
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks

Arnaud Doucet

Engineering Dept.

Cambridge University

ad2@eng.cam.ac.uk

Nando de Freitas Kevin Murphy Stuart Russell

Computer Science Dept.

UC Berkeley

jfgf,murphyk,russell @cs.berkeley.edu

Abstract

Particle filters (PFs) are powerful sampling-

based inference/learning algorithms for dynamic

Bayesian networks (DBNs). They allow us to

treat, in a principled way, any type of probabil-

ity distribution, nonlinearity and non-stationarity.

They have appeared in several fields under such

names as “condensation”, “sequential Monte

Carlo” and “survival of the fittest”. In this pa-

per, we show how we can exploit the structure

of the DBN to increase the efficiency of parti-

cle filtering, using a technique known as Rao-

Blackwellisation. Essentially, this samples some

of the variables, and marginalizes out the rest

exactly, using the Kalman filter, HMM filter,

junction tree algorithm, or any other finite di-

mensional optimal filter. We show that Rao-

Blackwellised particle filters (RBPFs) lead to

more accurate estimates than standard PFs. We

demonstrate RBPFs on two problems, namely

non-stationary online regression with radial ba-

sis function networks and robot localization and

map building. We also discuss other potential ap-

plication areas and provide references to some fi-

nite dimensional optimal filters.

1 INTRODUCTION

State estimation (online inference) in state-space models is

widely used in a variety of computer science and engineer-

ing applications. However, the twomost famous algorithms

for this problem, the Kalman filter and the HMM filter, are

only applicable to linear-Gaussian models and models with

finite state spaces, respectively. Even when the state space

is finite, it can be so large that the HMM or junction tree

algorithms become too computationally expensive. This is

typically the case for large discrete dynamic Bayesian net-

works (DBNs) (Dean and Kanazawa 1989): inference re-

quires at each time space and time that is exponential in the

number of hidden nodes.

To handle these problems, sequential Monte Carlo meth-

ods, also known as particle filters (PFs), have been in-

troduced (Handschin and Mayne 1969, Akashi and Ku-

mamoto 1977). In the mid 1990s, several PF algorithms

were proposed independently under the names of Monte

Carlo filters (Kitagawa 1996), sequential importance sam-

pling (SIS) with resampling (SIR) (Doucet 1998), bootstrap

filters (Gordon, Salmond and Smith 1993), condensation

trackers (Isard and Blake 1996), dynamic mixture models

(West 1993), survival of the fittest (Kanazawa, Koller and

Russell 1995), etc. One of the major innovations during the

1990s was the inclusion of a resampling step to avoid de-

generacy problems inherent to the earlier algorithms (Gor-

don et al. 1993). In the late nineties, several statistical im-

provements for PFs were proposed, and some important

theoretical properties were established. In addition, these

algorithms were applied and tested in many domains: see

(Doucet, de Freitas and Gordon 2000) for an up-to-date sur-

vey of the field.

One of the major drawbacks of PF is that sampling in

high-dimensional spaces can be inefficient. In some cases,

however, the model has “tractable substructure”, which

can be analytically marginalized out, conditional on cer-

tain other nodes being imputed, c.f., cutset conditioning in

static Bayes nets (Pearl 1988). The analytical marginal-

ization can be carried out using standard algorithms, such

as the Kalman filter, the HMM filter, the junction tree al-

gorithm for general DBNs (Cowell, Dawid, Lauritzen and

Spiegelhalter 1999), or, any other finite-dimensional opti-

mal filters. The advantage of this strategy is that it can

drastically reduce the size of the space over which we need

to sample.

Marginalizing out some of the variables is an example of

the technique called Rao-Blackwellisation, because it is

related to the Rao-Blackwell formula: see (Casella and

Robert 1996) for a general discussion. Rao-Blackwellised

particle filters (RBPF) have been applied in specific con-

texts such as mixtures of Gaussians (Akashi and Ku-

mamoto 1977, Doucet 1998, Doucet, Godsill and Andrieu



2000), fixed parameter estimation (Kong, Liu and Wong

1994), HMMs (Doucet 1998, Doucet, Godsill and Andrieu

2000) and Dirichlet process models (MacEachern, Clyde

and Liu 1999). In this paper, we develop the general theory

of RBPFs, and apply it to several novel types of DBNs. We

omit the proofs of the theorems for lack of space: please

refer to the technical report (Doucet, Gordon and Krishna-

murthy 1999).

2 PROBLEM FORMULATION

Let us consider the following general state space

model/DBN with hidden variables and observed vari-

ables . We assume that is a Markov process of ini-

tial distribution and transition equation .

The observations are assumed

to be conditionally independent given the process of

marginal distribution . Given these observations,

the inference of any subset or property of the states

relies on the joint posterior distribution

. Our objective is, therefore, to estimate this

distribution, or some of its characteristics such as the filter-

ing density or the minimum mean square error

(MMSE) estimate . The posterior satisfies the

following recursion

(1)

If one attempts to solve this problem analytically, one ob-

tains integrals that are not tractable. One, therefore, has to

resort to some form of numerical approximation scheme. In

this paper, we focus on sampling-based methods. Advan-

tages and disadvantages of other approaches are discussed

at length in (de Freitas 1999).

The above description assumes that there is no structure

within the hidden variables. But suppose we can di-

vide the hidden variables into two groups, and ,

such that and,

conditional on , the conditional posterior distribution

is analytically tractable. Then we can

easily marginalize out from the posterior, and only

need to focus on estimating , which lies in a

space of reduced dimension. Formally, we are making use

of the following decomposition of the posterior, which fol-

lows from the chain rule

The marginal posterior distribution satisfies

The problem of how to automatically identify which vari-
ables should be sampled, and which can be handled analytically,
is one we are currently working on. We anticipate that algorithms
similar to cutset conditioning (Becker, Bar-Yehuda and Geiger
1999) might prove useful.

the alternative recursion

(2)

If eq. (1) does not admit a closed-form expression, then eq.

(2) does not admit one either and sampling-based methods

are also required. Since the dimension of is

smaller than the one of , we should expect

to obtain better results.

In the following section, we review the importance sam-

pling (IS) method, which is the core of PF, and quantify the

improvements one can expect by marginalizing out

i.e. using the so-called Rao-Blackwellised estimate. Sub-

sequently, in Section 4, we describe a general RBPF algo-

rithm and detail the implementation issues.

3 IMPORTANCE SAMPLING AND

RAO-BLACKWELLISATION

If we were able to sample i.i.d. random sam-

ples (particles), , according to

, then an empirical estimate of this distri-

bution would be given by

where denotes the Dirac delta

function located at . As a corollary, an

estimate of the filtering distribution is

. Hence

one can easily estimate the expected value of any function

of the hidden variables w.r.t. this distribution, , us-

ing

This estimate is unbiased and, from the strong law of

large numbers (SLLN), converges almost surely

(a.s.) towards as . If

var , then a central

limit theorem (CLT) holds

where denotes convergence in distribution. Typi-

cally, it is impossible to sample efficiently from the “tar-

get” posterior distribution at any time .

So we focus on alternative methods.



One way to estimate and con-

sists of using the well-known importance sampling method

(Bernardo and Smith 1994). This method is based on the

following observation. Let us introduce an arbitrary impor-

tance distribution , from which it is easy

to get samples, and such that implies

. Then

where the importance weight is equal to

Given i.i.d. samples distributed accord-

ing to , a Monte Carlo estimate of

is given by

where the normalized importance weights are equal to

This method is equivalent to the following point mass ap-

proximation of

For “perfect” simulation, that is

, we would have for any .

In practice, we will try to select the importance distribu-

tion as close as possible to the target distribution in a given

sense. For finite, is biased (since it is a ratio of

estimates), but according to the SLLN, converges

asymptotically a.s. towards . Under additional as-

sumptions, a CLT also holds.

Now consider the case where one can marginalize out

analytically, then we can propose an alternative estimate

for with a reduced variance. As

, where is

a distribution that can be computed exactly, then an

approximation of yields straightforwardly

an approximation of . Moreover, if

can be evaluated in a

closed-form expression, then the following alternative im-

portance sampling estimate of can be used

where

Intuitively, to reach a given precision, will require

a reduced number of samples over as we only

need to sample from a lower-dimensional distribution. This

is proven in the following propositions.

Proposition 1 The variances of the importance weights,
the numerators and the denominators satisfy for any

var var

var var

var var

A sufficient condition for to

satisfy a CLT is var

and for any (Bernardo and

Smith 1994). This trivially implies that also satis-

fies a CLT. More precisely, we get the following result.

Proposition 2 Under

the assumptions given above, and satisfy

a CLT

where , and being given by

The Rao-Blackwellised estimate is usually compu-

tationally more extensive to compute than so it is

of interest to know when, for a fixed computational com-

plexity, one can expect to achieve variance reduction. One



has

so that, accordingly to the intuition, it will be worth gen-

erally performing Rao-Blackwellisation when the average

conditional variance of the variable is high.

4 RAO-BLACKWELLISED PARTICLE

FILTERS

Given particles (samples) at time

, approximately distributed according to the distribution

, RBPFs allow us to compute

particles approximately distributed according

to the posterior , at time . This is ac-

complished with the algorithm shown below, the details of

which will now be explained.

Generic RBPF

1. Sequential importance sampling step

For , sample:

and set:

For , evaluate the importance
weights up to a normalizing constant:

For , normalize the importance
weights:

2. Selection step

Multiply/ suppress samples with high/low

importance weights , respectively, to obtain

random samples approximately distributed

according to .

3. MCMC step

Apply a Markov transition kernel with invariant

distribution given by to obtain .

4.1 IMPLEMENTATION ISSUES

4.1.1 Sequential importance sampling

If we restrict ourselves to importance functions of the fol-

lowing form

(3)

we can obtain recursive formulas to evaluate

and thus . The “incremental weight”

is given by

denotes the normalized version of , i.e.

. Hence we can perform importance

sampling online.

Choice of the Importance Distribution

There are infinitely many possible choices for ,

the only condition being that its supports must include that

of . The simplest choice is to just sample from

the prior, , in which case the importance weight

is equal to the likelihood, . This is the

most widely used distribution, since it is simple to compute,

but it can be inefficient, since it ignores the most recent

evidence, . Intuitively, many of our samples may end up

in a region of the space that has low likelihood, and hence

receive low weight; these particles are effectively wasted.

We can show that the “optimal” proposal distribution, in

the sense of minimizing the variance of the importance

weights, takes the most recent evidence into account:

Proposition 3 The distribution that minimizes the vari-

ance of the importance weights conditional upon

and is

and the associated importance weight is

Unfortunately, computing the optimal importance sampling

distribution is often too expensive. Several deterministic

approximations to the optimal distribution have been pro-

posed, see for example (de Freitas 1999, Doucet 1998).

Degeneracy of SIS

The following proposition shows that, for importance func-

tions of the form (3), the variance of can only in-

crease (stochastically) over time. The proof of this propo-

sition is an extension of a Kong-Liu-Wong theorem (Kong



et al. 1994, p. 285) to the case of an importance function of

the form (3).

Proposition 4 The unconditional variance (i.e. with the

observations being interpreted as random variables)

of the importance weights increases over time.

In practice, the degeneracy caused by the variance increase

can be observed by monitoring the importance weights.

Typically, what we observe is that, after a few iterations,

one of the normalized importance weights tends to 1, while

the remaining weights tend to zero.

4.1.2 Selection step

To avoid the degeneracy of the sequential importance sam-

pling simulation method, a selection (resampling) stage

may be used to eliminate samples with low importance ra-

tios and multiply samples with high importance ratios. A

selection scheme associates to each particle a num-

ber of offsprings, say , such that .

Several selection schemes have been proposed in the lit-

erature. These schemes satisfy , but

their performance varies in terms of the variance of the

particles, var . Recent theoretical results in (Crisan,

Del Moral and Lyons 1999) indicate that the restriction

is unnecessary to obtain convergence re-

sults (Doucet et al. 1999). Examples of these selection

schemes include multinomial sampling (Doucet 1998, Gor-

don et al. 1993, Pitt and Shephard 1999), residual resam-

pling (Kitagawa 1996, Liu and Chen 1998) and stratified

sampling (Kitagawa 1996). Their computational complex-

ity is .

4.1.3 MCMC step

After the selection scheme at time , we obtain par-

ticles distributed marginally approximately according to

. As discussed earlier, the discrete nature of the

approximation can lead to a skewed importance weights

distribution. That is, many particles have no offspring

( ), whereas others have a large number of off-

spring, the extreme case being for a particular

value . In this case, there is a severe reduction in the di-

versity of the samples. A strategy for improving the re-

sults involves introducing MCMC steps of invariant distri-

bution on each particle (Andrieu, de Freitas and

Doucet 1999b, Gilks and Berzuini 1998, MacEachern et al.

1999). The basic idea is that, by applying a Markov tran-

sition kernel, the total variation of the current distribution

with respect to the invariant distribution can only decrease.

Note, however, that we do not require this kernel to be er-

godic.

4.2 CONVERGENCE RESULTS

Let be the space of bounded, Borel measurable

functions on . We denote . The fol-

lowing theorem is a straightforward consequence of Theo-

rem 1 in (Crisan and Doucet 2000) which is an extension

of previous results in (Crisan et al. 1999).

Theorem 5 If the importance weights are upper
bounded and if one uses one of the selection schemes de-
scribed previously, then, for all , there exists inde-

pendent of such that for any

where the expectation is taken w.r.t. to the randomness in-

troduced by the PF algorithm. This results shows that, un-

der very lose assumptions, convergence of this general par-

ticle filtering method is ensured and that the convergence

rate of the method is independent of the dimension of the

state-space. However, usually increases exponentially

with time. If additional assumptions on the dynamic sys-

tem under study are made (e.g. discrete state spaces), it

is possible to get uniform convergence results ( for

any ) for the filtering distribution . We do not

pursue this here.

5 EXAMPLES

We now illustrate the theory by briefly describing two ap-

plications we have worked on.

5.1 ON-LINE REGRESSION ANDMODEL

SELECTION WITH NEURAL NETWORKS

Consider a function approximation scheme consisting of

a mixture of radial basis functions (RBFs) and a linear

regression term. The number of basis functions, , their

centers, , the coefficients (weights of the RBF centers

plus regression terms), , and the variance of the Gaussian

noise on the output, , can all vary with time, so we treat

them as latent random variables: see Figure 1. For details,

see (Andrieu, de Freitas and Doucet 1999a).

In (Andrieu et al. 1999a), we show that it is possible to

simulate , and with a particle filter and to com-

pute the coefficients analytically using Kalman filters.

This is possible because the output of the neural network

is linear in , and hence the system is a conditionally lin-

ear Gaussian state-space model (CLGSSM), that is it is a

linear Gaussian state-space model conditional upon the lo-

cation of the bases and the hyper-parameters. This leads to

an efficient RBPF that can be combined with a reversible

jump MCMC algorithm (Green 1995) to select the number
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Figure 1: DBN representation of the RBF model. The

hyper-parameters have been omitted for clarity.
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Figure 2: The top plot shows the one-step-ahead output

predictions [—] and the true outputs [ ] for the RBF

model. The middle and bottom plots show the true val-

ues and estimates of the model order and noise variance

respectively.

of basis functions online. For example, we generated some

data from a mixture of 2 RBFs for , and

then from a single RBF for ; the method

was able to track this change, as shown in Figure 2. Further

experiments on real data sets are described in (Andrieu et

al. 1999a).

5.2 ROBOT LOCALIZATION ANDMAP

BUILDING

Consider a robot that can move on a discrete, two-

dimensional grid. Suppose the goal is to learn a map of

the environment, which, for simplicity, we can think of as

a matrix which stores the color of each grid cell, which

can be either black or white. The difficulty is that the color

L1 L2 L3

Y2 Y3Y1

M1(1) M2(1) M3(1)

M2(2)M1(2) M3(2)

Figure 3: A Factorial HMM with 3 hidden chains.

represents the color of grid cell at time , represents

the robot’s location, and the current observation.

sensors are not perfect (they may accidentally flip bits), nor

are the motors (the robot may fail to move in the desired di-

rection with some probability due e.g., to wheel slippage).

Consequently, it is easy for the robot to get lost. And when

the robot is lost, it does not know what part of the matrix to

update. So we are faced with a chicken-and-egg situation:

the robot needs to know where it is to learn the map, but

needs to know the map to figure out where it is.

The problem of concurrent localization and map learn-

ing for mobile robots has been widely studied. In (Mur-

phy 2000), we adopt a Bayesian approach, in which we

maintain a belief state over both the location of the robot,

, and the color of each grid cell,

, , where is the number

of cells, and is the number of colors. The DBN we

are using is shown in Figure 3. The state space has size

. Note that we can easily handle changing envi-

ronments, since the map is represented as a random vari-

able, unlike the more common approach, which treats the

map as a fixed parameter.

The observation model is , where is

a function that flips its binary argument with some fixed

probability. In other words, the robot gets to see the color

of the cell it is currently at, corrupted by noise: is a

noisy multiplexer with acting as a “gate” node. Note

that this conditional independence is not obvious from the

graph structure in Figure 3(a), which suggests that all the

nodes in each slice should be correlated by virtue of sharing

a common observed child, as in a factorial HMM (Ghahra-

mani and Jordan 1997). The extra independence informa-

tion is encoded in ’s distribution, c.f., (Boutilier, Fried-

man, Goldszmidt and Koller 1996).

The basic idea of the algorithm is to sample with a PF,

and marginalize out the nodes exactly, which can be

done efficiently since they are conditionally independent

given :

Some results on a simple one-dimensional grid world are
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Figure 4: Estimated position as the robot moves from cell

1 to 8 and back. The robot “gets stuck” in cell 4 for two

steps in a row on the outgoing leg of the journey (hence the

double diagonal), but the robot does not realize this until

it reaches the end of the “corridor” at step 9, where it is

able to relocalise. (a) Exact inference. (b) RBPF with 50

particles. (c) Fully-factorised BK.

shown in Figure 4. We compared exact Bayesian infer-
ence with the RBPF method, and with the fully-factorised
version of the Boyen-Koller (BK) algorithm (Boyen and
Koller 1998), which represents the belief state as a product
of marginals:

We see that the RBPF results are very similar to the ex-

act results, even with only 50 particles, but that BK gets

confused because it ignores correlations between the map

cells. We have obtained good results learning a

map (so the state space has size ) using only 100

particles (the observation model in the 2D case is that the

robot observes the colors of all the cells in a neighbor-

hood centered on its current location). For a more detailed

discussion of these results, please see (Murphy 2000).

5.3 CONCLUSIONS AND EXTENSIONS

RBPFs have been applied to many problems, mostly in

the framework of conditionally linear Gaussian state-space

models and conditionally finite state-space HMMs. That is,

they have been applied to models that, conditionally upon

a set of variables (imputed by the PF algorithm), admit a

closed-form filtering distribution (Kalman filter in the con-

tinuous case and HMM filter in the discrete case). One can

also make use of the special structure of the dynamicmodel

under study to perform the calculations efficiently using the

junction tree algorithm. For example, if one had evolv-

ing trees, one could sample the root nodes with the PF and

compute the leaves using the junction tree algorithm. This

would result in a substantial computational gain as one only

has to sample the root nodes and apply the juction tree to

lower dimensional sub-networks.

Although the previoulsy mentioned models are the most

famous ones, there exist numerous other dynamic systems

admitting finite dimensional filters. That is, the filtering

distribution can be estimated in closed-form at any time

using a fixed number of sufficient statistics. These include

Dynamic models for counting observations (Smith

and Miller 1986).

Dynamic models with a time-varying unknow covari-

ance matrix for the dynamic noise (West and Harrison

1996, Uhlig 1997).

Classes of the exponential family state space models

(Vidoni 1999).

This list is by no means exhaustive. It, however, shows that

RBPFs apply to very wide class of dynamic models. Con-

sequently, they have a big role to play in computer vision

(where mixtures of Gaussians arise commonly), robotics,

speech and dynamic factor analysis.
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