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Abstract 
 

Particle filters have become popular tools for visual 
tracking since they do not require the modeling system to 
be Gaussian and linear. However, when applied to a high 
dimensional state-space, particle filters can be inefficient 
because a prohibitively large number of samples may be 
required in order to approximate the underlying density 
functions with desired accuracy. In this paper, by 
proposing a tracking algorithm based on Rao-
Blackwellised particle filter (RBPF), we show how to 
exploit the analytical relationship between state variables 
to improve the efficiency and accuracy of a regular 
particle filter. Essentially, we estimate some of the state 
variables as in a regular particle filter, and the 
distributions of the remaining variables are updated 
analytically using an exact filter (Kalman filter in this 
paper). We discuss how the proposed method can be 
applied to facilitate the visual tracking task in typical 
surveillance applications. Experiments using both 
simulated data and real video sequences show that the 
proposed method results in more accurate and more 
efficient tracking than a regular particle filter. 

1. Introduction 
Visual tracking is an important step in many practical 

applications including video-based surveillance. In recent 
years, particle-filter-based visual tracking has been 
extensively studied (e.g., [1, 2, 3 and 4]). Particle filtering 
has been shown to offer improvements in performance 
over some conventional methods such as the Kalman filter, 
especially in non-linear/non-Gaussian environments [5], 
but the large number of samples required to represent the 
posterior density prevent its use in high dimensional state-
space. However, in some cases, the model may have 
“tractable structure” with some components having linear 
dynamics and so can be marginalized out and analytically 
estimated using exact filters conditional on certain other 
components. The exact filters could be the Kalman filter, 
the HMM filter, or any other finite dimensional optimal 
filters [6]. This technique is called Rao-Blackwellisation. 
The resultant method is often called Rao-Blackwellised 
particle filter (RBPF).  

Denote the state to be estimated as Xt and observation 
as Zt with subscript t the time index. The key idea of RBPF 
is to partition the original state-space Xt into two parts Rt 
(root variables), and Lt (leaf variables), such that 
p(L1:t|R1:t,Z1:t) is a distribution that can be computed 
exactly , therefore an approximation of p(R1:t|Z1:t) using 
Monte Carlo methods yields straightforwardly an 
approximation of joint posterior p(R1:t,L1:t|Z1:t)[1] . The 
justification for this decomposition follows from the 
factorization of the probability: 

 p(R1 :t,L1 :t|Z1 :t)=p(L1 :t|R1 :t,Z1 :t)p(R1 :t|Z1 :t)       (1) 
If the same number of particles is used in a regular particle 
filter and an RBPF, intuitively the latter will provide better 
estimates. The reason for that is twofold: first, the 
dimension of p(R1:t|Z1:t) is smaller than p(R1:t,L1:t|Z1:t), and 
thus is presumably easier to handle; secondly, optimal 
algorithms may be used to estimate the ‘tractable 
substructure’. This optimal algorithm could be Kalman 
filter, HMM filter, or Junction Tree algorithms. In [6] , the 
author pointed out that p(L1:t|R1:t,Z1:t)  can be efficiently 
updated using Kalman filter when the initial uncertainty 
for leaves is Gaussian, and the CPDs (Conditional 
Probability Distributions) of the observation model and 
system dynamics for leaves are linear functions of the leaf 
states. In this paper we will show how Kalman filter is 
combined with particle filter to facilitate tracking in a 
typical surveillance application, and we will also show 
how a deterministic dependency relationship between 
leaves and roots can be exploited to achieve a better 
estimation for the linear parts.   

RBPF has been applied in some state estimation 
problems. For example, in [7], Rao-Blackwellised particle 
filter is used to integrate out the subspace coefficients in 
an Eigen Tracking problem. In [8], in the problem of 
tracking multiple people using a combination of 
anonymous and id sensors, Rao-Blackwellised particle 
filter is used to estimate the locations and identities of 
multiple objects, with each particle representing a history 
of associations between object tracks and observations, 
Kalman filter is used to track an individual person. In [9], 
Freitas et al combine Kalman filter with particle filter for 
fault diagnosis for a mobile robot in Mars exploration, 
where Kalman filters are applied over continuous states 
and samples are obtained over discrete states. In [10], the 
non-linear ball motion model and robot location is tracked 



using particle filter while ball location and velocity is 
estimated efficiently by Kalman filter. A more generalized 
discussion regarding marginalized particle filter for mixed 
linear/nonlinear state-space models can be found in [11].  

Although RBPF has been studied in the context of 
multi-target tracking [8], fault diagnosis for robot and 
robot localization [9, 10] and signal processing [12], its 
application in tracking for surveillance has yet to be fully 
explored. In particular, we believe that a thorough 
qualitative performance comparison between RBPF and a 
regular particle filter will help us to understand the 
advantages of RBPF. The key contribution of this paper is 
thus two fold: First, with video-based surveillance as a 
case study, we utilize the constraints imposed by typical 
camera-scene configuration to partition the original state 
space into two sub-spaces, and then we propose the RBPF 
algorithm for surveillance tracking; Secondly, experiments 
on both simulation data and real video sequence are 
carried out to gain quantitatively performance analysis. 
The improvements of proposed RBPF over regular PF 
manifest in three aspects: increased estimation accuracy, 
reduced particle numbers are needed to achieve the same 
level of accuracy, and reduced variance for estimates.  

This paper is organized as follows. In Section 2, we 
describe all the details of the proposed RBPF algorithm. 
Section 3 reports experiments designed to compare the 
proposed algorithm and a regular particle filter on both 
simulated data and real video sequences. We conclude in 
Section 4 with a brief discussion about future work. 

2. RBPF for Tracking in Surveillance  

2.1 Partition the State Space 
In typical surveillance applications, for most of the 

time, the tracked objects are constrained to move on a 
dominant plane (e.g. the ground), and the camera is 
usually higher than the tracked object. Fig. 1(a) illustrates 
such a scene configuration. Fig. 1(b) is a geometric 
representation for Fig. 1(a). In Fig. 1(b), suppose a person 
is moving on the ground plane π , and the ground is 
projected onto the image plane by camera C, l is the 
vanishing line for the ground plane. Any scene point 
projecting onto the vanishing line l is at the same distance 
from planeπ as the camera center is fromπ  [13]. If the 
scene point is farther from π  than the camera, then the 
image point lies ‘above’ the vanishing line; and ‘below’ if 
it is closer to the ground than the camera. So if the to-be-
tracked object is not higher than the camera to the ground, 
the image of the object will always lie ‘below’ the 
vanishing line, and when it moves towards to the camera, 
the size (or scale) of the object on the image will get 
bigger as the y coordinate on image plane gets bigger, and 
vice versa. From Fig. 1(b), we may see the dependence of 
the scale change of the object on the translational motion 

(or the x or y locations in the image domain). In these 
situations, the constraints due to the camera-scene 
configuration can be exploited to deduce the dependency 
relationship between state variables. It is also possible to 
exactly link the translational motion to the scale change 
(both considered in the 2-D image domain) by detecting 
the surface normal with respect to the camera (Fig.1 (a)), 
which might be our future work beyond this paper. 

    
             (a)                                                 (b) 
Figure 1. (a) Illustration of a typical surveillance scene-
camera configuration. (b) The dominant plane is 
projected onto the image plane. 
 

Formally, in our work we use an ellipse to model the 
tracked object, and the following 8-D state model is used 
to describe the dynamics of the ellipse, following [14]: 

� � j j{ , , , , , , , }y y x xx x y y H H H H  
where (x,y) represent the center location of the ellipse, 
� �{ , }x y represent the motion velocity, {Hy,Hx} are the lengths 

of the ellipse half axes, and j j{ , }y xH H  are the corresponding 
rates of scale change on the axes. With the above idea, the 
scale change of a moving object is related to its position 
along the y-axis (i.e., the vertical axis in the image 
domain). See Fig. 1(b), the length of the y-axis of the 
ellipse will become bigger as the y location of the object 
gets bigger (which means the object is moving toward the 
camera), while the length of the y-axis will become 
smaller as the y location gets smaller (which means the 
object is moving further from the camera). This facilitate 
us to partition the original 8-D state space into two groups: 
the root variables R containing the motion information 
(including location and velocity), which will be sampled 
by a regular particle filter, and the leaf variables L 
consisting of the scale parameters (including the rate of 
scale change), which will be estimated by an exact filter. 
These two groups are denoted by:  

� �{ , , , }R x x y y=    j j{ , , , }y y x xL H H H H=  
In this work, the actual observations used for 

estimating the root variables, denoted by Zt, are the color 
histogram within an ellipse specified by a sample and the 
intensity gradients along the ellipse boundary. Due to the 
noise in measurements from the image and the possibly 
irregular movements of the tracked object, the object’s 
motion are typically better modeled by probabilistic multi-
modal densities, especially as the observations cannot be 
linearly linked to the root state R. Therefore, particle filter 
is appropriate for sampling the density space of the root 
variables. On the other hand, the observation used for the 



leaves, Yt, are simply {Hy,Hx}, which does not directly rely 
on the color histogram or the intensity gradients used for 
root variables. Thus the observations form a linear 
relationship with state L. Moreover, the leaf state at time t-
1, Lt-1, is able to be linearly projected to state at time t, Lt. 
Also we assume that the system and observation model for 
the leaf variables are driven by Gaussian random noise. As 
a result, Kalman filter can be used to optimally estimate 
the leaf variables. This results a Rao-Blackwellised 
particle filter that combines the representation power of a 
particle filter with the efficiency and accuracy of the 
Kalman filter.  

 
 
Figure 2 Dependency relationships between various 
components of the surveillance tracking problem. 
 

In Fig. 2, the relationships between the state variables 
and the observations are graphically illustrated by a DBN 
[6]. In Fig. 2, the object motion (location and velocity) at 
time t, Rt, only depends on the previous motion Rt-1, while 
scale of the ellipse at time t, Lt, depends on previous 
ellipse scale, Lt-1, previous object motion Rt-1 and current 
motion Rt. The observations for leaf at time t, Yt, only 
depends on current scale Lt, while the observations for 
root at time t, Zt, depends on both current object motion, Rt, 
and current scale Lt.  

Now that the dependencies between different parts of 
the state space are defined, we can address the problem of 
filtering using Rao-Blackwell technique, which aims at 
computing the posterior over <Rt,Lt> conditional on all 
observations.  This is detailed in Section 2.2. 

2.2 Algorithm Description 
Fig. 3 illustrates the proposed RBPF algorithm. Just 

like regular particle filters, RBPFs represent posterior by a 
set of weighted samples: .Each 
particle maintains not just a sample from p(R

{ , | 1 }i i
t t tS s w i N= ≤ ≤

t|Zt), which 
we denote by i

tR , but also a parametric representation of 
the distribution  which consists of the mean 

vector of the leaf  state distribution, 

( | , )i
t t tp L R Z

[ ]i
t tE Lµ = , and the 

estimation error covariance reflecting the variance of the 
leaf state distribution, [6]. So each 

particle is represented by: .The proposed 
RBPF algorithm will sample the non-linear non-Gaussian 
motion using particle filter, while apply Kalman filter 
to estimate the scale parameters 

[( )( ) ]i i i i i
t t t t tE L Lσ µ= − − Tµ

, ,i i i i
t t t ts R µ σ=< >

i
tR

i
tµ and i

tσ conditional on 
the motion state which have already been estimated. More 
specifically, RBPF technique will generate new sample set 
distributed according to Eq. (1) stepwise from right to left 
based on the previous sample set Sk-1.  To do so, the 
following algorithm steps are performed for all particles at 
each time instant.  
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1 1 1 1{ , , | 1i i i

t t t tS R iµ σ− − − −= < > = " }N

i
t

t. 
For i = 1:N do 
1. Propagate samples 

a)  Sample object motion: 
1 1( | , ) ( | ) ( | )i i

t t t t t t tR p R R Z p Z R p R R−
− −=∼  

b) Kalman prediction: 
1 1( | , , , )i i i i

t t t t t tL p L R R L Z−
− −∼  

2. Evaluate weight 
a) Compute the color histogram: (8a)~(8b) 
b) Compute the gradient:              (9a)~(9c) 
c) Compute the weight:                 (10a)~(10d)

( | , ) ( | ,i CH i i G i
t t t t t tw p Z R L p Z R L∝ • )i

t
 

End for loop 
3. Select samples.  
For i = 1:N do 
4. Kalman update:                               (11) 
End for loop 
5. Compute the mean state :                (12)
Figure 3 RBPF for tracking in surveillance 

ropagate samples 
) Sample object motion according to                  

1( | , ) ( | ) ( | )i i
t t t t t t t 1

i
tp R R Z p Z R p R R−

− −=∼                             (2) 
This means that a new object location and velocity will 
propagated by the particle filter using a system motion 
del. A simple first order motion model was adopted in 
 work: 

1
i i
t tR TR N−

1t− −= + where Nt-1 is a random vector 
wn from the noise distribution of the system. After this 
, , _, _i i

t ts R −=< > .The “super minus” means that the 
responding variable is a priori estimate and _ denotes 
nitialized value. In the regular particle filer, 

ediately after this step we are supposed to weight each 
ple by the left term which is the likelihood of the 
ervation Zt. But in the proposed RBPF algorithm, 
man prediction is necessarily to be performed before 
ghting each sample, which is meant to analytically 
dict a new mean and covariance for the leaf variables 



by making use of the fact that we already sample the 
object motion. This step is detailed in sub-step b). 

b)  Kalman prediction for leaf states according to 
           

1 1( | , , , )i i i i
t t t t t tL p L R R L Z−

− −∼                              (3)           
Equation (2) and (3) follow directly from the two right 
terms in Eq. (1) and the graphical representation in Fig. 2. 
Eq. (3) is only an abstract expression, to actually apply 
Kalman filter, the system and measurement model have to 
be identified for the linear statistics. In our case, the two 
models are established as: 
      

1
i i
t t

i
tL AL w−= +   (4)                  (5) i i

t tY H L v= + i
t

w and v is the system and measurement noise for Kalman 
filter respectively, with and 

. The system noise covariance Q and 
measurement noise covariance R might change with each 
time instant, but in our work they are set as fixed values 
with and 

( ) (0, )i
tp w N Q∼

( ) (0, )i
tp v N R∼

4 4 4Q I× = 2 2 2R I× = . And       
1 0 0
0 1 0 0
0 0 1
0 0 0 1

T

A
T

∆⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟∆
⎜ ⎟⎜ ⎟
⎝ ⎠

                        (6) 1 0 0 0
0 0 1 0

H
⎛

= ⎜
⎝ ⎠

⎞
⎟

Then Kalman prediction is performed by Eq. (7) (keep in 
mind j j{ , , , }y y x xH H H Hµ = and { , }y xY H H= ). The first four 
formulas in Eq. (7) perform prediction for the mean of leaf 
variables, the last two formulas are covariance and 
observation prediction respectively. The first formula 
means that each time the y-coordinate of the object 
increases β pixels from t-1 to t, the half length of y-axis 
will be increased α pixels accordingly. Note that we have 
made use of the location prediction  which was just 
sampled in step a). In the third formula, the scale change 
will keep the aspect ratio during tracking. In practice, 
parameter α and β should be adjusted according to the 
angle between ground plane and image plane, the more the 
angle, the bigger the scalar should be, and the higher the 
uncertainty of the scale change conditional on the location. 
The two parameters α and β influence greatly the 
estimation accuracy of the proposed algorithm as they 
control the change rate of sample ellipse size with respect 
to the object motion. In Section 3.1, simulation results 
show that accurate tracking is able to be maintained when 
the dependence scalar (α/β) falls into a range around the 
true dependency. That is, even when the dependence 
scalar is not as exact as the true value, the proposed RBPF 
algorithm is still able to have reasonable estimation 
accuracy.  After this step, .  

i
ty −

, ,i i i i
t t t ts R µ σ− − −=< >

2. Evaluate weight for each particle 
This step is a regular particle filter step, once the 

location (obtained by motion sampling) and size (obtained 
by Kalman prediction) of each hypothetical ellipse region 
are available, the following sub-steps will be 
accomplished: 

               
j

j j

j
j j

1 1

1
1

1

* ( )

~ ( , )

~ ( , )

y y

x x

i i i i
y t y t t t

i

y H Ht

i
y ti i

x t x ti
y t

i

x t H H

i i T
t t
i i

t t

H H y y

H N

H
H H

H

H N

A A Q

Y H

α β

µ σ

µ σ

σ σ

µ

− −
− −

−

−
−

−
−

−

−
−

− −

= + −

=

= +

=

                   (7) 

a) Compute the color histogram for each sample region 
Γ located at ( , )i i

t tc x y− −= and with the size ( , )i i
yt xtH H− −  by: 

[( ) || ||
( )

i

u i
c ip

c ]f k h
aθ

θ
δ θ

∈Γ

−⎛ ⎞ u= −⎜ ⎟
⎝ ⎠

∑                (8a) 

where δ is the Kronecker delta function and ( )ih θ  
assigns one of the m-bins of the histogram to a given 
color at location θi. Pixels which are closer to the region 
center are given higher weights specified by: 

                     
2

( )
1 : 1
0 :

k d
d d

otherwise
=
⎧ ⎫− <
⎨ ⎬
⎩ ⎭

                           (8b)  

This is essentially the same method as reported in [14]. 
b)  Compute the gradient for each sample region Γ. 

Because the color cue would become fragile in some cases 
such as large degree of object rotation, or distracted by the 
background with similar color, gradient model is 
employed as a complementary cue to compensate for the 
dramatic color change and to help the ellipse tracker 
properly scale since the gradient model tend to get a strong 
response from the contour of the tracked object. The 
gradient of a sample ellipse is computed as an average 
over gradients of all the pixels located on the boundary: 
           

1

1
( ) ( ),

N

i
i ig x

N
g y

Γ

=Γ

Γ = ∑                         (9a) 

where the gradient at pixel (xi,yi)  is established as the 
maximum gradient by a local search along the normal line 
(ln) of the ellipse at location (xi,yi): 
            

( , )
( , ) max { ( , )}

n n n
i i n nx y l

g x y g x y
∈

=                    (9b) 

A simple operator is used to compute the gradient in x-axis 
and y-axis for point (xn,yn): 

( , ) ( 2, ) 2* ( 1, ) 2* ( 1, ) ( 2, )
( , ) ( , 2) 2* ( , 1) 2* ( , 1) ( , 2)

x n n n n n n n n n n

y n n n n n n n n n n

g x y I x y I x y I x y I x y
g x y I x y I x y I x y I x y

= − + − − + − +

= − + − − + − +

And finally the gradient at point (xn,yn) is computed as 

       2 2( , ) ( , ) ( , )n n x n n y n ng x y g x y g x y= +              (9c)                 
c)  Compute the weight. One weight is based on color 

histogram similarity between hypothetical region and the 
target model: 

                
( )
2

(1 [ , ])

21
2

i

c

p q

i
c

c

eG
ρ

σ

π σ

Γ
−

−

=                 (10a)      

where  



                     
1

( ) ( )[ , ]
m

u

u up q p qρ
=

= ∑                           (10b) 

p stands for the color histogram of a sample hypothesis in 
the newly observed image, and q represents the color 
histogram of the target model. Eq. (10b) essentially gives 
the Bhattacharyya coefficient between the target histogram 
and the hypotheses histogram. The larger ρ is, the more 
similar the distributions are. Another weight is based on 
the gradient ( )g Γ : 

          
2

2
(1 ( ) )

21
2

g

g

i
g

g

eG σ

π σ

−
Γ

=                       (10c) 

Eq. (10c) matches to the intuitive requirement that a larger 
gradient should produce a larger weight.  

The final weight for each sample is simply the average 
of two above weights: 

(1 )i i
t cw G Gα α= + − i

g

i
g

w >

i
t

            with α=0.5            (10d) 
If we assume the color histogram cue is independent of 
gradient cue, the final weight could also be computed 
as . *i i

t cw G G=

3. Select samples. Multiply/discard samples 
proportional to its weight. After this step, 
. Because the weight is proportional to the 

observation likelihood , 
i.e. the weight signifies how well the hypotheses predict 
the measurement, so step 2 and 3 are the places where true 
observations have been incorporated. 

, , ,i i i i
t t t tR µ σ− − −<

, ,i i i i
t t t ts R µ σ− −=< >

( | , ) ( | , )i CH i i G i
t t t t t tw p Z R L p Z R L∝ •

4. Kalman update for leaf variables. Kalman update is 
accomplished by Eq. (11) over the selected sample set. In 
the first formula of Eq. (11),  is called Kalman gain 
which aims at minimizing the a posterior error covariance. 
It weights the measurement Y

i
tK

t-1 more heavily as the 
measurement error covariance R approaches zero; On the 
other hand the predicted measurement is trusted more than 
the actual measurement as the a priori estimation error 
covariance i

tσ
−  approaches zero. The second formula in 

Eq. (11) incorporates a new measurement Yt-1 into the a 
priori leaf state estimate to obtain an improved a 
posteriori leaf state estimate. 

                                  (11) 
1

( )

(

i i T i T
t t t
i i i i
t t t t t

i i i i
t t t t

K H H H

K Y Y

K H

σ σ

µ µ

σ σ σ

− −

−
−

− −

= +

= + −

= −

)

R
−

t

After this step, . , ,i i i i
t t t ts R µ σ=< >

5. Compute the mean state at time t:     
              

1
[ ]

N
i i

t t
i

E S w
=

= ∑ s                                       (12) 

 

3. Experiments 

3.1 Simulation 
We first test the proposed algorithm using synthetic 

data. In the simulation, a point moving on a 2-D plane 
with non-constant velocity generates an actual path; noise 
is then added to the actual path to simulate a noisy 
measurement of the actual path. At each time step, 
velocity in the x-direction was added by a Gaussian 
random number with zero mean and variance V, which 
takes any of the three values {0.5,1,2} and has the 
probability transition matrix as in Eq. (13). The state of the 
moving point at any time is given by st={xt, ut, yt, vt , 1},  

                0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

Pvx
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                               (13) 

in which {xt, yt} corresponds to the position and {ut, vt} 
represents velocity in x and y direction. For easy notation, 
we introduce a fifth dummy dimension in st. In generating 
the path, we assume vt=6ut-1, this is to facilitate utilizing 
dependency relation between root and leaf in applying 
RBPF. The state is projected forward according to Eq. 
(14). In matrix A, Ss*randn() denotes the noise added to 
the location, and ψ(t) may return three possible values 
{1,2,3} (used as the index to V) according to probability 
matrix Pvx. 

1

1

1

1

1

*
1 0 0 * ()
0 1 0 0 ( ( )) * ()
0 6 * 1 0 * ()
0 5 0 0 0

1 0 0 0 0 1 1

t t

t s

t t

t s

t t

s A s

t

t

x T S randn x
u V t randn u
y T S randn y
v v

ψ

−

−

−

−

−

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⇔ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+

+

       (14) 

The observation at time t is Zt, it is related to the state of 
the moving point by: 

1 0 0 0 * ()
0 1 0 0 0

*
0 0 1 0 * ()
0 0 0 1 0

1

t
Z

t

t t t t
Z

t

x
S randn

u
Z C s Z y

S randn
v

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⇔ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

 

where SZ*randn() denotes the noise added to location 
elements of observations.  

After actual path is generated, the proposed RBPF and 
a regular PF are invoked to track this actual path, using the 
noisy path as the measurement. With the actual path as the 
ground truth, the performance of these two algorithms can 
be quantitatively compared. In the RBPF estimation, the 
root, leaf and observations are identified as: 

Rt= {ut}          Lt= {xt, yt, vt}               Zt= {xt, yt} 
The root is estimated by regular particle filter, and then the 
leaf variables are estimated using Kalman filter by 
assuming the dependency vt=5ut-1, which is different from 
the true dependency (vt=6ut-1) used in the path generation. 
This is intended to test if the proposed algorithm still 



works fine even if the exact dependency model between 
the state variables is not available. The system and 
measurement model are the same with what have been 
presented in section 2.2 Eq. (4) ~ (5). Kalman prediction 
for the leaf variables is performed by: 
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And Kalman update is the same as Eq. (11). 
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(a) Path estimated by proposed RBPF. 
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(b) Path estimated by a regular particle filter. 

Figure 4. Paths estimated by two algorithms. Blue line 
marked by star is the true path; red line marked by dot is the 
path estimated by the RBPF or PF algorithm. 
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(a) Location error.                  (b) Velocity error in x-axis 

Figure 5 Average error comparisons when running 10 times. 
The blue line with star is produced by RBPF, while the red 
curve with dot is from particle filter. 
 

Fig. 4 shows the estimated paths by the RBPF and the 
regular particle filter. It can be seen that PF obviate from 
the true path in the curved part; In contrast, RBPF 
maintains good estimation all the way.  
      To obtain a statistical comparison between regular PF 
and RBPF, the experiment for both algorithms is repeated 
10 times with different random initialization. 200 particles 
are used in all these experiments. In Fig. 5(a), the location 
errors for regular PF and RBPF are compared. In Fig. 5(b), 
the errors of x-axis velocity are compared. At a particular 
time t, the tracker’s state is computed as the mean over all 
particles. Then the error (in terms of location or velocity) 
at time t is computed as the Euclidean distance between 
the estimated value and the ground truth value; the overall 
error is represented by the averaged Euclidean distance 
over all time steps. These two figures clearly show that the 
proposed RBPF significantly outperform regular PF.  

As we mentioned in Section 2.2 algorithm step 1.b), the 
dependency relationship between leaf and root affects 
significantly the performance of our proposed RBPF 
algorithm. In practice, it is usually difficult to obtain an 
exact dependency model unless the surface normal 
between dominant plane and image plane is known, so it is 
necessary to analyze the effect of dependency model to the 
performance of proposed algorithm. For this purpose, we 
performed several simulations with the same setting as 
above. The true path is the same with the blue curve in Fig. 
4(a), the dependency for the true path is vt=6ut-1. Then 15 
different dependency models are used to estimate the 
actual path, with vt=S*ut-1, S=1,2,…15. We plot the 
estimated location and vt error versus different dependency 
as shown in Fig. 6. We can tell that both vt error (left 
figure Y-axis) and location error (right figure Y-axis) 
fluctuate within a small range when the dependency scalar 
(X axis) is around the true dependency 6; in contrast, the 
two errors are bigger when dependency is far form the true 
value. This result validates our conjecture that the 
proposed RBPF can maintain good estimation as long as 
the dependency relationship falls into a range around the 
true dependency.  
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        (a) MSE for vt                             (b) MSE for location    
Figure 6. The MSE of the RBPF estimation with 
different assumptions about the dependency model. 

3.2 Real data experiment 
We have conducted extensive real data experiments to 

evaluate the performance of proposed RBPF algorithm 



and compare it with a regular particle filter. In this section 
we present some sample results.  

   

   

   

   
Figure 7.Outdoor human tracking. Left column: RBPF 
tracker. Right column: PF tracker. The green line is the 
gradient contour around the mean state. The frame number 
from top to bottom is 594,612,628,631 for both sequences. 
 

One test scenario is outdoor human tracking. The test 
sequence for this scenario is from EC Funded CAVIAR 
project (http://homepages.inf.ed.ac.uk/rbf/CAVIAR/), which 
has also been used by PETS04 (Performance Evaluation 
for tracking and Surveillance in conjunction with 
ECCV2004). The video data were captured by a camera 
with wide angle lens along and across the hallway in a 
shopping centre. The ground truth data were also provided 
accompanying the video. The result in Fig. 7 reveals that 
when the person gets further from the camera and 
correspondingly, the size becomes smaller, the PF tracker 
would tend to deviate from the person and get stuck on the 
background. On the other hand, the RBPF algorithm 
maintains good tracking since it can effectively and 
efficiently update the scale change.  

To quantitatively compare the performance of RBPF 
and PF based on Fig. 7 video sequence, we plot the 
estimated location (denoted by x and y coordinate in the 
image) by RBPF and PF verses the ground truth location, 

which is depicted in Fig. 8. It can be clearly seen that 
RBPF performs much better than PF. 
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                     (a)                                             (b) 
Figure 8. Comparison of RBPF and PF with ground truth. 
(a): RBPF estimation (green line) verses ground truth (red 
line). (b): PF estimation (green line) verses ground truth (red 
line). The video sequence is Fig. 7. 

   
Figure 9.  A person is moving in front of a shop window. Left 
column: RBPF tracker. Right column: PF tracker. The 
gradient contour is intentionally omitted so that the tracked 
region is easier to see with the interference of the reflection 
and the text on the window. In the original sequence 
(PETS2002 DATASET 1), the frame number is 75,79,84,87. 

A more challenging human tracking test case is shown 
in Fig. 9. The task is made difficult by the reflections from 
the ground, the opposing window, occlusion due to the 
text on the window, etc. Nevertheless, the RBPF algorithm 
obtains good tracking, although the PF tracker was lost 
when encounters the text with different color.  

Another test scenario in surveillance is vehicle tracking. 
One sample result is shown in Fig. 10, in which the car is 
involved in complex motion such as turning (rotation), 
translation, and large scale change. From Fig. 7 and Fig. 
10, we notice that, the PF does not handle the tracking 

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


well especially as the object becomes too small when it 
moves away from the camera. On the other hand, the 
proposed method is able to maintain the tracking in face of 
the dramatic scale change. In addition, our ongoing work 
shows that the variance of RBPF estimates is much less 
than that of PF estimates, and that only fewer particles 
would be required to achieve the same level of tracking 
accuracy. 

    
Figure 10.Vehicle tracking. Left column: RBPF tracker; 
Right column: PF tracker.  

4. Conclusion and future work 
In this paper, we proposed a tracking algorithm based 

on Rao-Blackwellised particle filter (RBPF). We 
discussed how the dependency between state variables 
imposed by typical surveillance application can be utilized 
to improve the efficiency and accuracy of a regular 
particle filter. Essentially, this is accomplished by 
partitioning the state variables into separate groups, with 
the linear parts being computed by Kalman filter and 
nonlinear part being estimated by particle filter. 
Experiments verify that the proposed method significantly 
outperforms a regular particle filter. As a future possibility, 
we are working on ways of automatically estimating the 
surface normal (see Fig. 1(a)) from the video so that a 
dependency model of the leaf variables on the root 
variables may be dynamically obtained. Additionally, the 

tracker can be avoided from being distracted by the static 
background through comparing the on-line gradient with a 
pre-stored background gradient map. 
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