the context-
sensitiveness of selectivities indicate that cardinality estimation of
these ranking plans will be challenging (Section 5.2).

Example 4: Continuing Example 3, this example shows that rank-
ing query plans (Figure 6(b)(c)) outperform traditional plans (Fig-
ure 6(a)) and different ranking plans have different costs, thus it
calls for query optimization.

Assume the costs of predicates p3, p4, and p5 are C3, C4, and
C5, then the predicate evaluation cost of plan (a) is 6(C3 + C4 +



C5) since it has to evaluate all predicates for every tuples. It also
needs to scan 6 tuples. (If there are more tuples in S, it has to scan
all of them.) In plan (b), µp5 evaluates p5 over two tuples (s2, s1)
and µp4 evaluates p4 over three tuples (s2, s1, s3). Therefore the
predicate evaluation cost of plan (b) is 3C4 + 2C5. It only needs
to scan 3 tuples. The predicate evaluation cost of plan (c) is 3C4 +
5C5 and it needs to scan 5 tuples, according to similar analysis.

4.2 Implementing Physical Operators
We must implement new physical operators in order to realize

the execution model. Fortunately previous works on top-k queries
in middleware and relational settings provide a good basis to lever-
age. Below we briefly discuss the implementation of operators.

The implementation of µ is straightforward from Example 3 and
it is a special case (because it schedules one predicate) of the al-
gorithms (MPro [4], Upper [2]) for scheduling random object ac-
cesses in middleware top-k query evaluation. The implementation
of ./C adopts the HRJN (hash rank-join) and NRJN(nested-loop
rank-join) algorithms in [22] [23], which are built upon symmetri-
cal hash join [19, 30] or hash ripple join [17].

New algorithms for other operators are similarly implemented.
Use ∩ under set semantics as an example. Traditionally it has to
exhaust both input streams to ensure that no duplicate tuple is out-
put. However, with the input streams being ranked, it can judge
if duplicates of a tuple may have appeared or may be seen in the
future according to the predicate values of that tuple. Therefore it
can output ranked results incrementally.

As another example, scan must be provided as a physical opera-
tor although it is not in relational algebra. Index-scan can be used to
access tuples of a table in the order of some predicate p when there
exists an index such as B+tree on p. (Thus we name it rank-scan.)
Such index can be available when p is some attribute, expression,
or function, as all are supported in practical DBMS’s such as Post-
greSQL. Moreover, scan-based selection can be used to combine a
scan operator on p with a selection operator on selection condition
c when a multi-key index on p and c is available.

5. A GENERALIZED RANK-AWARE OPTI-
MIZER

The task of cost-based query optimization is to transform a parsed
input query into an efficient execution plan, which is passed to the
query execution engine for evaluation. The transformation task is
usually accomplished by examining a large search space of plans.
The optimizer utilizes a plan enumeration algorithm that can ef-
ficiently search the plan space and prune plans according to their
estimated execution costs. To estimate the cost of a plan, the opti-
mizer adopts a cost model.

Extending relational algebra to support ranking as introduced in
Section 3 and Section 4 has direct impact on query optimization. In
this section, we motivate the need for extending the query optimizer
to support ranking and study the significant challenges associated
with the extension. Then we show how to incorporate ranking into
practical query optimizers used by real-world database systems.

The rank-relational algebra enables an extended plan space with
plans that cannot be expressed traditionally. For instance, for the
query in Example 1, traditional optimizers only allow materialize-
then-sort plans such as the one in Figure 7(a). In contrast, the rank-
relational algebra enables equivalent plans such as the one in Fig-
ure 7(b). The equivalence is guaranteed by the algebraic laws in
Figure 5. First, the ranking function in the sort operator is split
into µp1 , µp2 , µp3 by Definition 1 and Proposition 1 of Figure 5.
The µ operators are pushed down across join operators by Propo-
sition 4 and 5. Note that µp1 is combined with scan operation to

σc1

idxScanarea(R)

seqScan(H)

./c2
<Nested-Loop Join>

Sortp1+p2+p3

./c3
<Sort-Merge Join>

idxScanarea(M)

�� @@

�� @@

µp1

<idxScanp1
(H)>

σc1

seqScan(R)

./c2

<NRJN>

µp2
µp3

seqScan(M)

./c3

<HRJN>

�� @@

�� @@

(a) A traditional plan. (b) A ranking plan.

Figure 7: Two alternative plans for Example 1.

form an idxScan. Such splitting and interleaving may achieve sig-
nificant improvements in performance as discussed in Section 4.1.

In order to fully incorporate the rank-relational algebra into a
cost-based query optimizer, we must address the impact of the ex-
tended search space on plan enumeration and costing. In plan
enumeration, the desirability of splitting and interleaving ranking
predicates requires the optimizer to fully explore the extended plan
space for generating efficient query plans. In plan costing, cardi-
nality estimation must be performed for the rank-aware operators
for costing and pruning plans.

There are two categories of cost-based query optimizers used by
real-world database systems, namely the top-down rule-based opti-
mizers exemplified by Volcano [13] and Cascade [12], and the Sys-
tem R-style bottom-up dynamic programming optimization frame-
work [28].

In Volcano and Cascade, transformation and implementation rules
are the two key constructs used for searching the plan space. The
transformation rules transform between equivalent algebraic ex-
pressions, and the implementation rules map logical operators into
physical implementations to realize a plan tree. For extending rule-
based optimizers with the rank-relational algebra, the algebraic laws
presented in Section 3.3 naturally enable the introduction of new
transformation rules to enumerate ranking plans. Implementation
rules can be devised to trigger the mapping of physical algorithms
presented in Section 4.2. Cost estimation in top-down optimizers
can apply similar techniques for extending bottom-up optimizers
since it only costs complete plans instead of subplans.

Extending bottom-up optimizers to incorporate ranking, how-
ever, is more challenging as plans are constructed and pruned in
bottom-up fashion without global information of a complete plan.
Therefore focusing on bottom-up optimizers, we show how to ex-
tend the System-R style bottom-up dynamic programming (DP)
approach for plan enumeration (Section 5.1) and how to cost and
prune plans during enumeration (Section 5.2).

5.1 Two-Dimensional Plan Enumeration
We take a principled way to extend DP plan enumeration by

treating ranking predicates as another dimension of enumeration in
addition to Boolean predicates, based on the insight that the rank-
ing (order) relationship is another logical property of data, parallel
to membership (Section 2.1). Recall that, by Definition 1, a rank-
relation RP essentially possesses two logical properties: Boolean
membership (R) and ranking order (P). In a ranking query plan,
new ranking predicates are only introduced in µ operators. There-
fore the predicate set P of a subplan, i.e., the µ operators in a sub-
plan, determines the order, just like how join conditions (together
with other operations) determine the membership. Moreover, for
the same logical algebra expression, the optimizer must be able to



Procedure 2 Dimension Enumeration
1: //The 1st dimension: join size
2: for i← 1 to h do
3: for each SR ⊆ {R1, ..., Rh} s.t. ||SR|| = i do
4: for each pair SR1, SR2 s.t. SR = SR1∪SR2, SR1 6= φ,

SR1∩SR2 = φ do
5: //The 2nd dimension: ranking predicates
6: P ← all predicates that are evaluable on SR

7: for j ← 0 to ||P || do
8: for each SP ⊆ P s.t. ||SP || = j do
9: bestP lan← a pseudo plan with cost +∞

10: for each pair SP 1, SP 2 s.t. SP = SP 1∪SP 2,
SP 1∩SP 2 = φ do

11: plan← a pseudo plan with cost +∞
12: if SR2 6= φ then
13: plan ← joinPlan (bestPlan(SR1,SP 1),

bestPlan(SR2,SP 2))
14: if SR2 = φ and SP 2 = {p} then
15: plan← rankPlan(bestPlan(SR1 ,SP 1), µp)
16: if i = 1 and ||SP 1|| ≤ 1 and ||SP 2|| = φ then
17: plan← scanPlan(SR1,SP 1)
18: if cost(plan)≤cost(bestP lan) then
19: bestP lan← plan
20: bestPlan(SR, SP )← bestP lan
21: return bestPlan({R1, ..., Rh}, {p1, ..., pn})

Figure 8: 2-Dimension Enumeration Algorithm.

produce various plans that schedule and interleave µ operators, and
to select the most efficient plan, just like it must be able to select the
best join order. This dimensional enumeration approach not only
reflects the fact that order and membership are dual logical proper-
ties in the rank-relational model, but also takes advantages of the
dynamic programming paradigm in reducing searching costs. Fur-
thermore, the dimensional enumeration subsumes the conventional
plan enumeration for join order selection and does not affect the
optimization of non-ranking plans.

The concept of dimensional enumeration is general and exten-
sible for naturally including more dimensions, e.g., ordering other
operators such as selection, union, intersection, etc. For example,
scheduling selection predicates is traditionally considered less im-
portant than join order selection and is rather handled by heuristics
such as selection pushdown. Under the situation that it is neces-
sary to handle such task, as motivated in [9, 18, 8], dimensional
enumeration can incorporate the scheduling of both selection and
ranking predicates by treating Boolean predicates as another di-
mension. Due to space limitations, we focus on how to integrate
the scheduling of ranking predicates and join order selection and
omit the consideration of other operators.

The DP 2-dimensional enumeration algorithm is shown in Fig-
ure 8. For each subplan, we define its signature (SR, SP ) as the
pair of two logical properties, the set of relations SR and the set
of ranking predicates SP in the subplan. Subplans with the same
signature result in the same rank-relation. The algorithm first enu-
merates the number of joined relations, ||SR||, then the number of
ranking predicates, ||SP ||. Plans with the signature (SR, SP) are
generated by joining two plans with the signature (SR1, SP1) and
(SR2, SP2) (joinPlan), adding a µp upon a plan with the signature
(SR, SP − {p}) (rankPlan), or using a scan operator (scanPlan).
Based on the principle of optimality, no sub-optimal subplan can
be part of the optimal execution strategy, hence for all the plans
with the same signature, only the best plan is kept.

Example 5: We illustrate how the algorithm optimizes a simple
query over the tables in Figure 2,

(1,0) seqScan(R) idxScana(R) seqScan(S) idxScanc(S)

(1,1)

µp1

seqScan(R)
����µp3
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µp4

seqScan(S)
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µp4

idxScanp3(S)

����

µp3

µp4

seqScan(S)
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�� @@
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µp1

seqScan(R)

seqScan(S)
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�� @@
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HRJN
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Figure 9: Plan Enumeration.

Select ∗ From R, S Where R.a = S.a
Order By p1 + p3 + p4 Limit k.

In Figure 9, each row contains the best plans for signatures of the
same size, with one best plan per signature. For instance, row
(2, 1) show the best plans for ({R, S}, {p1}), ({R, S}, {p3}), and
({R, S}, {p4}) respectively. We also show the pruned plans (as
crossed out) on single table, but omit that for joined relations due
to space limitations.

The enumeration starts with signature size (1, 0) to find scan
plans for signatures ({R}, φ) and ({S}, φ). Assume that seqScan
is kept for both signatures; and idxScana(R) and idxScanc(S)
are pruned. The enumeration continues with size (1, 1) to look for
plans for ({R}, {p1}), ({S}, {p3}), and ({S}, {p4}). For exam-
ple, plans for ({S}, {p3}) can be built by adding µp3 on top of
seqScan(S) or by using idxScanp3 (S). By comparing their es-
timated costs, the former is pruned. The enumeration proceeds in
this way until the final plan is generated.

One important detail of System-R algorithm is that multiple plans
with the same logical properties may be kept if they have different
physical properties. Example physical properties are interesting
orders [28] that are potentially beneficial to subsequent operations.
For instance, idxScana can be kept since its sorted access on R.a
can be useful for sort-merge join when R is joined with S. In the
dimensional enumeration algorithm, the support of physical prop-
erties is not affected. It can keep multiple plans that have different
physical properties for the same signature. Note that interesting or-
der will only be possessed by plans with empty predicate set (i.e.,
SP = φ), since by definition rank-relations must be output in the
order with respect to P , which is not the kind of order that is useful
to operators such as sort-merge join.

The 2-dimensional enumeration algorithm is exponential in the
number of the ranking predicates as well as the number of relations,



Procedure 2 Dimension Enumeration with Heuristics
1: replace line 4 of Figure 8 with the following
2: for each pair SR1, SR2 s.t. SR = SR1∪SR2, ||SR2|| ≤ 1,

SR1∩SR2 = φ do
3:
4: insert the following into Figure 8, between line 10 and 11
5: if ||SR2|| = 0, SP 2 = {pu} and ∃pv s.t. pv ∈ P − SP and

rank(µpv ) > rank(µpu ) then
6: continue to line 10

Figure 10: Heuristics for improving efficiency.

as the System-R style algorithm is exponential in the number of
relations. As a common practice, query optimizers apply heuristics
to reduce the search space. For example, a query optimizer can
choose to consider only left-deep join trees and to avoid Cartesian
products. Such heuristics are often found effective in improving
efficiency and being able to find comparably good query plan.

Therefore, we propose a heuristic to reduce the space on the di-
mension of ranking predicates, as shown in Figure 10. The algo-
rithm in Figure 10 modifies that in Figure 8 by incorporating the
left-deep join heuristic (Line 2) and our new heuristic on the rank-
ing predicate dimension (Line 4). The ranking predicate schedul-
ing heuristic greedily appends µ operators in a sequence instead of
considering all valid permutations of µ operators. Given a sub-
plan plan, suppose plan′ is to be built by adding one µ upon
plan. The optimizer does not use µpu to build plan′ if there ex-
ists another applicable µpv such that appending µpv is (likely) bet-
ter than appending µpu . The goodness of appending µpu upon
plan, is based on its selectivity and cost, defined as rank(µpu ) =
1−card(plan′)/card(plan)

cost(µpu )
, where cost(µpu ) is the evaluation cost

of pu, and card(plan′) and card(plan) are the output cardinali-
ties of plan′ and plan. (This rank should not be confused with
the concept of rank in our algebra.) Therefore µpu is appended
upon plan only if there exists no other applicable µpv that has a
higher rank. Intuitively the rank of a µ is higher if its cost is lower
and its selectivity is smaller, i.e., its power of reducing cardinal-
ity is higher. In the formula, cost(µpu ) is one component of the
cost model of µpu that should be defined together with its imple-
mentation. Techniques for estimating the cardinality of a subplan
is presented in Section 5.2.

The above greedy scheduling heuristic for ranking predicates is
inspired by the rank metric in [18] for scheduling independent se-
lection predicates and the adaptive approach in [1] for ordering
correlated filters in streaming data processing. The rank metric
in [18] guarantees an optimal fixed order of independent selec-
tion predicates, that is, a selection predicate should always be ap-
plied before another one if it has higher rank. However, the same
property cannot be guaranteed for scheduling µ operators simply
because of their context-sensitive selectivities (Section 4.1). We
adopt rank metric as a heuristic, just like applying left-deep join
heuristic, which sacrifices optimality for efficiency as a common
practice of query optimizers.

5.2 Costing Ranking Query Plans
The optimizer prunes plans according to their estimated execu-

tion costs based on a cost model. The cost model for various opera-
tors in real-world query optimizers is quite complex and depends on
many parameters, including cardinality of inputs, available buffers,
type of access paths and many other system parameters. Although
cost model can be very complex, a key ingredient of its accuracy is
cardinality estimation of intermediate results.

Cardinality estimation for ranking query plans is much more dif-
ficult than that for traditional ones because cardinality information
cannot be propagated in a bottom-up way. In conventional query

plans, the input cardinality of an operator is independent from the
operator itself and depends only on the input subplans. The output
cardinality depends only on the size of inputs and the selectivity of
the logical operation. In ranking query plans, however, an operator
consumes only partial input, therefore the actual input size depends
on the operator itself and how the operator decides that it has ob-
tained “enough” information from the inputs to generate “enough”
outputs. Hence, the input cardinality depends on the number of re-
sults requested from that operator, which is unknown for a subplan
during plan enumeration. Note that the number of final results, k,
is known only for a complete plan. This imposes a big challenge to
System-R style optimizers that build subplans in bottom-up fash-
ion, because the propagation of k value to a specific subplan de-
pends on the location of that subplan in the complete plan.

To address this challenge, we propose a sampling-based cardi-
nality estimation method for rank-aware operators. Let x be the
score of the k-th query result tuple. Our technique is based on the
intuition that tuples whose upper-bound scores are lower than x do
not need to be output from an operator. Although x is unknown
during plan enumeration, the sampling method can be used to esti-
mate x, and to further estimate the output cardinality of a subplan.

The optimizer randomly samples a small number of tuples from
each table and evaluates all the predicates over each tuple. Note that
this step is not necessarily performed every time since it is possible
to re-use the predicate values for succeeding queries. To estimate x,
before plan enumeration, the optimizer evaluates the original query
on the sample using any conventional execution plan, to retrieve k′

top results proportional to the sample size. Suppose the sampling
ratio is s%, i.e., each tables ti with original size Ni has a sample
size ni = Ni × s%, then k′ = dk × s%e. That is, it transforms
a top-k query on the database into a top-k′ query on the samples.
The score of the k′th topmost answer, x′, is used as an estimation
of x, based on the intuition that k′ is proportional to the sample size
with respect to k over the database size.

With x′, during plan enumeration, the optimizer estimates the
output cardinality of a subplan P , card(P ), by executing P on the
small samples. The results are kept together with P so that there is
no need to execute P again when estimating the output cardinality
of a future plan that is built based on P . Suppose P outputs u
answers that have upper-bound scores above x′. Then card(P ) is
estimated in the following way:

• card(P ) = u/(s%): if P has only one operator, i.e., a scan
operator on a base table.

• card(P ) = u×card(P ′)/cards(P
′): if the top operator of

P is a unary operator, on top of a subplan P ′, which has out-
put cardinality cards(P

′) during the execution of P on the
sample and an estimated output cardinality card(P ′) during
previous steps of plan enumeration.

• card(P ) = u ×
card(P1)

cards(P1)
+

card(P2)
cards(P2)

2
: if the top operator

of P is a binary operator, taking inputs from two subplans
P1 and P2. P1 and P2 have output cardinality cards(P1)
and cards(P2), respectively, during the execution of P on
the sample; and estimated output cardinalities card(P1) and
card(P2), respectively, during previous steps of plan enu-
meration.

Our experimental study (Section 6) shows that the simple sampling
method with a small sample ratio (e.g., 0.1%) gives accurate car-
dinality estimates. With small sample size, sampling method does
not introduce much overhead to query optimization.



Accurate random sampling over joins has been known to be diffi-
cult [7]. We plan to investigate the possibilities of using techniques
such as [7] in future work to improve our sampling method.

6. EXPERIMENTS
We build a prototype of the RankSQL system in PostgreSQL

7.4.3. We extend the internal representation of tuples to include the
implicit ranking score attribute in rank-relational model and im-
plement the rank operator, the rank-aware join, and the rank-scan
operators. In this section, we present two sets of experiments that
we conducted on the system. The first set compares different ex-
ecution plans to demonstrate the performance diversity of the plan
space, thus motivates the need of query optimization. It also illus-
trates that under general circumstances, the performance of plans
that are only possible in the extended plan space of the new algebra
is superior to traditional plan for evaluating top-k queries. The sec-
ond set of experiments verifies the accuracy of the sampling-based
method for estimating the cardinalities of rank-aware operators.

The experiments are conducted on a PC having a 1.7GHz Pentium-
4 CPU with 256KB cache, 768MB RAM, and 30GB disk, running
Linux 2.4.20 operating system. The shared buffers (shared
memory buffer size) and sort mem (internal memory for sorting
and hashing) settings in PostgreSQL are configured as 24MB and
20MB, respectively. We use a synthetic data set of three database
tables (A, B, C) having the same size and schema. Table A and
B each have one Boolean attribute with 0.4 as their selectivities.
The three tables have 2, 2, and 1 ranking predicates, respectively.
The ranking predicates have the same cost. They are implemented
as user-defined functions, taking attributes of the tables as param-
eters. Scores of different ranking predicates are within the range
between 0 and 1 and are independently generated by different dis-
tributions, including uniform, normal (with mean 0.5 and variance
0.16), and cosine distributions. Each table has two attributes jc1
and jc2 as join columns.

We use a simple top-k query Q as shown below in PostgreSQL
syntax. Summation is used as the scoring function F .
Q =
SELECT *
FROM A, B, C
WHERE A.jc1=B.jc1 AND B.jc2=C.jc2 AND A.b AND B.b
ORDER BY f1(A.p1)+f2(A.p2)+f3(B.p1)+f4(B.p2)+f5(C.p1)
LIMIT k

Figure 11 illustrates four execution plans for the above query.
P lan1 is a conventional materialize-then-sort plan, in which filter
is the physical selection operator and sort-merge join is used as the
physical join operator. P lan2 − 4 are new ranking query plans.
The implementations of µ operator (rank), rank-aware join opera-
tor (HRJN), and rank-scan operator (idxScan) were described in
Section 4.2. In plan2, rank-scans are used for accessing base tables
and µ is scheduled before join. P lan3 uses sequential scan instead
of rank-scan. P lan4 applies µ operators above normal sort-merge
join to replace one of the HRJN operators.

6.1 Cost of Ranking Execution Plans
In this suite of experiments, we show that the costs of execution

plans for top-k queries vary with respect to (among other factors)
the number of final results (k, from 1 to 1, 000), the number of
tuples in each table (s, from 10, 000 to 1, 000, 000), the join selec-
tivity (j, from 0.001 to 0.00001, i.e., the number of distinct values
of each join attribute ranges from 1, 000 to 100, 000), and the cost
of each ranking predicate (c, from 0 to 1, 000 unit costs).

We performed 4 groups of experiments. The default values of the
parameters are k = 10, s = 100, 000, j = 0.0001, and c = 1. In
each group, we vary the value of one parameter and fix the values
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Sort-Merge Join

Sort-Merge Join
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HRJN
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Figure 11: Execution Plans for Query Q.

of the other three parameters. We then execute each plan under
these parameter settings and measure their execution time. The
results are shown in Figure 12. (Note that both x and y axes are in
logarithmic scale.)

The figures illustrate that none of the plans is always the best
under all situations. Moreover, different plans can have orders of
magnitude differences in their costs. The diversity of plan costs
verifies the need of query optimization in choosing efficient plans.
Apparently, the traditional plan (plan1 in Figure 11) is far outper-
formed by rank-aware plans (plan2 − 4 in Figure 11). Its perfor-
mance is only comparable to other plans when the size of tables
and requested results are small, when joins are very selective, and
when predicates are cheap. In many situations, the traditional plan
becomes prohibitively expensive.

Specifically, Figure 12(a) shows that the traditional plan for rank-
ing queries is blocking, while the new rank-aware plans are incre-
mental. Figure 12(b) illustrates that the cost difference between
plans increases (shown as parallel lines in logarithmic scale) to-
gether with the cost of predicates. This is because the predicate
cost will dominate the plan execution cost while getting larger and
the number of predicate evaluations does not change for a given
plan when only predicate cost is changing. Figure 12(c) shows that
the traditional plan is efficient when joins are very selective (thus
performing join first will result in very small intermediate results,
upon which ranking predicates are evaluated). Finally, Figure 12(d)
shows that some ranking query plans (e.g., plan2) are very effi-
cient even with very large tables, while some others are not. For
instance, plan4 was relatively acceptable in other situations, but
became much less efficient than plan2 and plan3 when each table
has 1 million tuples. Note that we remove plan1 from Figure 11(d)
since it takes days to finish and is well off the scale.

6.2 Cardinality Estimation
To evaluate the accuracy of the sampling-based cardinality es-

timation method, we compare the original and estimated output
cardinalities of each operator in a given execution plan except the
top operator and selection operators, which do not need estimation.
The output cardinality of the top operator, k, is given by the query.
The output cardinality of selection operator can be estimated by the
estimated output cardinality of its input operator and its selectivity,
that is often obtained from database statistics. For example, plan3
has 10 operators in total, among them the output cardinalities of 7
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Figure 12: Performances of Different Execution Plans.

operators are estimated, since we do not estimate for the 2 selection
operators and the root operator. Similarly plan2 and plan4 have
the estimated cardinalities for 6 and 8 operators, respectively.

The experiment is based on a sample database with 0.1% sample
ratio. Each of the original tables contains 100, 000 tuples and the
join selectivity for the original tables is 0.0001. The number k is
set to 10 (thus k′ is 1). Figure 13 illustrates the estimation results
of plan3 and plan4. The result of plan2 is very similar to that of
plan3 therefore we do not include it. As we can see from the figure,
although we used a very small sample, the real and estimated output
cardinalities of majority of the operators are in the same magnitude,
validating the estimation method.

7. RELATED WORK
In this paper we introduce a systematic and principled frame-

work, by extending relational algebra and query optimizers, to sup-
port ranking as first-class construct in relational database systems.
We believe that our proposed framework is the first piece of work
to fully integrate ranking in database systems on both the logical
algebra level and the physical implementation level. Previously
top-k query processing is studied in the middleware scenario or in
RDBMS in a “piecemeal” fashion, i.e., focusing on specific oper-
ator or sitting outside the core of query engines. In contrast, our
framework provides principled algebra foundation and is not lim-
ited to a specific operation, thus allows for both expressing and
optimizing general top-k queries. In the following, we highlight
some of the recent effort in rank processing and other related work.

In middleware settings, various algorithms are proposed for rank
aggregation on a set of objects, by merging multiple ranked lists [10,
26, 16, 11], or scheduling random accesses efficiently [2, 4], with
the goal of minimizing number of accesses to objects. Although in
a different setting, the works in [4, 2] explore the concept of upper-
bound scores that inspires us to formalize our ranking principle for
relational top-k queries. A similar sampling approach was applied
in [4] to schedule predicates only, whereas we extend the approach
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Figure 13: Estimated and Real Output Cardinalities of Opera-
tors.
to estimate the cost of general ranking query plans.

In RDBMS, there have been several proposals to support answer-
ing top-k queries at application level or outside the core of query
engines [6, 5, 29, 14, 15, 20, 31], or for supporting special types of
ranking queries [25, 21]. Recently, supporting top-k queries inside
the relational query engine, in terms of physical query operators,
has been proved to be an efficient approach that treats ranking as
a basic database functionality [3, 21, 22, 23]. A stop operator is
proposed in [3] to limit the cardinality of intermediate and query
result, either conservatively by integrity constraints or aggressively



with the risk of restarting the query plan. The order supported by
the stop operator is from columns of relations in SQL queries. Ag-
gregation of multiple ranking criteria is not considered.

In [22] a new operator is devised for supporting rank join query,
where rank join predicates coexist with Boolean join predicates. In-
stead of conducting normal join algorithms on Boolean join predi-
cates, the rank-join operator progressively produces the join results.
In [23] the relational query optimizer is further extended to utilize
the rank-join operator in generating efficient query plans. We com-
plement their work and together provide a systematic support of
relational ranking queries, as we use rank-join as one of the rank-
aware operators and at the same time supply an algebraic founda-
tion of such support. Our dimensional enumeration framework enu-
merates plans by two dual logical properties to handle both schedul-
ing of rank operators and join order selection, while [23] extends
the “interesting order” (physical property) concept to deal with join
enumeration only. The “interesting order” was also extended to
support optimizing queries with expensive Boolean predicates [8].
The concept of our dimensional enumeration is general and extensi-
ble for more dimensions, including scheduling such Boolean pred-
icates, union, and intersection operators.

With respect to the approach of extending query algebra, [24]
proposes an algebra for capturing the semantic of preference queries.
In [27] an algebra is proposed for expressing complex queries over
Web relations that are used to model Web repositories. The algebra
extension focuses on capturing the semantic of application-specific
ranking and order relationships over Web pages and hyperlinks, in-
stead of enabling efficient query processing.

8. CONCLUSION
We introduced our RankSQL system for full support of rank-

ing as a first-class operation in real-world database systems. As
the foundation of our work, we present the key insight that rank-
ing is another logical property of data, parallel to the “member-
ship” property. Centering around this insight, we first introduced
a novel and general framework for supporting ranking in relational
query engines based on extending the relational algebra. The ex-
tended rank-relational algebra captures the ranking property with
rank-relational model and introduces new and extended operators
to fully express top-k queries. We also defined a set of algebraic
laws that allowed for rewriting, hence optimizing, top-k queries.
Second, we presented a pipelined and incremental execution model
of ranking query plans, by realizing the fundamental ranking prin-
ciple in the extended algebra, thus enabling efficient processing of
ranking queries. Third, based on the insight of the duality between
ranking and membership properties, we introduced a generalized
rank-aware optimization framework that defines ranking as an ad-
ditional plan enumeration dimension beyond enumerating joins and
allowed for generating the full space of rank-aware query evalua-
tion plans. For practical purposes, we introduced heuristics that
limit the generated space. Moreover, we introduced a novel tech-
nique for estimating the cardinality of top-k operations, hence, pro-
viding an effective plan pruning mechanism to get efficient ranking
query plans. We presented the experimental results on our initial
implementation of the RankSQL system.
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