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The aerodynamic shape optimization of transonic wings requires Reynolds-averaged Navier–Stokes

(RANS) modeling due to the strong nonlinear coupling between airfoil shape, wave drag, and viscous

effects. While there has been some research dedicated to RANS-based aerodynamic shape optimiza-

tion, there has not been an benchmark case for researchers to compare their results. In this investi-

gations, a series of aerodynamic shape optimizations of the Common Research Model wing defined

for the Aerodynamic Design Optimization Workshop are presented. The computational fluid dynam-

ics solves Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras turbulence model.

A gradient-based optimization algorithm is used in conjunction with a discrete adjoint method that

computes the derivatives of the aerodynamic forces. The drag coefficient at the nominal flight con-

dition is minimized subject to lift, pitching moment and geometric constraints. A multilevel acceler-

ation technique is used to reduce the computational cost. A total of 768 shape design variables are

considered, together with a grid with 28.8 million cells. The drag coefficient of the optimized wing

is reduced by 8.5% relative to the baseline. The single-point design has a sharp leading edge that is

prone to flow separation at off-design conditions. A more robust design is achieved through a multi-

point optimization, which achieves more reliable performance when lift coefficient and Mach number

are varied about the nominal flight condition. To test the design space for local minima, randomly

generated initial geometries are optimized, and a flat design space with multiple local minima was

observed.

I. Introduction

Recent advances in high performance computing have enabled the deployment of full-scale physics-based numer-

ical simulations and optimization in academia and industry. Computational fluid dynamics (CFD) tools and numerical

optimization techniques have been widely adopted to shorten design cycle times and to explore design spaces more

effectively. High-fidelity methods enable engineers to perform detailed designs earlier in the design process, allowing

them to better understand the design trade-offs and to make more informed design decisions. In addition, advances in

sensitivity analysis via the adjoint method [1] have dramatically reduced the computational effort required for aerody-

namic shape optimization. However, the optimal strategies for solving aerodynamic shape optimization problems are

still not obvious. Performing aerodynamic shape optimization on a large grid size remains a challenging task. The re-

searchers from the aerodynamic shape optimization community created four benchmark problems to test aerodynamic

optimization methods in a constrained design space, and organized the Aerodynamic Design Optimization Workshop.

The benchmark problems range from the optimization of a two-dimensional airfoil using the Euler equations, to three-

dimensional shape optimization using the Navier–Stokes. In this paper, we present the results of the most complex

benchmark problem among the four test cases: the lift-constrained drag minimization of the Common Research Model

(CRM) wing with flow governed by the Reynolds-Averaged Navier–Stokes equations (RANS) [2].

In addition to the results of this optimization study, we developed a multilevel optimization acceleration technique

to increase the performance of aerodynamic shape optimization. This method is analogous to the full-multigrid strat-

egy often used in CFD. We perform the consecutive optimizations with coarsened grids to reduce the computational

time needed on the finest grid. Using this method, aerodynamic shape optimization with a large grid size requires

significantly less computational time.
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The majority of the aerodynamic shape optimization problems in the literature are solved with gradient-based

optimizers [3, 4, 5, 6, 7]. High-fidelity aerodynamic shape optimization with a large number of design variables has

the potential to have multiple local minima. The problem is that due to the high number of dimensions, the design

space is difficult to visualize and it is challenging to identify local minima. Several authors addressed the local minima

issue with non-gradient-based optimizations [8, 9]. However, in these cases, a smaller number of design variables

had to be used due to the high number of function calls required by non-gradient-based methods. Chernukin and

Zingg presented a multi-start algorithm and a hybrid optimizer to address the multi-modality issue in aerodynamic

optimization [10]. In this paper, we further explore the multi-modality of aerodynamic shape optimization problems

by performing the RANS-based shape optimizations starting from randomly generated geometries. The design space

is then visualized by taking slices in this multi-dimensional space between different local minima. The results reveal

a flat design space near the optimum, where the local minima exhibit nearly, and the corresponding airfoil are similar,

but visibly different.

The paper is organized as follows. The numerical tools used in this work are described in Section II. The problem

formulation, the mesh, and the baseline geometry are described in Section III. The aerodynamic shape optimization of

the CRM wing is presented in Section IV. The multilevel optimization acceleration technique is discussed in Section V,

followed by the multi-point optimization in Section VII. The thickness constraint and the number design variables are

examined in more detail in Sections VI and VIII. Finally, the multi-modality of the aerodynamic design optimization

cases is studied in Section IX, followed by the conclusions.

II. Methodology

This section describes the numerical tools and methods we used for the optimization studies. These tools are

components of the framework for multidisciplinary design optimization (MDO) of Aircraft Configurations with High

fidelity (MACH) [11, 12]. MACH can perform the simultaneous optimization of aerodynamic shape and structural

sizing variables considering aeroelastic deflections. However, in this paper we focus solely on the aerodynamic shape

optimization.

A. Geometric Parametrization

We use an free-form deformation (FFD) volume approach to parametrize the wing geometry [13]. The FFD volume

parametrizes the geometry changes rather than the geometry itself, resulting in a more efficient and compact set of

geometry design variables, thus making it easier to manipulate complex geometries. Any geometry may be embedded

inside the volume by performing a Newton search to map the parameter space to physical space. All the geometric

changes are performed on the outer boundary of the FFD volume. Any modification of this outer boundary can be

used to indirectly modify the embedded objects. The key assumption of the FFD approach is that the geometry has

constant topology throughout the optimization process, which is usually the case for wing design. In addition, since

FFD volumes are tri-variate B-spline volumes, the sensitivities of any point inside the volume can be easily computed.

Figure 1 shows the FFD volume and the geometric control points for the aerodynamic shape optimization.

Figure 1. The shape design variables are the z-coordinates of 768 FFD control points.

B. Mesh Perturbation

Since FFD volumes modify the geometry during the optimization, we must perturb the mesh for the CFD analysis

to solve for the modified geometry. The mesh perturbation scheme used in this work is a hybridization of algebraic

2

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

ic
h
ig

an
 -

 D
u
d
er

st
ad

t 
C

en
te

r 
o
n
 D

ec
em

b
er

 1
3
, 
2
0
1
7
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
4
-0

5
6
7
 



and linear elasticity methods [13]. The idea behind the hybrid warping scheme is to apply a linear-elasticity-based

warping scheme to a coarse approximation of the mesh to account for large, low-frequency perturbations, and to use

the algebraic warping approach to attenuate small, high-frequency perturbations. For the results in this paper, the

additional robustness of the hybrid scheme is not required, thus the algebraic scheme is used.

C. CFD Solver

We use the SUmb flow solver [14]. SUmb is a finite-volume, cell-centered multiblock solver for the compressible Eu-

ler, laminar Navier–Stokes, and RANS equations (steady, unsteady, and time-periodic). It provides options for a variety

of turbulence models with one, two, or four equations and options for adaptive wall functions. The Jameson–Schmidt–

Turkel (JST) scheme [15] augmented with artificial dissipation is used for the spatial discretization. The main flow

is solved using an explicit multi-stage Runge–Kutta method along with geometric multi-grid. A segregated Spalart–

Allmaras (SA) turbulence equation is iterated with the diagonally dominant alternating direction implicit (DDADI)

method. We have developed a discrete adjoint method for the Euler and RANS equations for the efficient computation

of gradients required for optimizations [16]. The adjoint implementation supports both the full-turbulence and frozen-

turbulence modes, but in the present work we use the full-turbulence adjoint exclusively. The adjoint equations are

solved with preconditioned GMRES [17] using PETSc [18, 19, 20]. We have previously performed extensive Euler-

based aerodynamic shape [21, 22] and aerostructural optimization [11, 23]. However, we have observed serious issues

with the resulting “optimal” Euler-based designs due to the lack of fidelity in the physical model. While Euler-based

optimization can provide design insights, we found that the resulting optimal Euler shapes are significantly different

from those obtained with RANS [16]. Euler-optimized shapes tend to exhibit non-physical features, such as a sharp

pressure recovery near the trailing edge, and thus RANS-based shape optimization is necessary to achieve realistic

designs.

D. Optimization Algorithm

Because of the high computational cost of CFD solutions, it is critical to choose an efficient optimization algorithm

that requires a reasonably low number of function calls. Gradient-free methods, such as genetic algorithms, have

a higher probability of getting close to the global minimum for cases with multiple local minima. However, slow

convergence and the large number of function calls make gradient-free aerodynamic shape optimization infeasible

with the current computational resources, especially for large numbers of design variables. Since we require hundreds

of design variables, we use a gradient-based optimizer combined with adjoint gradient evaluations to solve the problem

efficiently.

The optimization algorithm we use is SNOPT (sparse nonlinear optimizer) [24] through the Python interface py-

Opt [25] for all results presented here. SNOPT is a gradient-based optimizer that implements a sequential quadratic

programming method; it is capable of solving large-scale nonlinear optimization problems with thousands of con-

straints and design variables. SNOPT uses a smooth augmented Lagrangian merit function, and the Hessian of the

Lagrangian is approximated using a limited-memory quasi-Newton method.

III. Problem Formulation

The goal of this optimization case is to perform lift-constrained drag minimization of the Common Research Model

(CRM) wing using Reynolds-averaged Navier–Stokes equations. In this section, we discuss the problem formulation

for this test case.

A. Initial Geometry

The initial geometry is a wing with a blunt trailing edge extracted from the CRM geometry. The geometry and

specifications are given by the Aerodynamic Design Optimization Discussion Group [2]. The fuselage and tail are

deleted from the original CRM, and the root of the remaining wing is moved to the symmetry plane. The initial

geometry is shown in Figure 2. All coordinates are scaled by the mean aerodynamic chord (275.8 in). The reference

point is at x = 1.2077 and z = 0.007669. The reference area is 3.407014.
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Figure 2. Initial geometry scaled by its mean aerodynamic chord.
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B. Grid Convergence Study

We generate the mesh for the BWB using an in-house hyperbolic mesh generator. The mesh is marched out from the

surface mesh using an O-grid topology to a farfield located at a distance of 25 times the span. The nominal cruise

flow condition is Mach 0.85 with a Reynolds number of 5 million based on mean aerodynamic chord. The grid we

generated for the test case optimization contains 28.8 million cells. The grid size and y+max values at the nominal

operating condition are shown in Table 1.

Grid level Grid size y+

L00 230, 686, 720 0.233
L0 28, 835, 840 0.493
L1 3, 604, 480 0.945
L2 450, 560 2.213

Table 1. Several grid sizes are used in our optimizations: from 450k to 28.8M cells.

C
D

0.0180

0.0190

0.0200

0.0210

optimized

baseline

1/GRIDSIZE
2/3

C
M
y

5E-05 0.0001 0.00015
-0.1900

-0.1800

-0.1700

231M 3.6M28.8M 451k

Figure 3. The grid convergence study shows that the difference between the 28.8M and 230M grids is within 1 drag count.

We perform a grid convergence study to determine the resolution accuracy of this grid. All the grids are generated

using an hyperbolic mesh generator with coarse or refined spacing. Figure 3 shows the mesh convergence plot the

grid for the initial geometry, as well as the grid for the optimal wing. We can see that the 28.8M grid has sufficient

accuracy: The difference in the drag coefficients between the 28.8M and 230M grids is within 1 drag count. The

surface symmetry plane for the L0, L1, and L2 grids are shown in Figure 4.
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(a) L0 grid has 28.8M cells.

(b) L1 grid has 3.6M cells

(c) L2 grid has 450k cells

Figure 4. O-grids of varying sizes were generated using an hyperbolic mesh generator.
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C. Optimization Problem Formulation

We minimize the drag coefficient by varying the shape design variables subject to a lift constraint (CL = 0.5). In

addition, the pitching moment is constrained to be CMy ≥ −0.17. The shape design variables are z-coordinates of

768 control points on the FFD volume, and angle-of-attack. There are 750 thickness constraints imposed in a grid

with 25 chordwise and 30 spanwise stations. The thickness is set to by greater than 25% of the initial thickness at each

location. Finally, the internal volume is constrained to be greater than or equal to the initial volume.

D. Surface Sensitivity on the Baseline Geometry

To examine the potential improvements of the baseline geometry, we performance a sensitivity analysis of the baseline

geometry. We see that the baseline can be improved upon through changes in the sectional airfoil shape. The sensitivity

of the drag and pitching moment with respect to the airfoil shape can be visualized through the sensitivity contour plot

in Figure 5. Here, we plot the derivatives of CD and CMy with respect to shape variations in the z direction. The

regions with the highest gradient of CD are near the shock on the upper surface. This indicates that shock reduction

through local shape changes is the major driver in reducing CD at the beginning of the optimization. As for CMy ,

the shape changes near the root and tip of the wing are most effective in adjusting pitching moment. However, these

sensitivity plots are only a linearization about the current design point, and they provide no information about the

constraints. Nonetheless, these sensitivity plots indicate what drives the design at this design point.

Figure 5. Sensitivity study of the baseline shows which shape changes yield the largest improvements.

IV. Aerodynamic Shape Optimization of the CRM Wing

In this section, we present the results of the aerodynamic design optimization of the CRM wing. A grid size of

28.8 million cells is used for the optimization. We use a multilevel optimization acceleration technique to significantly

improved the performance of the optimization. The details of this acceleration technique are discussed in Section V.
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The optimized wing has 8.5% lower drag compared to that of the baseline wing. The drag decreased from 199.7 counts

to 182.8 counts at the nominal flow condition. Figure 6 show the comparison between the baseline and the optimized

wing.

Figure 6. The optimized wing is shock-free and has 8.5% lower drag.

In this figure, the baseline wing results are shown in red and the optimized wing results are shown in blue. At the

optimum, the lift coefficient target is met and the pitching moment is reduced to the lowest allowed value. The lift

distribution of the optimized wing is much closer to the elliptical distribution, indicating an induced drag that is close

to the theoretical minimum. This is achieved by fine-tuning the twist distribution and airfoil shapes. The baseline wing

has a near linear twist distribution. The optimized design has more twist at the root and at the tip, and less twist near

mid wing. The overall twist angle only changed slightly from 8.06 degrees to 7.43 degrees.

The optimized thickness distribution is significantly different from that of the baseline. Due to the volume constant,

the overall volume has to be conserved. Therefore, the optimizer chooses to increase the thickness at the root and

decrease the thickness at the tip. The root t/c is over 20%. The low thickness near the tip would in practice incur

structural weight penalty. To obtain a more realistic design, we also performed additional optimization with a more

strict thickness constraint in Section VI.

The baseline wing exhibits a front of very closely spaced pressure contour lines spanning a significant portion of

the wing, indicating a shock. The optimized wing shows parallel pressure contour lines with roughly equal spacing,

indicating a nearly shock-free solution at the nominal flight condition. This is confirmed by the shock surface plots:

we can see that the baseline wing has a shock on the upper surface, while the optimized wing does not show shocks

at the design condition. The shock elimination can also be seen on the airfoil Cp distributions. The sharp increase in

local pressure due to the shock becomes a gradual change from the leading edge to the trailing edge.

Another noticeable feature in the optimized wing is the sharp leading edge. The optimizer explores the weak-

ness in the problem formulation. With a single-point optimization, there is no penalty for thinning out the leading

edge. However, sharp leading edge airfoils experience adverse performance at off-design conditions, since the flow is

prone to separation at off-design angles-of-attack. We explore these issues in more detail and perform a multi-point

8

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

ic
h
ig

an
 -

 D
u
d
er

st
ad

t 
C

en
te

r 
o
n
 D

ec
em

b
er

 1
3
, 
2
0
1
7
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
4
-0

5
6
7
 



optimization in Section VII.

V. Multilevel Optimization Acceleration Technique

In this section, we present an acceleration technique to increase the computational efficiency of the aerodynamic

shape optimization. Aerodynamic shape optimization is a computational intensive endeavor. The majority of the

computational time is spent in the flow solver, and in the gradient calculation. There are three possible improvements

can be made to reduce the optimization time.

The first improvement is to reduce the flow solution time. This has be extensively researched by the CFD com-

munity. Commonly used methods, such as multigrid, pre-conditioning, and variations on Newton-type methods, can

improve the convergence of the solver, thus reducing the overall optimization time.

The second improvement is to reduce the gradient computational time, which was pioneered by Jameson [1]

through the development of adjoint methods, which efficiently compute gradients with respect to large numbers of

shape design variables. With an efficient adjoint implementation, the cost of computing the gradient of a single

function of interest with respect to hundreds or thousands of shape design variables is roughly the cost of one flow

solution [16]. For a generalization of the adjoint method and its connection to other sensitivity analysis methods,

see [26].

The third improvement that can be made is to reduce the number of function and gradient calls. This can be

achieved by using a surrogate model [23]. However, as the dimension of the problem increases, surrogate modeling

becomes less effective and less accurate.

In this paper, we present a method that is inspired by the multigrid method in CFD. We use smaller grids to

accelerate the convergence of a large grid. Since it is less costly to compute both flow solution and the gradient in a

smaller grid, we perform the optimization first on a smaller first until a certain level of optimality is achieved. Then, we

move on to the next grid level and use the design variables from the previous grid level as the initial design variables.

Since the drag and lift coefficients are generally different on each grid level, the approximate Hessian (used by the

gradient-based optimizer) must be restarted. This process is repeated until the last grid level has converged.

We demonstrate this method using the CRM wing optimization case solved in the previous section. Three grid

levels are used: L2 (451k), L1 (3.6M) and L0 (28.8M). The merit function, optimality, and feasibility history is shown

in Figure 7. We can see that the majority of the iterations are performed on the coarse grid and as a result, the number

of the function and gradient evaluations on the successively finer grids is greatly reduced. Table 2 summarizes the

computational time spent on each grid level. Thanks to the optimization with the coarser grids, only 18 iterations are

needed on the L0 grid. However, L0 grid still uses the most of the computational cost in terms of proc-hr. Due to

the high cost of flow and adjoint solution on L0 grid, as well as limited computational resources, we can not perform

an optimization with only L0 grid. Assuming the same number of iterations used for the L2 grid (638) would be

needed for the L0 grid, the computational cost would be 23 times higher than the multilevel approach, which would

correspond to 16 days using 1248 processors.

Grid level Iterations Procs Time (hr) Total proc-hr

L2 638 64 29.3 1875.2
L1 89 256 20.2 5171.2
L0 18 1248 11.1 13, 852.8

Table 2. The number of iterations on the L0 grid is reduced to 18.

Figure 8 shows the initial and optimized results at each grid level. If we examine the results more closely, we see

that the optimized results of L2, L1, and L0 are all similar to each other. This validates the underlying assumption of

this method: that a coarser grid provides a good approximation to the design space of the finer grid. The majority of

the computational efforts on the subsequent grid levels are spent on smoothing out the shock that re-appeared due to

the finer grid spacing. This multilevel acceleration technique proved to significantly reduce the number of iterations

needed to optimize in the fine grid, and the total computational effort was greatly reduced.
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Figure 7. The majority computations are performed on the coarse grid.

Figure 8. The optimized results of each grid level exhibit only subtle differences.
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VI. CRM Wing Optimization with 100% Thickness Constraint

In Section IV, the optimized wing has a thickened root airfoil and an unrealistically thin tip airfoil. To address

this issue, we performed an optimization with the same setup except for modified thickness constraints: All airfoil

thickness constraints must be greater than or equal to the initial thickness. The optimization is performed on the L2

grid, and the results are shown in Figure 9.

Figure 9. The drag on the optimized wing is 4 count higher if no airfoil thickness reduction is allowed.

The results of the optimization with 100% thickness constraint are shown in black. The spanwise lift and twist

distributions for both cases are similar to each other. However, the pressure distribution and airfoil shapes are signif-

icantly different, especially those near wing root and wing tip. As a result, the optimized wing with 100% thickness

constraint has 5 additional drag counts when compared the wing optimized subject to the 25% thickness constraint.

Such aerodynamic performance penalty may be compensated by the reduction in wing structural weight. A detailed

aerostructural optimization would be necessary to examine the tradeoffs, and such an optimization has been performed

for a similar wing by Kennedy et al. [27].

VII. Multi-point Aerodynamic Shape Optimization of the CRM Wing

Transport aircraft operate at multiple cruise conditions due to variability in the missions and air traffic control

restrictions. Single-point optimization at the nominal cruise condition could inflate the benefit of the optimization,

since it is likely to improve the on-design performance while reducing the performance under off-design conditions.

In Section IV, the single-point optimized wing exhibited an unrealistically sharp leading edge near the wing tip. This

was caused by a combination of the volume constraint and the single-point formulation. A sharp leading edge is prone

to flow separation at off-design conditions. We attempt to address this issue by performing a multi-point optimization.

The optimization is performed on the L2 grid. We choose five equally weighted flow conditions by varying the lift

coefficient and the Mach number. The flight conditions are the nominal cruise, ±10% of cruise CL, and ±0.01 of

cruise Mach, as shown in Table 3. More sophisticated ways of choosing multi-point flight conditions can be used,
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such as an automated selection of the points that minimize fleet-level fuel burn [23].The objective function is the

average drag coefficient of five flow cases.

Flow Case CL Mach number

1 0.50 0.85
2 0.55 0.85
3 0.45 0.85
4 0.50 0.84
5 0.50 0.86

Table 3. The flow cases are arranged in a five-point stencil in Mach-CL space.

Figure 10. The multi-point optimized wing has a localized weak shock on the upper surface.

The comparison between the single-point and multi-point optimized designs is shown in Figure 10. The single-

point results are shown in blue and the multi-point results are shown in orange. Note that only the results at the

nominal flight condition are plotted. In the multi-point optimization, the sectional Cp of flow case 2-5 are plotted in

gray. Compared to the single-point optimization, the multi-point optimized wing has a localized weak shock at all flow

conditions. The leading edge is less sharp than that of the single-point optimized wing. Additional flow cases, such as

a low-speed flight condition, would be needed to further improve the leading edge. The overall pressure distribution of

the multi-point design is similar to that of the single-point design. The twist and lift distributions are nearly identical.

Most of the differences are in the chordwise Cp distributions in the outer wing section. The drag coefficient at nominal

condition is approximately 2 count higher. However, the performance at the off-design conditions is significantly

improved.

To visualize this improvement, and to better understand the effects of multi-point optimization, we plot ML/D
contours of the baseline, single-point, and multi-point designs with respect to CL and cruise Mach in Figure 11 .
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ML/D provides a metric for quantifying aircraft range based on the Breguet range equation with constant thrust

specific fuel consumption. While the thrust specific fuel consumption is actually not constant, assuming it to be

constant is acceptable when comparing range performance in a limited Mach number range [28]. We added 100 drag

counts to the computed drag to account for the drag due to the fuselage, tail and nacelles and get more realistic ML/D
values.
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(d) Comparison of baseline, single and multi-point

Figure 11. The multi-point optimized wing has better off-design performance and is more robust.

The baseline maximum ML/D is at a lower Mach number and a higher CL compared to the nominal flight con-

dition. The single-point optimization significantly increases the maximum ML/D and the ML/D at the operation

condition. In addition, the maximum ML/D occurs much closer to the nominal cruise condition. The shapes of the

contours are also altered to move the maximum toward the cruise flight condition. For fixed CL = 0.5, the maximum

ML/D occurs at the nominal Mach of 0.85, which is equivalent to the drag bucket in a drag divergence plot. For the

multi-point optimization, the flight conditions for optimization are spread in the Mach-CL space, resulting in a flat-
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tened ML/D variation near the maximum, resulting in more uniform performance for a range of flight conditions. The

99% ML/D contour is also larger than that of the single-point optimum. By performing a multi-point optimization,

we achieve a more robust design and increase the overall performance at both on- and off-design conditions.

VIII. Investigation on the Number of Shape Design Variables

With an efficient adjoint implementation, the cost of computing gradients is nearly independent of the number

of design variables. Therefore, we took advantage of this efficiency by using a larger number of design variables in

the optimizations presented so far. Now, we examine the effect of reducing the number of design variables on the

optimized wing. We perform the same optimization as in Section IV with on fourth of the design variables: 192 as

opposed to the original 768. This reduction is achieved by halving the number of control point in both spanwise and

chordwise directions. The L2 grid is used for this study, and the comparison with the higher-dimensionality case is

shown in Figure 12.

Figure 12. The optimized wing with 192 design variables is similar to that with 768 design variables.

We see that both optimization results have a similar near-elliptical lift distribution, twist, and thickness distribu-

tions. The sectional airfoil shapes are also similar. With a higher number of design variables, the optimizer can has

a finer control over the geometry. The effects can be seen on the sectional Cp on sections D, E, and F near the lead-

ing edge. The difference in drag coefficient is about 0.6 count. Therefore, we conclude that an adequate optimized

design can be achieved with a smaller number of design variables. For an optimization process whose computational

cost that scales with the number of design variables, such as gradients computed with finite-differences, or when us-

ing gradient-free optimizers, using a smaller number of design variables would be beneficial and would not have a

significant impact on the optimized design.

14

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

ic
h
ig

an
 -

 D
u
d
er

st
ad

t 
C

en
te

r 
o
n
 D

ec
em

b
er

 1
3
, 
2
0
1
7
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
4
-0

5
6
7
 



Figure 13. The initial geometries are randomly generated based on the baseline CRM wing.

15

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

ic
h
ig

an
 -

 D
u
d
er

st
ad

t 
C

en
te

r 
o
n
 D

ec
em

b
er

 1
3
, 
2
0
1
7
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
1
4
-0

5
6
7
 



Figure 14. All three optimizations with random starting geometries converged to similar optima.
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Figure 15. The merit function values between optimized de-

signs show the local minima.
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Figure 16. The distances between the optimized wings in the

design space are similar.
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IX. Investigation on the Multi-modality of Aerodynamic Shape Optimization Using

Random Initial Geometries

High-fidelity aerodynamic shape optimization with a large number of design variables has the potential to have

multiple local minima. The problem is that due to the high number of dimensions, the design space is difficult

to visualize and it is computationally costly to find multiple local minima. We explore the multi-modality of this

aerodynamic shape optimization problem by performing four separate optimization, where each optimization starts

with a different geometry. The first run is the nominal optimization shown in Section IV. The other three runs has

the same optimization formulation with randomly generated initial geometries. The random geometries are generated

based on the CRM wing with a random surface perturbation for each shape design variables, resulting in completely

different geometries. The initial starting points for the three random runs are shown in Figure 13.

Figure 17 shows the optimized results from a random initial starting geometry. The optimization is performed

on the L2 grid. We can see that the performance of the initial design is extremely poor. This is no surprise, since

the airfoil shapes are unlike anything one would design: they exhibit oscillations and sharp edges, resulting in wildly

varying Cp distribution. In spite of these wild shapes, the optimizer is able to smooth out the airfoils and achieve a

shock-free wing similar to the original single-point design presented in Section IV.

Figure 17. The optimization manages to start from a random geometry and converge to an optimal wing that is shock free.

We performed the same optimization for three random starting points and compared the results against each other,

as well as against the single-point optimized wing, as shown in Figure 14. Each random optimized result is color-

coded, and the nominal optimized result from Section IV is shown in black. Overall, there are only small differences

between the four design as evidenced by the similar Cp distributions and cross sectional shapes. The difference in drag

between all four designs is within a drag count. However, there are still some small visible differences, indicating the

possibility of local minima.

To further visualize this design space, we compute the merit function in the design space between two optimized

designs, as shown in Figure 16. The merit function is a combination of the objective function and the constrains. We

are able to visualize a slice of the design space by plotting the merit function along a line between two optima. As
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shown in this figure, the merit function does appear to have local minima, even though the values of the merit function

are within one count among those optima. We believe that the design space of this aerodynamic shape optimization

problem is relatively flat with many humps and local minima within this flat region. The humps and local minima

could also be caused by the constraints.

X. Conclusions

The optimization results of the CRM wing are presented for the Aerodynamic Design Optimization Workshop.

The drag coefficient is minimized subject to lift, pitching moment, and geometric constraints. The optimization is

performed on a grid with 28.8 million cells using a total of 768 shape design variables. The drag coefficient of

the optimized design is reduced by 8.5%, from 199.7 counts to 182.8 counts. The optimization used a multilevel

acceleration technique that significantly reduced the total computational time.

We found that the optimized design exhibits a small thickness-to-chord ratio (3.3%) at the tip, which would incur

a large structural weight penalty in a real wing. Thus, additional optimization was performed with 100% thickness

constraints, resulting in a increase of drag by 5 counts for the optimized design. However, the associated reduction in

structural weight would likely off-set this penalty in a real wing.

We also presented a multi-point optimization of the CRM wing. This resulted in a more robust design than that of

the single-point optimization, as evidenced by the enlarged contour of the 99% maximum ML/D. We also compared

the contours of ML/D for the baseline, single point optimum and multi-point optimum. Both single-point and multi-

point optimization shifted the maximum ML/D toward the nominal flight condition. A more robust design and

improved the overall performance at both on- and off-design conditions were achieve using multi-point optimization.

The multi-modality of the aerodynamic shape optimization problem was examined by optimizing randomly gener-

ated initial geometry. The optimized wings had similar airfoil shapes and the drag coefficients were converged within 1

count of difference. However, we observed subtle differences in the airfoil shapes. The merit function values between

the optimized wings were plotted to visualize the design space. We conclude that the design space is relatively flat and

contains multiple local minima.
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