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Abstract—How should annotation data be processed so that it
can best characterize the ground truth of affect? This paper
attempts to address this critical question by testing various
methods of processing annotation data on their ability to capture
phasic elements of skin conductance. Towards this goal the paper
introduces a new affect annotation tool, RankTrace, that allows
for the annotation of affect in a continuous yet unbounded
fashion. RankTrace is tested on first-person annotation lines
(traces) of tension elicited from a horror video game. The key
findings of the paper suggest that the relative processing of traces
via their mean gradient yields the best and most robust predictors
of phasic manifestations of skin conductance.

I. INTRODUCTION

Emotion annotation is the most laborious yet, arguably, the

most critical task within the affective computing field. The

areas of affect modeling, affect expression and affect-driven

adaptation are all dependent on appropriate labels of affect.

Regardless of the task at hand, special care must be taken

on how measurable estimates of affect—such as labels or

values—are collected and analyzed. The validity and reliability

of such estimates is naturally questioned given the numerous

factors contributing to deviations between an annotator’s label

and the actual underlying affective state. These factors include

the annotator’s experience, the affect representation chosen,

the design of the annotation tool, person-dependent annotation

delays, and the annotation analysis followed [1], [2].

When it comes to analyzing the obtained labels, the dom-

inant practice in continuous affect annotation is to use the

data in an absolute and direct manner. For example, averaging

annotation values (across specified time windows) as obtained

from continuous annotation tools such as FeelTrace [3] or

Gtrace [4] is a common practice in the literature [5]–[7]. Since

data is typically treated in an absolute fashion, it becomes a

necessity to constrain the annotator within certain bounds (e.g.

arousal values lie within [0,1]) so that the statistical analysis

becomes feasible. After all, a common scale is required if the

provided annotation data is analyzed as interval or absolute

values. We argue that these practices are detrimental to the

collection and analysis of annotation signals as they factor

in a multitude of subjective annotation biases that yield both

constant (lack of validity) and variable (lack of reliability)

deviations from the underlying ground truth [8], [9].

We are instead inspired by the principle of ordinal, or

relative, annotation as followed by an increasing number of

studies in affective computing [2], [8]–[10] and theories of

psychology such as the adaptation level theory [11]. The

latter suggests that humans cannot maintain a constant value

about subjective notions; instead, their preferences are made

on a pairwise comparison basis using an internal ordinal scale

[12], [13]. The relative nature of emotions, and naturally their

annotation, is also supported by relative judgment models [14],

[15] suggesting that our experience with stimuli gradually

creates our internal context, or else anchors [16], against which

we rank any forthcoming stimulus or perceived experience.

Finally, we are motivated from several studies in affective

computing [8] that have already showcased the advantages

of relative annotation and processing for higher inter-rater

reliability in video annotation [2], and affect model generality

for sound [17], music and speech [18].

In this paper we introduce a continuous affect annotation

tool that—similarly to Gtrace [4]—is built on the principles

of single-dimension annotation. The proposed RankTrace tool,

however, a) does not constrain the user within bounds and

b) inspired by [19] it uses a wheel-like hardware as a more

natural means of user interfacing with continuous annotation

tasks. Using this tool 14 players of the Sonancia horror

game [20] annotate their tension levels by watching their

video-captured playthroughs; during the playthrough their skin

conductance (SC) was measured via a bracelet. We consider

SC as the ground truth against which we test annotation data.

For that purpose we extract two phasic and tonic features

via continuous decomposition analysis [21] of the SC signal.

We focus on phasic activations as they are associated to

manifestations caused by external stimuli [21], [22].

Using the obtained annotation and ground truth data, we

test the hypothesis that treating continuous annotations in a

relative fashion is a beneficial approach for approximating

the ground truth. We thus compare two approaches of an-

alyzing continuous annotations which evaluate the absolute

values (mean and integral within a time window) against two

relative approaches based on changes in the signal (amplitude

and average gradient). Results from rank correlation analysis

show that annotation features which assess relative annotation

changes within the window are better and more robust linear

predictors of the phasic driver of SC. Our findings validate our

hypothesis and suggest that treating a continuous annotation

signal in a relative fashion, e.g. via the its gradient, yields



linear predictors of higher predictive capacity.

This paper is novel in two critical ways. First, it introduces

a new annotation tool, RankTrace, that allows for efficient

first- or third-person continuous annotation. The tool is largely

inspired by [19] but it is enhanced for affect annotation by

offering flexible annotation beyond predetermined bounds.

Further, the paper offers a new approach for the analysis of

continuous annotation—may it be video, sound, speech or

gameplay annotation—that is based on the relative rather than

the absolute processing of the obtained data.

II. EMOTION ANNOTATION

Manually annotating emotion is a challenging task, the

complexity of which depends on both the annotators involved

and the annotation protocol designed. Both the validity and the

reliability of the provided annotations need to be questioned

since the first is associated with the degree to which the

annotation task per se captures the underlying affect whereas

the latter is associated with the degree to which the obtained

data is consistent. While annotation reliability—in particular

inter-rater reliability—has been the focus of several studies

in affective computing [2], this paper does not examine the

impact of RankTrace on reliability. Given that our chosen do-

main is games, we wish to obtain annotations about gameplay

experience directly from the player. The result is that each

game session is annotated by a single annotator (i.e. the player)

in a first-person fashion. Instead, this paper focuses on the

validity of the provided annotations and tests the degree to

which different methods for processing continuous annotations

yield predictors of the underlying ground truth as manifested

by the phasic drivers of skin conductance.

Representing changes of affect over time as a continuous

function has been among the dominant annotation practices

within affective computing over the last 20 years. Continuous

annotation is advantageous compared to discrete states, as

labels used in discrete states have fuzzy boundaries that lead to

inter-rater disagreements [23]. The dominant approach in con-

tinuous annotation uses the arousal-valence circumplex model

of affect [24]. Several tools allow the continuous labeling of

affective dimensions: free software such as FeelTrace [3] and

its variant GTrace [4] are popular for real-time video anno-

tation, but other options for annotating video [25] and music

[26] exist. Such continuous annotation tools require substantial

cognitive effort from users and may lead to low inter-rater

agreement and generally unreliable annotations [27], [28].

To counter some of the subjective biases of continuous

annotations, converting the raw values of annotated affective

dimensions into ranks can already lead to a higher inter-

rater agreement. AffectRank [2] has demonstrated that rank-

based video annotations leads to significantly higher inter-rater

reliability compared to FeelTrace. This paper, however, does

not perform inter-rater comparisons, as gameplay videos are

annotated exclusively by the players that produced them in a

first-person manner.

Annotation Timeline Controllable 
Reference

Video
Playback

(a) Annotation with RankTrace: participants watch a recorded playthrough of
Sonancia (top) while annotating. The entire annotation trace is shown (bottom)
for the participant’s own reference, acting as the anchor of their annotation.

(b) The Griffin PowerMate wheel interface is used along with Ranktrace.

Fig. 1. The RankTrace tool (Fig. 1a) allows participants to annotate their
emotional experience using the PowerMate controller (Fig. 1b) in real-time,
while watching a video of their playthrough.

III. THE RankTrace ANNOTATION TOOL

Inspired by [2], [19] we developed RankTrace, a new

annotation tool for the purpose of reliably approximating

the ground truth of affect via relative continuous annotation.

The core idea behind the RankTrace tool was introduced

by [19]: the tool allows participants to watch the recorded

playthrough of a play session and annotate in real-time the

perceived intensity of a single emotional dimension (see

Fig. 1a). RankTrace provides 4 annotation samples per second

and its interfacing is similar to GTrace [4]. The annotation

process in RankTrace, nevertheless, is controlled through a

“wheel-like” hardware (see Fig. 1b), allowing participants

to meticulously increase or decrease emotional intensity by

turning the wheel, similarly to how volume is controlled on

a stereo system. Unlike the tool presented in [19] and other

continuous annotation tools such as FeelTrace [3] or Gtrace

[4], annotation in RankTrace is unbounded: participants can

continuously increase or decrease the intensity to their desire

without constraining themselves to an absolute scale. This

design decision is built on the anchor [16] and adaptation

level [11] theories by which affect is a temporal notion based

on earlier experience, baselines or current context that is best

expressed in relative terms [2]. Several participants during the

piloting of a bounded RankTrace version expressed the will

to further increase (or decrease) the annotation value beyond

its limits, confirming our hypothesis. With our unbounded

approach, instead, participants may work with a broader range

of emotional intensity; as broad as they may wish.

For the purposes of this study and the aims of the horror

game genre, RankTrace is used for the annotation of tension.



While tension and arousal have been used interchangeably in

some affective models we follow the model of Schimmack and

Grob [29] that represents affective states via the dimensions

of tension, arousal and valence.

IV. TESTBED GAME AND PROTOCOL

All first-person annotation experiments presented in this

paper are performed on the Sonancia [17], [20] game gen-

eration system. According to our protocol, human participants

play a horror game level, then annotate the video captured

during their playthrough. Game events and skin conductance

are logged while participants play as discussed in Section V.

This section describes the game and the experimental protocol.

A. The Sonancia Horror Game

Sonancia is a generative system which creates playable

levels for a horror game. In this game, players explore a

haunted manor (i.e. the level) in order to find an objective

located within one of its many rooms. Reaching and activating

the objective ends the level. The level consists of different

rooms, separated by walls and connected by doors. Rooms can

contain monsters, light sources and the objective; each room

also has its own background soundtrack, allocated through

a sonification process. Players are unarmed and must avoid

direct confrontation with hostile monsters; monsters act as an

instigator of tension and fear. For the interested reader, the

level design algorithms use a tension model as specified by the

designer [20] or based on crowdsourced models of tension [17]

for placing sounds in rooms. This allows Sonancia to create

new levels with unique sound combinations. In this study,

however, two pre-generated levels are used by all players.

B. Experimental Protocol

To test RankTrace, an experimental protocol was designed

to allow participants to first play Sonancia and then annotate

their playthroughs. Each participant was first introduced to the

experiment and then answered some demographical questions

e.g. about age and gender. Afterwards, the physiological

devices were synchronized to the game and the participant

began playing a level of Sonancia; once they completed the

level, they were asked to watch a video capture of their most

recent playthrough while annotating tension via the process

described in Section III. This was repeated three times, as

each player played three variants of the same level using three

different sonification methods. Special care was taken so that

the distribution of the two levels, and the order of variants

played was fair among participants to avoid biases in the data.

V. DATA COLLECTION AND FEATURE EXTRACTION

The data obtained from the devised experiment includes

in-game events and skin conductance signals collected while

the game was played, and self-reported continuous annota-

tions of perceived tension via RankTrace, collected during a

playback video of the player’s game. A total of 41 annotated

playthroughs were collected from 14 different participants

(9 male; 5 female). This section covers how this data was

processed for analysis.

(a) Splitting the annotation trace into continuous windows.

(b) Splitting the annotation trace into reactive windows.

Fig. 2. Indicative splitting of the normalized annotation trace of tension
(blue line) into windows of different colored backgrounds. The events that
trigger frame changes are room changes (rhombi and dotted lines). For reactive
windows, the window starts 1 sec after the event and ends after 5 sec.

A. Annotations

As mentioned earlier, once each level variant was complete,

participants were tasked to annotate data using RankTrace. The

output of RankTrace is a continuous representation (trace) of

perceived tension, during a segment of game-play (see Fig. 1).

Following the literature [2]–[4], we split the signal into several

time windows, or frames, from which we extract statistical

features. A frame is a subset of the trace capturing the

perceived emotion elicited through a gameplay event. Fig. 2

showcases the two window framing methods employed in this

paper. The first method is referred to as a continuous window,

where signal parsing starts immediately after a gameplay

event occurs and continues until another event occurs. In this

paper, a triggering event is when a player enters a room

(coinciding with a change in the background music). The

second method is referred to as a reactive window, according

to which parsing starts 1 second after a game event occurs

and ends 5 seconds after. This methodology builds on the

assumption that most participant annotations are in reaction

to occurring (tense) events—or else have a phasic nature. It

also takes into consideration the annotator’s potential time lag

[1], [3]. As reactive time windows have a constant duration,

windows may overlap if players swiftly change rooms.

Once either framing technique is applied, statistical features

are extracted from each available window. In this paper we

extract and compare four annotation metrics (see Fig. 3): a) the

mean value (µA); b) the area of a window, i.e. its composite

trapezoidal integral (
∫
A), normalized to the window’s dura-

tion; c) the amplitude (max-min difference) (Â); d) the average

gradient (∆A). The first two features extract annotation values

in an absolute fashion. The latter two features are independent

of the absolute value of the annotation but instead measure

relative changes within the window.

B. Skin Conductance

As the current study focuses on horror games which target

negative emotions such as stress and fear, skin conductance



(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Processing of two indicative time windows from Fig. 2a. The µA is
0.45 in 3a and 0.7 in 3e, as the average value of the approximately 30 data

points in these windows. Calculation of Â is shown in 3b and 3f based on
the maximum minus the minimum values in that window (0.4 in both cases).
The integral is calculated based on the area under the trace in Fig. 3c (0.11)
and 3g (0.17), normalized to the window’s duration. The average gradient
calculates the difference of adjacent data points, which is non-zero for the
red parts of Fig. 3d and 3h; note that ∆A is 0 for 3d as there are equal
positive and negative gradients which cancel each other out.

(SC) can be safely considered as a reliable manifestation

and ground truth for these specific affective states [30]–[32].

Moreover, SC monitoring devices are particularly easy to setup

and non-intrusive for participants. For the above reasons SC

was used as ground truth for validating annotated experience

(tension) during play. SC is monitored through Empatica’s E4

device [33], which consists of a bracelet-like apparatus akin to

a wristwatch connected to the computer via bluetooth. SC in

E4 is measured in µS (micro Siemens), sampled at 4Hz: high

µS values indicate high arousal (i.e. high conductance), while

low µS values indicate low arousal (i.e. low conductance).

Skin conductance signals are characterized by two different

types of activity, tonic and phasic. Tonic SC refers to the

phenomenon of slow changing variation of the signal through

time, considered to be the level of SC in the absence of

external events or stimuli. Phasic skin activity, instead, is

the abrupt increase of SC levels occurring within short-term

event intervals. These typically occur after an environmental

event or stimulus [21]. In this paper we use the Continuous

Decomposition Analysis (CDA) approach [21] to decompose

our SC signals into continuous tonic and phasic activity. We

can derive an estimate of tonic activity by sampling the signal

at defined intervals, presuming the SC signal is stable. Phasic

activity can then be extracted by simply subtracting the tonic

activity, resulting in what is called a phasic driver expressed

in µS. The phasic driver consists of a baseline corrected

measure, capable of capturing the affect of a given stimulus.

The stimulus-response window for SC typically ranges around

intervals of [1, 3] to [1, 5] seconds after a stimulus event [21].

For the purposes of this paper, SC statistical features are

extracted within a defined response window of [1, 4] seconds

after the occurrence of a stimulus event. Inspired by [21],

[22], [32] we extracted two SC features that are considered

appropriate manifestations of stress, tension or arousal and can

form reliable ground truths for them: a) the mean phasic driver

within the response window (µPd); and b) the integral of the

phasic driver within the response window (
∫
Pd). We explicitly

do not investigate the tonic component in this paper as the

emphasis is on game event-based manifestations of tension

and stress; thus the phasic component, by nature, defines a

more accurate approximation of the underlying ground truth.

To reduce the noise of the raw SC signals, a Gaussian

smoothing function is applied on each SC signal before

applying CDA. Only valid SC signals, which presented a stable

continuous signal, were taken into consideration in this paper.

After pruning, 40 game sessions were considered, with an

average duration of 95.74 seconds each (σ = 44.11).

VI. RESULTS

This section explores the impact of the four different ways

of extracting information from RankTrace annotations—as

described in Section III—on predicting the phasic components

of SC. For all the experiments presented below we follow the

relative analysis approach proposed in [10] and we derive a

ranked order of time windows with respect to each of the four

annotation metrics described in Section V-A. We do that in

two different degrees of annotator memory: a) all windows

assumes that the annotator maintains her anchors throughout

the experiment and, thus, considers all possible window pairs

for deriving a global rank per trace; b) adjacent window

assumes that the memory of the annotator is limited to one

time window and thus considers only adjacent windows to

derive the global rank of the annotation metrics.

In the following sections we explore the predictive capacity

of the annotation metrics with respect to three dimensions:

a) the two different windowing methods (continuous vs. reac-

tive); b) the two degrees of annotator memory (all windows vs.

adjacent window), and c) the impact of min-max normalization

of the raw annotation values versus using the raw traces.

In this paper we rely only on linear predictive capacity

(i.e. correlations) and we do not explore non-linear machine

learning processes which are left for future analysis.

A. Raw Data

We first investigate the predictive capacity of all annotation

metrics when annotation data is not normalized, to establish

a baseline of the most challenging scenario in terms of the

relativity of data. Unprocessed annotation data likely maintain

all the subjective reporting biases we already mentioned; we

wish to explore how much those biases may affect correlation

between our annotation metrics and our ground truth.

Table Ia shows the rank correlations between all video

annotation metrics (on raw data) and the phasic driver features

considered. At first observation the ∆A metric appears to

be the best and more robust predictor. It not only yields

the highest correlation values but it also manages to provide

significant effects with both SC phasic features across both

window types (continuous and reactive) when ranking all

windows. It also yields significant positive correlations with

µPd when ranking only adjacent windows. Beyond ∆A we

observe that the annotation amplitude is also a good predictor

of phasic elements of the SC but only when we assume that

the annotator maintains reference points across all annotation

windows (i.e. ranking all windows). In this extreme case

of treating annotation data in an absolute fashion, findings

suggest that a relative measure (∆A) can be a reliable linear



TABLE I
RANK CORRELATION OF ANNOTATION VALUES AND THE PHASIC DRIVER

FEATURES OF SC, COMPUTED ACROSS WINDOW TYPES (CONTINUOUS VS.
REACTIVE) AND ANNOTATOR MEMORY (ALL WINDOWS VS. ADJACENT

WINDOWS). SIGNIFICANT VALUES ARE IN BOLD [0.05 (*) AND 0.01 (**)].

All Windows Adjacent Windows

Metrics µPd

∫
Pd µPd

∫
Pd

Continuous µA 0.006 0.007 -0.049 -0.046∫
A 0.007 0.009 -0.048 -0.057

Â 0.057* 0.045* 0.101 0.041
∆A 0.101** 0.082** 0.170* 0.053

Reactive µA 0.040 0.027 -0.032 -0.039∫
A 0.038 0.026 -0.07 -0.05

Â 0.035 0.032 0.032 -0.003
∆A 0.116** 0.094** 0.165* 0.110

(a) Raw Data

All Windows Adjacent Windows

Metrics µPd

∫
Pd µPd

∫
Pd

Continuous µA 0.008 0.007 0.06 -0.074∫
A 0.029 0.013 -0.015 -0.072

Â 0.057* 0.045* 0.027 0.013
∆A 0.135** 0.106** 0.172* 0.054

Reactive µA 0.037 0.032 -0.057 -0.045∫
A 0.048* 0.037 0.008 -0.028

Â 0.035 0.032 0.032 -0.004
∆A 0.117** 0.091** 0.186* 0.105

(b) Normalized Data

predictor of the ground truth which is robust regardless of

windowing methods and degrees of annotator memory.

B. Normalized Data

In the second round of experiments we normalize the

annotation data to [0, 1] using min-max normalization (based

on the bounds of each individual annotation trace) and repeat

the above process. Table Ib shows the corresponding rank

correlation values. Once again, the predictive capacity of ∆A

is directly observable, as it yields the highest correlation values

across window types and degrees of annotation memory. It is

the only annotation metric that manages to be a significant

predictor of the phasic driver of SC regardless of the condi-

tions it is tested on. Similarly to the earlier experiment, the

amplitude of the annotation trace is highly correlated with both

phasic driver features only when we consider rankings of all

windows split based on the continuous window method.

VII. DISCUSSION

The introduced RankTrace annotation method was tested

in a horror game for the first-person annotation of tension

in a player’s recorded playthrough. On the hardware level,

the wheel-like sensor allowed for intuitive and low-fatigue

annotation. On the software level, the lack of bounds allowed

users to annotate their perceived tension without having to

anticipate whether a future experience will be more tense than

the current one. The unbounded signal can be used as is or

normalized post-hoc without affecting the annotator’s experi-

ence. Our experiments explored ways of processing the traces,

both in terms of the type of time windows used and in terms of

the memory we consider for the annotator. Regardless of the

experimental setup, it was revealed that the average gradient

of the annotation is the most efficient and robust predictor of

the hypothesized ground truth (i.e. the phasic activation of SC)

among the four metrics tested. The other relative metric, which

disregards the actual annotation values but only assesses their

amplitude, also fared better than two absolute metrics (i.e.

mean and integral of the trace). While the integral of the trace

reached a significant correlation in one test, statistics based

on absolute values overall performed worse, especially when

the trace was split into continuous windows. Assuming limited

annotator memory, ranking between adjacent windows yielded

higher correlations in general. Our correlation analysis showed

that ∆A has considerable potential, but combining it with

other annotation metrics (e.g. Â), game events (e.g. monster

attacks) and the current game state (e.g. room illumination) in

a non-linear fashion via preference learning [34] is expected

to result in more accurate models of the ground truth.

This initial study explored the impact of RankTrace on

players’ annotation traces, focusing solely on the capacity

of the annotation data at predicting the ground truth. While

our initial findings point towards the use of relative measures

of annotation data and the informal user feedback about the

interface was positive, the full potential of RankTrace and its

hardware as an annotation protocol needs to be further tested

across several factors. For instance, a future user study needs

to compare bounded and unbounded versions of RankTrace to

potentially reveal the positive effects of unbounded annotation.

Another user study could compare versions of standard mouse-

based interfaces (e.g. Gtrace) versus RankTrace’s wheel-like

interface via post-use questionnaires, interviews and anno-

tation trace analysis. We expect motion artifacts from hand

movement to be present in both mouse and wheel interfaces;

their degree might vary, however. Regardless of the annotation

interface used, frequency-based signal filtering can reduce any

unnecessary motion artifacts. Future experiments could also

assess whether the relative characterization of annotations via

RankTrace results in higher degrees of inter-rater or intra-

rater agreement; to test this, each recorded playthrough could

be evaluated by several annotators (inter-rater agreement)

or the same annotator could annotate the same gameplay

experience several times (intra-rater agreement). Further, the

tool needs to be thoroughly tested using other signals as

ground truth (beyond skin conductance), in other games and

game genres and in other emotion annotation tasks beyond

game experience. To promote the use RankTrace, an accessible

version of the tool is available online1. Finally, we note that the

gender of participants is not balanced in this study (9 males;

5 females) and future studies should investigate whether the

gender of annotators may have an impact on our core findings.

Comparing annotations from different genders showed similar

trends, with stronger correlations between the SC ground truth

and annotations from female participants; however, this could

be due to more data points originating from male participants.

1http://www.autogamedesign.eu/software



VIII. CONCLUSIONS

This paper introduced the RankTrace tool which allows for

a continuous yet unbounded and relative annotation of affect.

The interface promotes relative-based annotation as it relies

on a wheel-like hardware; its software allows the annotator

to observe her own annotation trace over time without being

bounded by any limits. We tested the tool in a horror game

and asked for first-person annotations of tension. Participants

first played the game, then observed their video-recorded

playthroughs while annotating the level of tension; their skin

conductance was recorded during play. Important game events

were used for splitting the annotation traces into time windows

and deriving the phasic driver of skin conductance via CDA

[21]. Next, we derived two intensity-based (absolute) and

two relative metrics from the annotation traces as we wanted

to explore the ability of different methods to capture the

underlying ground truth. Our results reveal one core pattern:

the relative metric of average gradient of the annotation traces

is the most consistent and robust predictor of our ground

truth (i.e. the phasic driver of skin conductance). The average

gradient manages to predict the SC phasic response best

regardless of whether we normalize the annotations or not,

whether we consider full versus limited annotator memory, or

whether we split the entire trace into frames or consider only

time windows based on particular events. This paper adds to

the increasing number of studies demonstrating the benefits of

relative annotation for modeling affect more reliably [9].
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