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SUMMARY

This paper proposes a post-simulation improvement for two common Monte Carlo
methods, the Accept-Reject and Metropolis algorithms. The improvement is based on a
Rao—Blackwellisation method that integrates over the uniform random variables involved
in the algorithms, and thus post-processes the standard estimators. We show how the
Rao-Blackwellised versions of these algorithms can be implemented and, through
examples, illustrate the improvement in variance brought by these new procedures. We
also compare the improved version of the Metropolis algorithm with ordinary and
Rao-Blackwellised importance sampling procedures for independent and general
Metropolis set-ups.

Some key words: Accept-reject; Gibbs sampling; Importance sampling; Metropolis; Monte Carlo algorithm;
Polynomial computing time.

1. INTRODUCTION

The Rao-Blackwell Theorem, a well-known result in mathematical statistics, see e.g.
Lehmann (1983, p. 50), shows how to improve upon any given estimator under every
convex loss function. The improvement is obtained by calculating a conditional expected
value, often involving integrating out an ancillary statistic. The appeal of this important
theorem has been extended to simulation settings in the case of Markov chain Monte
Carlo methods by Gelfand & Smith (1990) and Liu, Wong & Kong (1994, 1995). They
worked, for the most part, in the context of Gibbs sampling. The Rao—Blackwell Theorem
was used to show that smoothed estimators, using the available conditional distributions,
were an improvement over nonsmoothed estimators.

When applied to variance improvement, the core of the Rao—Blackwell Theorem is the
well-known relationship between conditional and unconditional variance. Given an esti-
mator 7(u, y) depending on two variables u and y, its variance satisfies

var(t)=var[E{t(U, Y)| Y}] + E[var {z(U, Y)| Y}]. (1-n

Therefore v = E{t(U, Y)| Y}, having the same mean as 7, improves upon t in terms of
variance by a factor of E[var {t(U, Y)|Y}]. When 7, the Rao—Blackwellised version of z,
can be computed it thus makes sense from a statistical point of view to use it. There are
often many choices for the pair (u, y), but not all are appropriate, and may not be comput-
able. The version we select in this paper is a somewhat natural choice, since many simu-
lation methods rely on the side simulation of uniform %[0, 1] random variables. These
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uniform random variables are ancillary to the estimation problem and, when they can be
integrated out, the resulting estimator improves on the usual average estimator at no cost
in terms of simulation time.

We consider in this paper two general simulation algorithms, the Accept-Reject and the
Metropolis algorithms. Estimators that are constructed from these algorithms will typically
depend on the ancillary uniform random variables. Our Rao-Blackwellised procedures,
analogous to E{t(U, Y)| Y} explicitly integrate out these random variables, hence use the
entire sample of candidate random variables simulated from the algorithm. We thus pro-
duce estimators that are independent of the ancillary variables, and are a weighted average
of the entire sample. There is some similarity between these procedures and procedures
resulting from an Importance Sampling algorithm, although our weight factors are gener-
ally more elaborate, but still computable in polynomial time. A full theoretical comparison
of the Rao—Blackwell versus importance sampling approach is yet to be undertaken, but
we provide some elements of comparison in simulation studies.

The Rao-Blackwellisation methods presented in this paper are essentially nonpara-
metric, in the sense that they depend on neither the form of the density nor the estimated
function. In such a nonparametric setting, the Rao—Blackwellised estimator can be per-
ceived as a uniform minimum variance unbiased estimator, being symmetric in the order
statistics (Lehmann, 1983, § 2.4). This property should be contrasted with more familiar
parametric Rao-Blackwellisation, where an estimator is improved upon by calculating its
conditional expected value given a sufficient statisticc. However, the only role that
sufficiency plays is to ensure that the resulting conditional expectation is, indeed, an
estimator, since conditioning on an insufficient statistic may result in a quantity that
depends on unknown parameters. Therefore, one can interpret the Rao—Blackwell
Theorem as saying that, if the calculation of a conditional expectation can result in an
estimator, such an estimator is superior to the original. Parametric Rao—Blackwellisation
is often used in Gibbs sampling.

We emphasise that our approach and, in particular, the optimisations involved in the
derivation of the improvements, is statistical rather than computational. The overall goal
of the statistician is to process samples in an optimal way. We therefore consider our
improvements as a post-simulation processing of a generated sample, which is statistically
superior, although it may be computationally inferior in taking more computer time. For
instance, it may be more efficient in time to generate an Accept-Reject sample of size t*
(t* > t) such that the variance of the estimate based on this augmented sample is smaller
than that of the Rao-Blackwellised procedure for sample size t. Although such an
approach may be computationally optimal, it will not be statistically optimal.

In § 2 we consider the Accept-Reject algorithm and derive the corresponding weights
for the Rao—Blackwellised version of the estimator. An example, illustrating the potential
improvement, is also given. Section 3 similarly treats the Metropolis algorithm in the
independent case using the same setup as § 2. However, since Accept-Reject leads to the
generation of a sample of random size, while Metropolis relies on a fixed sample, compari-
son of the methods is not straightforward. In § 3 we also provide an example illustrating
the magnitude of improvement possible in this case. Section 4 extends the Metropolis
Rao-Blackwellisation improvement to the general case, where the simulated random vari-
ables are not independent, and § 5 discusses importance sampling based on the sample
generated by the general Metropolis algorithm. In the general Metropolis case, we also
give a Rao—Blackwellised version of the importance sampling estimator which turns out
to have the same order of complexity as the other Rao—Blackwellised procedures. We give
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an example that shows that the Rao—Blackwellised importance-sampling estimator can
dramatically improve upon the Rao-Blackwellised Metropolis estimator. However, the
importance sampling approach falls short of providing a true sample from the distribution
of interest, contrary to Accept-Reject and Metropolis approaches. Lastly, § 6 contains a
discussion and some conclusions.

2. THE ACCEPT-REJECT ALGORITHM
The Accept-Reject algorithm is based on the following lemma.

LemMA 2:1. If f and g are two densities, and there exists M < co such that f(x) < Mg(x)
for every x, the random variable X provided by the algorithm:

1. simulate Y ~ g(y);

2. simulate U~ %[0, 1] and take X =Y if U < f(Y)/Mg(Y), otherwise, repeat step 1,
is distributed according to f.

This algorithm is widely used for simulation, often with some refinements (Devroye,
1985, § 2.3; Gilks & Wild, 1992) to increase the probability of acceptance at each step.
Nonetheless, this method leads to the rejection of a part of the sample simulated from g,
that is, although we simulate the values Y;,..., Y,, the ¥’s for which U, > f(Y;)/Mg(Y;)
are eliminated. We now propose an improvement upon the original Accept-Reject pro-
cedure which makes use of every simulated value.

We consider the distributions f and g to be given; the choice of g is not considered in
this paper. A sequence Y;, Y,,... of independent random variables is generated from g
along with a corresponding sequence U, U,, ... of uniform random variables. Given a
function h, the Accept-Reject estimator of E’ {h(X)}, based upon a sample X;,..., X,
generated according to Lemma 2-1, is given by

1 t
; Z h(X;). (2:1)

For a fixed sample size ¢, that is for a fixed number of accepted random variables, the
number of generated Y;s is a random integer N satisfying

N N—-1
ZI(UL<W1)=I, Z I(UI<W,)=t-—1,
i=1

i=1

where we define w; = f(Y;)/Mg(Y;). Since %, can be written as

H|P—‘

i I(U; < wyh(Yy),

the conditional expectation

o~

1
ty=" {ZI(U,sw)h(Y) N Y., N} (22)
i=1
improves upon (2-1).

For completeness, we first present some of the necessary distributions for
deriving a manageable formula for the estimator f,. The joint distribution of
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N, Y, ..., Yy, Uy,..., Uy)is given by

pr(N=n,Y1<y1,...,Y,,<y,,, Ulgula"'aUnsun)

- [ stwama, [ [ st st

x oy H (Wi, Aty ]_[ (wy, —w; ) dty ... dt,_y.

G, it—1) j=

The last sum is over all subsets of {1,...,n— 1} of size t — 1. The conditional density of
the U’s is given by

f(ul,...,u,,lN:n,Yl,...,}’;,)={ D H an(l—W)}

(UTI iy—1) J=

X { Y H I(u;, <w;,) H I(“ij>Wij)}

Gigserie—p) j=1 j=t
I(u, < w,)

X et

Wp

Using this distribution we can calculate, conditional on (N, Y;, ..., Yy), the probability p;
of the event {U; < w;} and thus derive the weights of i(Y;) in the estimator 7,. The calcu-
lations involve averaging over permutations of the realised sample and yield, for i < n,

t—2 n—
p=w, Y Tlw, I G-w)/ I n n<1 (23)
(B15enes iz j=1 j=t—1 (f1seees 1) Jj=
while p, = 1. The numerator sum is over all subsets of {1,...,i—1,i+1,...,n—1} of
size t — 2, and the denominator sum is over all subsets of size t — 1. From a statistical
point of view, (N, Y, ..., Yy) is sufficient since the conditional distribution of the U;’s
does not depend on the density function f.

The computation of £, now follows quickly from equations (2-2) and (2-3), with the
resulting estimator being an average over all the possible permutations of the realised
sample, the permutations being weighted by their probabilities. The Rao-Blackwellised
estimator is then a function only of (N, Y),..., Yw—1), Yy).

ProrosiTIiON 2-1. For N =n, the Rao—Blackwellised version of (2-1) is given by

= 3 oih
t;=
where p; is provided by equation (2-3).

Note that the computation of the p;’s may appear formidable but these weights are

easily derived from a recurrence relation which is of order n® For example, if we define

m

Spim)= ), ﬁw,-j [T —w) *k<m<n),

(igrenuniz) j=1 j=k+1

with {is,..., 0, ={1,...,m}, S;,(m)=0for k >m and Si(i) = S,(i — 1), we can recursively
calculate
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Si(m)=w,S;_1(m—1)+ (1 —w,)S;(m—1),
Si(m)=w,Si_(m—1)+(1 —w,)Si(m —1) (m>i)

and note that weight p; of (2-3) is given by
pi=w;Si_,(n—1)/S,_,(n—1) (i<n).

The estimator 7, may be regarded as an importance sampling estimator which uses
weights based on every variable generated in the process. Compared with the classical
importance sampling procedure,

1 Y f(y,
Ta=7 N )h(Yi), (2:4)
N = g(Y)
7, is more involved. However, given that the sample Y, ..., Yy is produced via Accept-

Reject and therefore that N is random, having a negative binomial distribution with
parameters t and 1/M, £, lacks its original motivation of unbiasedness. An unbiased version
of 73 would have modified weights which are of the same degree of complexity of the p,’s.

Example 2-1. The target distribution is a gamma distribution %a(a, f) with « > 1. We
set f=2u so that the mean of the distribution is 1. The candidate distribution we select
is the gamma %a(a, b) distribution with a =[«] and b = fa/a. We require a < a in order
for M in Lemma 2-1 to be finite. The choice b= 2a improves the fit between the two
distributions since both means match. We consider two cases which reflect different
acceptance rates for the Accept-Reject algorithm. In Case 1 we set « =2434, a=2 and
1/M =09, and, in Case 2, « =20-62, a=2 and 1/M =0-3.

For each case we estimate the mean, chosen to be 1, and a tail probability, chosen to
be 5%, using both the simple Accept-Reject algorithm and its Rao—Blackwellised version.
The averages of both the Accept-Reject estimators and their Rao—Blackwellised counter-
parts are presented in Tables 1 and 2. We also include mean squared error estimates for
the Accept-Reject estimator and the improvement brought by Rao—Blackwellising. This
improvement is measured by the percentage decrease in mean squared error. From both
tables, it can be seen that the Rao—Blackwellisation provides a substantial decrease in
mean squared error, reaching 60% in the case where the acceptance rate of the algorithm
is 0-3. The improvement is better at the lower Accept-Reject acceptance rate partially
because the Rao—Blackwellised sample is about three times bigger, with approximately
two-thirds of the sample being discarded by the Accept-Reject algorithm. Another interes-
ting observation is that the percent improvement in mean squared error remains constant
as the Accept-Reject sample size increases, implying that the variance of the original
Accept-Reject estimator does not approach the variance of the Rao—Blackwellised esti-
mator even as the sample size increases.

3. THE METROPOLIS ALGORITHM IN THE INDEPENDENT CASE

Similarly to the Accept-Reject algorithm, the independent Metropolis algorithm con-
structs a sample Z,, . . ., Z, with distribution f from a sample Y;, ..., Y,, generated accord-
ing to a distribution g, by discarding some of the Y;’s. Now, however, the Z; are not
necessarily independent, and the ratio f/g need not be bounded although Mengersen &
Tweedie (1996) show that boundedness is desirable for good convergence properties. As
proposed by Metropolis et al. (1953) and Hastings (1970), the Metropolis algorithm
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Table 1. Estimation of a gamma mean, chosen to be %, using the Accept-Reject
algorithm, with acceptance rates 0-9 and 0-3, based on 7500 simulations

Acceptance rate 0-9 Acceptance rate 0-3
AR AR RB Decrease AR RB Decrease
sample estimate estimate AR in MSE estimate estimate AR in MSE
size % £, MSE (%) T %, MSE (%)
10 0-5002 05007 0-0100 15-83 05005 05004 0-0012  53-28
25 0-5001 04999 00041 19-66 04997 05000 0-0005 59-28
50 04996 04997 00020 2070 04998 05001 00002 5928
100 04996 04997 00010 2273 04995 05001 0-0001 6046

AR, Accept-Reject; RB, Rao—Blackwellised; MSE, mean squared error.

Table 2. Estimation of a gamma tail probability, chosen to be 0-05, using the
Accept-Reject algorithm, with acceptance rates 09 and 0-3, based on 7500

simulations
Acceptance rate 0-9 Acceptance rate 0-3
AR AR RB Decrease AR RB Decrease
sample estimate estimate AR in MSE estimate estimate AR in MSE
size % £, MSE (%) £y (2 MSE (%)
10 00512 00503 00049 2045 00495 00505 00048 6302
25 00508 00501 00019 2237 00499 00506 00019  69-80
50 00506 00507 0-0009 21-06 00491 00498 00009  72:17
100 00504 00503 0-0005 21-14 00487 00498 00005  73-77

AR, Accept-Reject; RB, Rao-Blackwellised; MSE, mean squared error.

starts with a random variable Z, generated from f, and at iteration n+ 1, generates
Zn+1 l Zn as

V4 ith probability 1 — ,
Zn+1={ " with probability Pt (3:1)

Y,+1~g(y) with probability p, .,

where

L AR A%
T (Z)/e(Z)

The assumption that Z, is generated from f is not very restrictive since the Metropolis
algorithm converges, in the ergodic sense, to the distribution f(Tierney, 1994). Therefore,
after a ‘burn-in’ period, the current simulation from the Metropolis algorithm can be
considered to be approximately generated from the true distribution f.

A major difference between the Metropolis algorithm and the Accept-Reject algorithm
of §2 is that the sample size n is now fixed. To estimate a quantity E/ {h(Z)}, the usual
estimator, justified by the Ergodic Theorem, is

n+1 g h(Z1)3

which only involves the Y;’s accepted by the Metropolis algorithm. Using the full sample
of Ys, the estimator £, can be written in the form
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fm—s [h(zo> 3 Z= B+ 1(Z,= zi_l)h(zi_l)}}
1 n n
_ =— ; Y, ,;i I(Z;=Y). (3-2)

With the convention Y, = Z,, this form incorporates all the Y;s. Since the value of £, is
determined by the ancillary uniform variables linked with (3-1), we can apply a
Rao-Blackwellisation to integrate over the U;’s. If we define

wi=f(1)/g(X), py=wi/w)Al, &=pr(Z;=Y|Y,..., ),

J
Ci=1, &= l_[ (1—py) (<))
1=i+1

we get the following improvement upon %,.

PROPOSITION 3-1. The Rao—Blackwellised version of 1, is

(ﬂlh(Yl),

A
15 =

1,

||M=

+
where @, is the expected number of times Y; occurs in the sample, given by

@; = 0; ’fij,

TlM:

t
with

i—1

0;= Z 0;8ji-npi (>0).

Proof. The probability that Y; occurs at least once in the chain is

Z pr(Z;=Y|Z;—, = Yj) pr(Z;_, = Y])
v
i—1

i—1
Z Pji pr(Z;,_,= Y1)= Z Pjiéj'fj(i—n,

j=0

since the probability pr(Z; =Y;) (i > j) is given by
pr(Z;=Y)=pr(Z;=Y|Z,_1=Y))...pr(Z;=Y))
z(l—pji)...éj

Moreover, once Y;=y; is accepted, y; remains in the sequence as the value of z;, . .., z,

until a new y, , is accepted. Therefore, using (3-2), the expected number of times y; occurs
in the sample z,, ..., z, is indeed

Despite its intricate form, the improved estimator %5 only requires the computation of
n(n—1)/2 &;;/s and n probabilities §;. An open question about %5 is the improvement, not
only over 74, but also over the importance sampling estimator (2-4).
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Example 3-1. The target distribution is a Student’s ¢ distribution with 3 degrees of
freedom, from which we estimate the mean and a 5% tail probability. Estimation is based
on an independent Metropolis algorithm, with candidate distribution a Cauchy distri-
bution, which is both easy to simulate from and results in a finite supremum of the ratio
J(y)/g(y).

We compare the usual Metropolis estimate 7, with its Rao—Blackwellised improvement
15 as well as an importance sampling estimate. We do not use the importance sampling
estimator 75, but the often-used alternative

_nim, f(Y)
Z g

which, in our simulations, uniformly improved upon f3. Note that 7 does not depend on
ancillary random variables, so Rao—Blackwellisation will not improve it.

The results, presented in Table 3, are similar to those of Example 2-1. For the sample
sizes examined, the Rao—Blackwellised estimator yields a 40-50% decrease in mean
squared error over the ordinary Metropolis mean. What is most surprising is that the
importance sampling estimator yields an improvement that is comparable to the
Rao-Blackwellised Metropolis estimator. This, perhaps, indicates that, as an estimation
technique, the Metropolis mean may not be very desirable. Of course, the Metropolis
algorithm has other uses, such as providing a sample from the target distribution. In our
simulations the unbiased importance sampling estimator (2-4) did not provide an improve-
ment comparable to its Rao—Blackwellised Metropolis counterpart. Thus, if it is desired
to retain unbiasedness, the Rao—Blackwellised estimator is the choice.

o>

Table 3. Estimation of the mean (0) and tail probability (0-05) of

a Student’s t distribution with 3 degrees of freedom based on an

independent Metropolis sample using a Cauchy distribution, 7500
simulations

(a) Mean (0)

MSE MSE
Metrop. RB Import. decrease decrease
Sample estimate Metrop. sampl. MSE ts over £, £5 over £,
size Ty s £ Metrop. (%) (%)
10 —00035 —00058 —00064 03622 5011 47-80
25 —00037 —00015 —00023 01468 49-39 51-05
50 —0:0020 00012 00004 00724 4827 51-59
100 —00027 —00007 —00009 00361 46-68 5119
(b) Tail probability (0-05)
MSE MSE
Metrop. RB Import. decrease decrease
Sample estimate Metrop. sampl MSE 5 over t, T over i,
size T, 15 T Metrop. (%) (%)
10 00490 00487 0-0505 0-0056 42-20 3891
25 00486 00490 0-0498 0-0024 44-75 4590
50 00488 00491 0-0497 00012 45-44 48-68
100 00494 00496 0-0498 0-0006 44-57 49-16

RB, Rao-Blackwellised; MSE, mean squared error.
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4. THE METROPOLIS ALGORITHM IN THE GENERAL CASE

We now consider the general Metropolis algorithm, where Y; is generated according to
a conditional distribution g(y|Z;_,). The transition from Z, to Z, ., is given by

7 Z, with probability 1 — p, .,
"\ Yye1 ~8(Vus1l Z,) with probability p, . ;,

where

_ f(Yn+1)/g(Yn+1|Zn) Al
Py = Z e Za Y )

When the support of g(.|z) contains the support of f, convergence is guaranteed (Geyer,
1992).

The ¥’s do not form a Markov chain, the distribution of Y; dependingon Y, ..., Y;_,.
This more complex structure does not prevent us from representing the Metropolis algor-
ithm as the construction of a sample Z,, Z,, ..., Z, distributed according to f if Z,~ f.
The sample is derived from the generation of two samples Y,=Z,, Y;,...,Y, and
Ui, ..., U,, the second sample being ancillary for the estimation of E/ {h(Z)}.

The joint distribution of the two samples (Y, . .., Y,)and (U,, ..., U,)is rather involved.
The dependence between the Y;'s creates a dependence between the U,’s, conditionally on
the Ys, and this complicates the derivation of the weights pr(Z; = Y;). For example, if
n=4, a typical weight is

pPr(Z;=Y,| Yo, ..., Ya)oc {po18(Ya| Y1)p128(Y5| 1})
+ (1 — po1)g(Ya| Yo)po28(Y5| Y1)} (1 — pa3)g(Yy| V),

where

_ Sy
~ Iy "

However, we are still able to derive a Rao—Blackwellised version of the Metropolis
estimator,

pi=pr(Z;=Y|Z;_ =Y,

7

Z nZz,),
as shown by the following result. We first define the quantities

pfi=pijg(Yi:11Y)), Py, = (1—-p;)g(Y;s11Y) (i<j<n),

n+1

t
éjjzla 5jz= H P (j<t<n),

1=j+1
-1 n—1
do=1, ;= Z 0:Cuj—1yPrss Oy = Z 0:im—1yPm  (j<m),

CU£,=1, (’0] pﬂ l+1-i_,0>[<J1 l+1 (0<J<l<n)

PROPOSITION 4-1. The Rao—Blackwellised version of the general Metropolis algorithm
estimator is

Yioo wih(Y)
Z:l:_(} 5ifi(n—1) ’

A
TSZ
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where ¢, =90, and, for i <n,
n—1
@;=0; { Z ;i1 + Ein—1y(1 — Pin)}-
j=i
Proof. As in the independent case, 7, can be written
1 n n
— Y k(Y I(Z,=Y).
T 100 L 12,=7)

The conditional expectation of the above indicator variables is then
prGZj=:K|}6ala"”a KD
=E{(Z;=Y)I(U;+1> pig+1)) - - - IU;>p;)| Yo, Yp, ..., Y}
=E[{I(Z;-1 =Y, )IU;<pg-1y)) + HZ;—1 = Y, )I(U; < p—op) + - ..}
oo AUirs > pigrny) - IU; > pi) | Yo, Yy, o, D
(41)

Therefore, conditionally on Y;,, ¥;,. .., ¥,, the event {Z;=Y;} consists of the set of all the
possible sequences of (Uy,..., U;) leading to the acceptance of Y;, of the sequences

(Ui+1, ..., U;) corresponding to the rejection of Y,4,...,Y; and of the sequences
(Uj+1,..., U,) constrained by Z; =Y. That is,

i—1
Z;=Y}= U [B;c_l(Uls-'-sUi—l)m{Ui<pki= Uis1> Pig+1y> - - - Uj > piitls
k=0

with, for 0< k<1,

k-1
By(Uy, ..., U) = U [Blfn_l(Uu co s U )N {UL < P Up 41 > Prge+1y> -+ » U > Pt}
m=0

Bi={U;>po}, Bi={U;<po}-

Taking the expectation in (4-1) with respect to the U;’s leads to a quantity proportional
to
1 :
J; H Py ®@j+1
1=i+1
since the probability that U; < pj; is proportional to p¥%, while the probability that U; > p;
is proportional to p, .. The weighting factor in g is derived from the following expression:

n n—1 n—1
1= Z pr(Z,= Y;)OC{ Z 5ifi(n—1)(1—/’in)+5n} = Z 0;in—-1)- 0
i i=0 i=0

i=0

Thus, despite the correlation between the Y;’s, the conditional expectation of the
Metropolis procedure approximately has the same formal structure as in the independent
case, and requires an amount of computation of the order of n’

5. IMPORTANCE SAMPLING ESTIMATORS FOR GENERAL METROPOLIS SAMPLES

This section considers Rao-Blackwellisation of an importance sampling estimator based
on the Metropolis algorithm. While it is possible to implement an importance sampling
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formula in this set-up, as the true marginal distribution of the Y;’s can be derived explicitly,
its expression is involved. A simpler approach is to consider that the Y;’s (i > 1) are actually
generated from the conditional distributions g(y|Z;_,) and then use the weights

w; = f(Y)/g(Y| Z;-y).
Although formally correct, this solution seems unsatisfactory since the resulting estimator

1 n
= Y.
n+1j;0w1 ( J)

Tg

still depends on the ancillary uniform random variables through the Z;’s.
The developments of the previous section can be exploited to build an improved version
of 14, by integrating out the U;’s in 7,. In fact, from the proof of Proposition 41,
i—1
E{g(Y”Zi—l)_ll },03 },1, D) },n} = Z E{g(y;l Y})_II(Zi—l = Y])| },0, },1: LRI }In}:

j=0

E(Z; 1 =Y)| Yo, Vi,..., Y} d;8 ol (0<i<n, 0<j<n).
Therefore, the Rao—Blackwellised version of 7, is
(1) Yies Z;;éf(Yi)ajéj(i—Z)(l - pj(i—l))w{h(Yi)}
g(Y1|Y) 2:12—01 5ifi(n—1) .

Note the strong similarity between %3 and 7,,. Both estimators take advantage of all the
random variables which have been simulated, although in slightly different ways. We
illustrate the performances of these procedures with an example.

1
Ti0= el {h(Zo) + h(Y;) +

Example 5-1. The target distribution is again a Student’s ¢ distribution with 3 degrees
of freedom for which we wish to estimate the mean and the 5% tail probability. The
estimation of these quantities is based on a Metropolis algorithm, where the candidate
distribution is a Cauchy distribution centered at the previous random variable Z, _,, with
scale parameter ¢2. This is an inefficient sampling scheme, but the results are interesting.

Because of the somewhat involved form of the estimators, an extended simulation study
was done. We performed 50 000 simulations, using both ¢ = 0-4, giving an average accept-
ance rate of 0-327, and ¢ = 3, giving 0-749. We compare the usual Metropolis estimate 7,
and its Rao—Blackwellised improvement with the Rao—-Blackwellised importance sampling
estimate 7,,. As expected, the performance of %, is not as good as that of £,,. The results
presented in Tables 4 and 5 are rather surprising. For the high acceptance rate of 0-749,
the mean squared error improvement upon £, by Rao—Blackwellisation is only 0-4% for
the mean estimation and 7% for the tail probability estimation. This improvement
becomes more substantial for the lower acceptance rate, and the relative decrease in mean
squared error reaches 25% in the best case. The importance sampling estimate is an
improvement on the corresponding Metropolis and Rao—Blackwellised Metropolis esti-
mates, the accompanying decrease in mean squared error improving as the sample size
increases, to about 95% for n = 100. Therefore, in this case, importance sampling appears
to be a significant improvement upon its Metropolis counterpart.

6. CONCLUSION

We have seen that the outputs of simulation schemes such as Accept-Reject and
Metropolis algorithms can be improved by use of the entire set of simulated random
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Table 4. Estimation of the mean (0) of a Student’s t distribution with
3 degrees of freedom based on a dependent Metropolis sample using
a Cauchy distribution, 50000 simulations

Sample
size

10
25
50
100

Sample
size

10
25
50
100

Metrop.
estimate
t
-0-0002
-00012
0-0032
0-0012

Metrop.
estimate
%
0-0014
0-0003
0-0017
0-0014

(@) Acceptance rate 0-327

RB
Metrop.
T
—0-0016
—0-0004
0-0021
0-0004

(b) Acceptance rate 0-749

RB
Metrop.
s
0-0001
0-0030
0-0017
0-0014

RB import.

sampl.
flO
—0-0028
—0-0008
—0-0004
0-0005

RB import.

sampl.
’?10
0-0005
0-0008
0-0018
0-0003

MSE

Metrop.

1-517

0-9841
0-6252
0-3002

MSE

Metrop.

2-2849
17698
1-3066
0-8681

RB, Rao-Blackwellised; MSE, mean squared error.

MSE
decrease
g over 1,

(%)

1071
878
7-68
7-89

MSE
decrease
£y over T,

(%)

0-1751
0-1526
0-1071
0-0691

MSE
decrease
£10 OVer £,

(%)

8717
92:02
93-63
93-40

MSE
decrease
s N
£10 Over £,

(%)

7793
8598
90-31
92-85

Table 5. Estimation of a tail probability, chosen to be 0-05, of a
Student’s t distribution with 3 degrees of freedom based on a dependent
Metropolis sample using a Cauchy distribution, 50 000 simulations

size

10
25
50
100

Sample estimate

size

10
25
50

(a) Acceptance rate 0-327

(b) Acceptance rate 0-749

Metrop. RB
Sample estimate Metrop.
1, g
0-0500 00499
00504 00503
0-0505 00504
0-0501 00502
Metrop. RB
Metrop.
7 g
0-0501 00503
0-0505 00505
0-0503 00503
0-0500  0-0501

100

RB import.

sampl.
flO
0-0499
0-0501
0-0500
0-0500

RB import.

sampl.
flO
0-0502
0-0500
0-0501
0-0498

MSE

Metrop.

0-0203
0-0111
0-0062
0-0032

MSE

Metrop.

0-0301
0-0212
0-0140
0-0084

RB, Rao-Blackwellised; MSE, mean squared error.

MSE
decrease
g over T,

(%)

23-64
2522
25-80
25-00

MSE
decrease
fg over 1,

(%)

0-9967
0-9433
0-7142
1-190

MSE
decrease
£10 Over £,

(%)

88-66
92-70
93-87
94-37

MSE
decrease
flo over f7

(%)

75-08
84-43
87-86
90-24
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variables, by application of a conditioning argument used in the Rao-Blackwell Theorem.
This improvement relies on the recycling of the ‘wasted’ simulated random variables and
hence represents a statistically better management of resources. Although the compu-
tational implementation may seem involved, the Rao-Blackwellised versions can be easily
programmed via recursion relations with computing times that are quadratic in the
sample size.

The fact that the Rao-Blackwell post-processing increases computation time should
not be of concern. If we are interested in providing the best statistical solution, then post-
processing to remove the uniform random variables is essential. No matter how large a
sample is simulated, and no matter how good the simple estimators are, dependence on
the uniform random variables is a statistical deficiency. Thus, comparisons of computation
time are somewhat irrelevant. Moreover, such comparisons will reflect not only the
increase in computation time due to the post-processing, but also the increase in compu-
tation time due to our programming skills, or lack thereof. However, we looked at a few
timing runs and found that the post-processing will increase computation time from an
almost negligible 1-15 times, in the Metropolis case, to as much as a 7 times increase in
the Accept-Reject case. These runs were on a 486DX2 running at 66 megahertz, using the
Gausspy programming language (Aptec Systems, 1992).

Our comparisons show that Rao—Blackwellisation is a viable method that may yield
substantial improvement in mean squared error. This improvement is not associated with
the property of unbiasedness, as Rao-Blackwellisation leaves the expectation untouched,
so a biased estimator will remain biased. As pointed out by a referee, in practice, exper-
imenters will often make many runs, using stopping criteria that may impart bias into all
of the estimators. Such practice does not invalidate the post-processing improvement.

More important is the statistical comparison of Rao—Blackwellised importance sampling
and of Rao—Blackwellised Metropolis, 75 and £;,. Our single experiment shows an advan-
tage for the importance sampling estimate. These results cast some doubt on the value of
the Metropolis estimator, since it can be so dramatically improved upon. Further work
is necessary to assess these improvements theoretically, but it seems that the use of impor-
tance sampling in practical Markov chain Monte Carlo environments should bring an
even greater improvement than in the above simulations. This is because the chain does
not usually start from the stationary distribution, and importance sampling automatically
corrects for the simulation from an incorrect distribution. Since using importance sampling
in a Metropolis environment does not require additional calculations other than those of
the weight, we advise the use of this estimate, either as the only estimate of the quantity
of interest, or at least as a control estimate to help to assess whether the Metropolis
estimate has actually reached stationarity.

The ‘corrected’ importance sampling estimator g is the preferred choice of an impor-
tance sampling estimator. This is because without the correction achieved by dividing
through by the sum of the weights the estimator will certainly be dominated by either
Metropolis or Accept-Reject for functions h that are nearly constant. If 4 is exactly con-
stant, the Metropolis and Accept-Reject estimators, and their Rao—Blackwellised versions,
will have zero variance. This is not true for the importance sampling estimator £;. Thus,
the requirement of unbiasedness in importance sampling estimation needs relaxing.

There exist set-ups where importance sampling estimates cannot be applied in practice,
because the ratio f(y)/g(y|z) has infinite variance under g, although the point estimates
still converge. In these situations we are simulating a distribution f from a distribution g
with lighter tails, as occurs in Gibbs sampling. While this does not formally prevent the
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corresponding Metropolis algorithm from converging, Mengersen & Tweedie (1996) have
shown that convergence to the stationary distribution cannot be geometric in such cases.
Hence, such schemes should only be used when better candidate densities are unavailable.
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