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Abstract

We consider the two related problems of state inference in nonlinear dynamical systems
and nonlinear system identification. More precisely, based on noisy observations from
some (in general) nonlinear and/or non-Gaussian dynamical system, we seek to estimate
the system state as well as possible unknown static parameters of the system. We consider
two different aspects of the state inference problem, filtering and smoothing, with the
emphasis on the latter. To address the filtering and smoothing problems, we employ
sequential Monte Carlo (SMC) methods, commonly referred to as particle filters (PF) and
particle smoothers (PS).

Many nonlinear models encountered in practice contain some tractable substructure. If
this is the case, a natural idea is to try to exploit this substructure to obtain more accurate
estimates than what is provided by a standard particle method. For the filtering problem,
this can be done by using the well-known Rao-Blackwellised particle filter (RBPF). In this
thesis, we analyse the RBPF and provide explicit expressions for the variance reduction that
is obtained from Rao-Blackwellisation. Furthermore, we address the smoothing problem
and develop a novel Rao-Blackwellised particle smoother (RBPS), designed to exploit a
certain tractable substructure in the model.

Based on the RBPF and the RBPS we propose two different methods for nonlinear sys-
tem identification. The first is a recursive method referred to as the Rao-Blackwellised
marginal particle filter (RBMPF). By augmenting the state variable with the unknown pa-
rameters, a nonlinear filter can be applied to address the parameter estimation problem.
However, if the model under study has poor mixing properties, which is the case if the
state variable contains some static parameter, SMC filters such as the PF and the RBPF are
known to degenerate. To circumvent this we introduce a so called “mixing” stage in the
RBMPF, which makes it more suitable for models with poor mixing properties.

The second identification method is referred to as RBPS-EM and is designed for maxi-
mum likelihood parameter estimation in a type of mixed linear/nonlinear Gaussian state-
space models. The method combines the expectation maximisation (EM) algorithm with
the RBPS mentioned above, resulting in an identification method designed to exploit the
tractable substructure present in the model.
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Populärvetenskaplig sammanfattning

Vi kommer i denna avhandling att titta närmre på två relaterade problem; tillståndsskat-
tning i olinjära system och olinjär systemidentifiering. Givet brusiga mätningar från ett
olinjärt dynamiskt system, vill vi skatta systemets tillstånd och även eventuella okända,
statiska systemparametrar. Vi behandlar två aspekter av tillståndsskattningsproblemet, fil-
trering och glättning, med fokus på det sistnämnda. För att angripa dessa båda problem
använder vi oss av så kallade sekventiella Monte Carlo (SMC) metoder, ofta benämnda
partikelfilter (PF) och partikelglättare.

Många olinjära modeller som man stöter på i praktiska tillämpningar innehåller en viss
understruktur. Om så är fallet, är det naturligt att försöka utnyttja denna struktur för att
erhålla bättre skattningar. Genom att kombinera denna idé med partikelfiltret erhålls det
välkända Rao-Blackwelliserade partikelfiltret (RBPF). Ett av bidragen i denna avhandling
är en analys av RBPF vilken leder till ett explicit uttryck för den variansreduktion som fås
genom Rao-Blackwellisering. Dessutom betraktar vi glättningsproblemet och föreslår en
Rao-Blackwelliserad partikelglättare (RBPS), vilken är utvecklad med syfte att utnyttja en
viss typ av understruktur i modellen.

Baserat på RBPF och RBPS föreslår vi två olika metoder för olinjär systemidentifiering.
Den första är en rekursiv metod, kallad det Rao-Blackwelliserade marginella partikelfiltret
(RBMPF). Genom att utöka tillståndsvariabeln med de okända parametrarna kan ett olinjärt
filter användas för parameterskattning. De statiska parametrarna kommer dock leda till att
modellen får dåliga mixningsegenskaper. Detta leder i sin tur till att SMC baserade filter,
såsom PF och RBPF, kommer att degenerera. För att kringgå detta problem inför vi ett så
kallat “mixningssteg” i RBMPF, vilket gör filtret mer lämpligt för modeller med dåliga
mixningsegenskaper.

Den andra metoden som vi föreslår går under namnet RBPS-EM, och kan användas för pa-
rameterskattning i en typ av blandade linjära/olinjära Gaussiska tillståndsmodeller. Meto-
den kombinerar EM algoritmen med glättning via ovannämnda RBPS. Detta resulterar i en
identifieringsmetod som kan utnyttja den speciella understruktur som finns i modellen.
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1
Introduction

Assume the we have at our disposal a sensor, or a measuring device, from which we
can read off values yt at some points in time indexed by t = 1, 2 . . . . Based on these
readings, we wish to draw conclusions about the underlying system, which has generated
the measurements.

As an example, consider the often encountered problem of making predictions about the
output from some system based on previous observations. Hence, assume that we have
recorded the values y1:t , {y1, . . . , yt}. Then, what is the best guess for what yt+1 will
turn out to be? Should we simply assume that yt+1 will be close to the most recent record-
ing yt, or should we make use of older measurements as well, to account for possible
trends? Such questions can be answered by using a model, which describes how to weigh
the available information together to make as good predictions as possible.

For most applications, it is not possible to find models that exactly describe the measure-
ments. There will always be fluctuations and variations in the data, not accounted for by
the model. To incorporate such random components, the measurement sequence can be
viewed as a realisation of a discrete-time stochastic process {Yt}t≥1. Hence, a model for
the system is the same as a model for the stochastic process.

In this thesis we will be working with a specific class of models, known as state-space
models (SSMs). The structure of an SSM can be seen as influenced by the notion of a
physical system. The idea is that, at each time instant, the system is assumed to be in
a certain “state”. The state contains all relevant information about the system, i.e. if we
would know the state of the system we would have full insight into its internal condition.
However, the state is typically not known. Instead, we measure some quantities which
depend on the state in some way. To exemplify the idea, let Xt be a random variable
representing the state of a system at time t. An SSM for the system could then, for instance,

1



2 1 Introduction

be given by,

Xt+1 = f(Xt) + Vt, (1.1a)

Yt = h(Xt) + Et. (1.1b)

The expression (1.1a) describes the evolution of the system state over time. The state at
time t+1 is given by a transformation of the current state f(Xt), plus some process noise
Vt. The process noise accounts for variations in the system state, not accounted for by the
model. Since the state at a consecutive time point depends on the previous state, we say
that the system is dynamic and (1.1a) is known as the dynamic equation. The second part
of the model, given by (1.1b), describes how the measurement Yt depends on the state
Xt and some measurement noise Et. Consequently, (1.1b) is called the measurement
equation. The concept of SSMs will be further discussed in Section 2.2.

In (1.1), the state process {Xt}t≥1 is not observable; it is sometimes called latent or
hidden. Instead, any conclusions that we wish to draw regarding the system, must be
inferred from observations of the measurement sequence {Yt}t≥1. We will in this thesis
be concerned with two different problems of this type.

1. State inference: Given a fully specified SSM for the process {Yt}t≥1 and based
on observations {yt}t≥1, draw conclusions about the process itself. This could for
instance be to predict future values of the process, as in the preceding example.
More generally, it is the problem of estimating some past, present or future state of
the system, which is not directly visible but related to the measurements through
the model.

2. System identification: Based on observations {yt}t≥1, find a model for the pro-
cess {Yt}t≥1 that can describe the observations. This problem is known as system
identification, which in itself is a very broad concept. In this thesis we will con-
sider one important part of the system identification task, namely how to estimate
unknown, static parameters of the model.

As we shall see, these two problems are closely related and there is not always a clear
distinction.

Remark 1.1. In the system identification literature, it is common to let the system be excited by
some known input signal {ut}t≥1, i.e. by adding a dependence on ut on the right hand side of
(1.1). In this thesis, we will not make such dependence explicit, but this is purely for notational
convenience. The identification methods that we will consider are indeed applicable also in the
presence of a known input signal.

If both f and h in the model (1.1) are linear (of affine) functions, the SSM is also called
linear. Reversely, if this is not the case, the model is called nonlinear. Even though there
exists many relevant applications in which nonlinear models arise, the focus in the engi-
neering community has traditionally been on linear models. One contributory factor to
this, is that nonlinear models by nature are much harder to work with. However, as we de-
velop more sophisticated computational tools and acquire more and more computational
resources, we can also address increasingly more challenging problems. Inspired by this
fact, this thesis puts focus on nonlinear systems and we will consider the two problems of
nonlinear state inference and nonlinear system identification.



1.1 Monte Carlo and Rao-Blackwellisation 3

1.1 Monte Carlo and Rao-Blackwellisation

As pointed out in the previous section, the fundamental problem considered in this thesis
is that of estimation. In both the state inference and the identification problem we are
seeking to estimate “something”, based on observations from the system. Let this some-
thing, called the estimand, be denoted θ. The estimand could for instance be a prediction
of a future value, as discussed in the previous section, or some unknown parameter of the
system dynamics. Based on readings from the system y1:T we wish to estimate the value
of θ. For this cause, we construct an estimator θ̂ such that, in some sense, θ̂ is close to
θ. Naturally, the estimator is a function of the observations, i.e. after having observed a
measurement sequence y1:T we take θ̂(y1:T ) as our estimate of θ.

1.1.1 Randomised estimators and Monte Carlo

For many problems it is tricky to find an appropriate function θ̂, mapping the measurement
sequence into an estimate of θ. For some challenging problems (e.g. the nonlinear state
inference and identification problems), it can be beneficial to let the estimator depend
on some auxiliary, random variable U . Hence, after having observed U = u we take
θ̂⋆(y1:T , u), which is then known as a randomised estimator, as an estimate of θ. The idea
with a randomised estimator is illustrated in the following example.

Example 1.1: Randomised estimator
LetX be an unobservable random variable, dependent on the measurement sequence Y1:T .
After having observed, Y1:T = y1:T we seek the probability that X lies in some set A.
Hence, we seek the conditional probability

θ , P(X ∈ A | Y1:T ). (1.2)

Now, assume that we do not know any analytic form for the conditional distribution of X ,
given Y1:T , but that we have a way of sampling from it. We then drawN samples {xi}Ni=1

from this conditional distribution (given Y1:T = y1:T ). The estimate of the conditional
probability (1.2) can then be taken as the frequency of samples landing in the setA. Hence,
the randomised estimator of θ is,

θ̂⋆(y1:T , {xi}Ni=1) =
1

N

N∑

i=1

IA(xi), (1.3)

where IA is the indicator function of the set A.

The procedure of constructing a randomised estimator as above, is an example of a so
called Monte Carlo method1. The essence of these methods is to draw, typically a large
number of random samples, which are then used to solve a mathematical problem. The
most fundamental Monte Carlo method is probably that of approximating the expectation
of a random variable by the sample mean of a large number of realisations of the variable.
More precisely, assume that X is a random variable with distribution µ. We seek to

1The methods are named after the Monte Carlo casino in Monaco.
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compute the expectation of some function f(X), i.e.

θ , E[f(X)] =

∫
f(x)µ(dx). (1.4)

If the above integral is intractable, it can be approximated by drawing N i.i.d. samples
{xi}Ni=1 from µ and compute an estimate of θ as,

θ̂⋆({xi}Ni=1) =
1

N

N∑

i=1

f(xi). (1.5)

By the strong law of large numbers, this estimate converges almost surely to the true ex-
pectation as N tends to infinity. This technique is also known as Monte Carlo integration,
since we in (1.5) in fact approximate an intractable integral by using Monte Carlo sam-
pling. The estimate (1.3) is also an example of Monte Carlo integration, with f being the
indicator function of the set A and µ being the conditional probability distribution of X
given Y1:T .

1.1.2 Rao-Blackwellisation

Let us return to the original estimation problem, i.e. how to find a function θ̂(y1:T ) esti-
mating the estimand θ. Since basically any function can be taken as an estimator, we need
some way to measure the closeness of θ̂ to θ, to be able to find a good estimator. For this
cause, assume that we have chosen a loss function L(θ, θ̂) which is small when θ̂ is close
to θ and vice versa. We can then say that an estimator θ̂′ is better that an estimator θ̂, if
the expected loss is lower, i.e. if

E[L(θ, θ̂′(Y1:T ))] < E[L(θ, θ̂(Y1:T ))]. (1.6)

In the mid 40’s, Rao [1945] and Blackwell [1947] established a fundamental result in
estimation theory, which has later become known as the Rao-Blackwell theorem (see also
[Lehmann, 1983] p. 50). We will not review the theorem in full here, since (despite the
title of this thesis) we do not need the details of it. Instead, we settle for an informal
discussion on its implications. What the Rao-Blackwell theorem states is that if θ̂ is some
estimator of θ, S is a sufficient statistic for Y1:T and the loss function is convex in θ̂, then
the estimator

θ̂RB(S) = E[θ̂(Y1:T ) | S] (1.7)

is typically a better estimator of θ, and is never worse. Hence, from a crude estimator θ̂ we
can construct a better estimator θ̂RB according to (1.7), depending only on the sufficient
statistic S. This transformation is known as Rao-Blackwellisation of the estimator θ̂.
In this thesis, we are concerned with the implication of the Rao-Blackwell theorem for
randomised estimators, which we give in a corollary.

Corollary 1.1 (Rao-Blackwellisation of randomised estimators). For any randomised

estimator of θ, there exists a non-randomised estimator which is uniformly better if the

loss function is strictly convex and at least as good when it is convex.

Proof: See [Lehmann, 1983], p. 51.
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This corollary is a direct consequence of the Rao-Blackwell theorem. If U is the random
variable used to construct a randomised estimator θ̂⋆(Y1:T , U) (thus, U has a known dis-
tribution), then the statistic Y1:T is sufficient for the pair {Y1:T , U}. Hence, we obtain a
non-randomised estimator by Rao-Blackwellisation as,

θ̂⋆RB(Y1:T ) = E[θ̂⋆(Y1:T , U) | Y1:T ]. (1.8)

So, what implications does this have for the randomised estimators discussed in Sec-
tion 1.1.1? To see this, let us consider the Monte Carlo integration in (1.5). Let {Xi}Ni=1

be the i.i.d. random variables, distributed according to µ, of which we have observed the
values {xi}Ni=1. Then, a Rao-Blackwellised estimator of the expectation (1.4) is given by,

θ̂⋆RB = E[θ̂⋆({Xi}Ni=1)] =
1

N

N∑

i=1

E[f(Xi)] = E[f(X)]. (1.9)

Hence, if we ask for a Rao-Blackwellisation of a Monte Carlo estimator, we are simply
told; use the true value instead of the Monte Carlo estimate. In some sense, we can
say that Rao-Blackwellisation is the counterpart of Monte Carlo methods. It replaces
randomised sample averages with true expectations. Clearly, if it is intractable to compute
the true expectation, this is the case also for the Rao-Blackwellised estimator (since they
coincide). Due to this, there must be a trade-off between the application of Monte Carlo
methods to construct randomised estimators, and the application of Rao-Blackwellisation
to these estimators. The general idea that we will adopt in this thesis is to apply Rao-
Blackwellisation to an “as high degree as possible”, hopefully leading to an increased
accuracy over the original Monte Carlo methods. We will return to the procedure of Rao-
Blackwellisation in a sequential Monte Carlo framework in Section 3.3.

1.2 Particle methods: an application example

Before we leave this introductory chapter, let us have a look at how the Monte Carlo
approach can be used to address a challenging state inference problem in a nonlinear
dynamical system. For this cause, we will consider an application example, in which we
seek to localise an unmanned aerial vehicle (UAV) using information from an on-board
video camera.

UAVs have the potential of becoming a very useful tool, e.g. for search and rescue oper-
ations in hazardous environments. For the UAV to be able to operate autonomously, it
is crucial to be able to determine its position, i.e. to estimate its state. In this example,
we assume that the primary sensor for this cause is an on-board video camera, looking
down on the ground. Hence, the measurements Yt can be seen as images from the camera.
By comparing these images with a preexisting map over the operational environment, we
seek to estimate the position of the vehicle. Basically, this is done by comparing qualita-
tive information from the images with the map. That is, if we see a house in the image,
then we know that we are not flying over a lake; if we see a road crossing, then this will
provide us with information of possible positions of the vehicle, etc.

However, to solve this problem by using a set of rules and logical inference (“if we see
a house, then we must be at position A, B or C . . . ”) can be very tricky, especially if
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Figure 1.1: Initial particle positions, shown as white dots, spread randomly over the
map. The true vehicle position at this time instant is shown as a black cross. Aerial
photograph by courtesy of the UAS Technologies Lab, Artificial Intelligence and
Integrated Computer Systems Division (AIICS) at the Department of Computer and
Information Science (IDA), Linköping University, Linköping, Sweden.

we take into account that the measurements are uncertain, i.e. we might not be sure that
it is actually a house that we see in the image. Instead, we address the problem using a
sequential Monte Carlo method known as the particle filter (PF). In the PF, we propose a
large number of random hypotheses of were the vehicle might be. These hypotheses are
called particles, hence the name of the filter. In Figure 1.1 we show the initial hypotheses
of the UAV position, randomly placed over the entire map. We then evaluate the likelihood
that each hypothesis is true. The unlikely hypotheses are thereafter discarded, whereas
the likely ones are duplicated. This is shown in Figure 1.2.

Since the vehicle is moving, we must allow the particles to move as well, to be able to
track the UAV position. Basically, this is done by propagating the hypotheses through
the dynamic model for the vehicle as in (1.1a). That is, if we know that the UAV is at a
certain position with a certain velocity at time t, we can predict its position at time t+ 1.
This procedure, of sequentially propagating the hypotheses through time, evaluating their
likelihoods and putting focus on the likely ones, is what makes the method sequential
(hence the name sequential Monte Carlo, SMC). In Figure 1.3, we show how the particles
are updated over time, converging to a consistent estimate of the UAV position.

The present section has been included to give a flavor for how particle methods can be
used for state inference. The specific application example that we have considered is in-
fluenced by the work by Lindsten et al. [2010]. Clearly, we have left out the majority of
the details. However, some of these details are provided in Section 3.3.5 of this thesis,
where we return to this application example and further motivate the suitability of the PF

for addressing the state inference problem. However, it should be emphasised that the
main focus in this thesis is on general, particle based methods for inference and identifica-
tion. Hence, this specific application is not in any way the basis or the motivation for the
material of the thesis, it is merely used as an example.
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Figure 1.2: Image from the on-board camera (left) and particle positions (right)
after 1 second of flight. The image processing system on the UAV detects asphalt
and buildings in the image. Hence, several of the initial hypotheses can be discarded
since they do not match the image. Instead, focus is put on areas along the roads and
especially near the buildings.

Figure 1.3: Top row - Image from the on-board camera (left) and particle positions
(right) after 5 seconds of flight. After having received several images containing
asphalt and buildings, the number of possible positions of the UAV is drastically re-
duced. Bottom row - Image from the on-board camera (left) and particle positions
(right) after 20 seconds of flight. Once the UAV proceeds along one of the roads, the
remaining faulty hypotheses can be discarded since they do not match the images
obtained from the camera. The true vehicle position is shown as a black cross and
the vehicle trajectory as a solid line.
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1.3 Contributions

The main contribution of this thesis is the extension, development and analysis of Rao-
Blackwellised Monte Carlo methods for state inference and identification problems in
nonlinear dynamical systems. The thesis is based on both published and unpublished ma-
terial. Most notably in the category of the unpublished work, is the Rao-Blackwellised
marginal particle filter (RBMPF), derived toward the end of Chapter 3 and applied to the
identification problem in Chapter 6. A second identification method, referred to as the
Rao-Blackwellised particle smoother expectation maximisation (RBPS-EM) method, is pre-
sented and evaluated in Chapter 6. This method has previously been published in,

F. Lindsten and T. B. Schön. Identification of mixed linear/nonlinear state-
space models. In Proceedings of the 49th IEEE Conference on Decision and
Control (CDC), Atlanta, USA, December 2010.

To orientate the reader, we already now point out the two main differences between these
two identification methods.

1. The RBMPF is applicable for identification of general nonlinear systems with affine
parameter dependence, whereas RBPS-EM can be used for identification of mixed
linear/nonlinear systems with arbitrary parameter dependence.

2. The RBMPF is a Bayesian, recursive method, whereas RBPS-EM is a maximum likeli-
hood based, batch approach.

The RBPS-EM method is based on a novel Rao-Blackwellised particle smoother (RBPS), for
state inference in mixed linear/nonlinear systems. This smoother is derived in Chapter 5
and also presented in,

F. Lindsten and T. B. Schön. Rao-Blackwellised particle smoothers for mixed
linear/nonlinear state-space models. Submitted to IEEE Transactions on Sig-
nal Processing, 2011.

This thesis also contains an analysis of the benefits of applying Rao-Blackwellisation to
sequential Monte Carlo methods. In particular, we provide an explicit expression for the
variance reduction obtained in the Rao-Blackwellised particle filter (RBPF). This analysis
is presented in Chapter 4, and has previously been published in,

F. Lindsten, T. B. Schön, and J. Olsson. An explicit variance reduction ex-
pression for the Rao-Blackwellised particle filter. In Proceedings of the 18th
World Congress of the International Federation of Automatic Control (IFAC)
(accepted for publication), Milan, Italy, August 2011b.

Loosely connected to the material of this thesis is,

F. Lindsten, J. Callmer, H. Ohlsson, D. Törnqvist, T. B. Schön, and F. Gustafs-
son. Geo-referencing for UAV navigation using environmental classification.
In Proceedings of the 2010 IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, USA, May 2010.
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In this paper, the RBPF is applied to the problem of unmanned aerial vehicle localisation
using measurements from a camera, an inertial measurement unit and a barometric sen-
sor. This application example was briefly described in the previous section and is also
reviewed in Section 3.3.5.

Other published material, not included in this thesis, is,

F. Lindsten, H. Ohlsson, and L. Ljung. Clustering using sum-of-norms reg-
ularization; with application to particle filter output computation. In Pro-
ceedings of the 2011 IEEE Workshop on Statistical Signal Processing (SSP)
(accepted for publication), Nice, France, June 2011a.

F. Lindsten, P.-J. Nordlund, and F. Gustafsson. Conflict detection metrics
for aircraft sense and avoid systems. In Proceedings of the 7th IFAC Sym-
posium on Fault Detection, Supervision and Safety of Technical Processes
(SafeProcess), Barcelona, Spain, July 2009.

1.4 Thesis outline

This thesis is structured as follows; in Chapter 2 we define the model structures that we
will be working with throughout the thesis, review the fundamental filtering and smooth-
ing recursions and present some basic Monte Carlo techniques. In Chapter 3 the SMC

framework is presented and discussed. We review the RBPF and derive the novel RBMPF.
In Chapter 4 some asymptotic properties of SMC methods are discussed and we analyse
the potential benefits from Rao-Blackwellising the PF. We then turn to the smoothing prob-
lem in Chapter 5, where we review some existing approaches to particle smoothing and
derive a new RBPS. In Chapter 6 the RBMPF and the RBPS-EM identification methods are
applied to the problem of nonlinear system identification. Finally, in Chapter 7 we draw
conclusions and discuss directions of future work.





2
Prerequisites

This chapter presents some background material, which forms the foundation for the con-
tent of the later chapters of the thesis. After introducing some general notation in Sec-
tion 2.1 we will take a closer look at state-space models in Section 2.2. In particular,
we will introduce the class of conditionally linear Gaussian state-space (CLGSS) models,
which will play an important role in this thesis. In Section 2.3, we will see that the filtering
and smoothing recursions provide a general, conceptually simple solution to the state infer-
ence problem. However, these recursions are typically not analytically tractable, meaning
that some approximative methods are required. The focus in this thesis is on Monte Carlo
based approximation, which is why we review some basic concepts from sampling theory
in Section 2.4.

2.1 Notation

Let us start by going through some of the notation that will be used throughout the thesis.
If the notation introduced in the present section is unfamiliar or confusing, Appendix A
provides a short introduction to measure and probability theory which might be enlighten-
ing. See also any of the standard texts on probability, e.g. the excellent book by Billingsley
[1995]. This section is a complement to the list of notation given prior to Chapter 1, and
consequently, all notation used in the thesis is not presented here.

When relevant, all random variables are defined on a common probability space (Ω,F ,P).
For a measurable space (X,X ), we denote by F(X) the set of all X/B(R)-measurable
functions from X to R. For a measure µ on X and f ∈ F(X), we denote by µ(f) the
integral

∫
f dµ (assuming that the integral exists). Hence, if µ is a probability measure,

µ(f) is the expectation of the function f under the distribution µ. For p ≥ 1, Lp(X, µ)
denotes the set of functions f ∈ F(X) such that

∫
|f |p dµ <∞.

11
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Let (X,X ) and (Y,Y) be two measurable spaces. A kernel V from X to Y is a map
V : (Y,X)→ R+ ∪ {∞}, written V (A | x), such that

i) for each x ∈ X, the map A 7→ V (A | x) is a measure on Y .

ii) for each A ∈ Y , the map x 7→ V (A | x) is X/B(R)-measurable.

A kernel is called a transition kernel if V (Y | x) = 1 for any x ∈ X. Hence, for a
transition kernel V and a fixed x ∈ X, V ( · | x) is a probability measure on Y . With
f : X × Y → R, f(x, · ) ∈ L

1(Y, V ( · | x)) we let V (f) denote the function V (f)[x] =∫
f(x, y)V (dy | x).

For two measures ν and µ, we say that ν is absolutely continuous with respect to µ,
written ν ≪ µ, if µ(A) = 0 ⇒ ν(A) = 0. Measures will often be expressed as acting
on “infinitesimal sets”. For instance, if (X,X ) is a measurable space, ν and µ are both
measures on X and we wish to state that p is the density of ν w.r.t. to µ, we write

ν(dx) = p(x)µ(dx). (2.1a)

The implicit meaning of this notation is that

ν(A) =

∫

A

p(x)µ(dx), for all A ∈ X . (2.1b)

This convention is used to make it easier to determine directly from the expression for a
measure, on which σ-algebra the measure is defined.

By N (m,Σ) we denote the multivariate Gaussian distribution with mean m and covari-
ance matrix Σ. We also write N (x;m,Σ) when referring to the probability density func-
tion (PDF) of this distribution. By Cat({pi}Ni=1) we denote the categorical (discrete) distri-
bution with probabilities {pi}Ni=1 such that

∑
i pi = 1. Hence, if X ∼ Cat({pi}Ni=1) the

range of X is {1, . . . , N} and P(X = i) = pi. A few additional standard distributions
are defined in the list of notation given prior to Chapter 1.

2.2 State-space models

A state-space model (SSM) provides a convenient way of modeling a stochastic process.
Let the state process {Xt}t≥1 be a discrete-time stochastic process on the state-space
(X,X ) (typically some power of the real line with the corresponding Borel σ-algebra).
Here, Xt represents the internal state of the system at time t, and holds all information
about the system at this point in time. Hence, if we know what value Xt takes, past
states or measurements hold no further information about the system at time t. This is
reflected in Xt being Markovian, with transition kernel Q(dxt+1 | xt) and initial distribu-
tion ν(dx1). However, the state process is typically not known, we say that it is hidden.
Instead, we observe the system through the measurement process {Yt}t≥1, defined on the
measurable space (Y,Y). Given Xt = xt, the measurement Yt is conditionally indepen-
dent of past and future states and observations, and is distributed according to the kernel
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Xt−1 Xt Xt+1

Yt−1 Yt Yt+1

Figure 2.1: Graphical model of an SSM.

G(dyt | xt). The SSM is thus given by,

X1 ∼ ν(dx1), (2.2a)

Xt+1 | {Xt = xt} ∼ Q(dxt+1 | xt), (2.2b)

Yt | {Xt = xt} ∼ G(dyt | xt). (2.2c)

A graphical model, illustrating the conditional dependencies in the SSM, is given in Fig-
ure 2.1. The model (2.2) is a fairly general representation of a dynamical system. No
assumption on linearity and/or Gaussianity is made. However, as can be seen from the
expressions above, the model is assumed to be time homogeneous, i.e. the kernels Q and
G are not depending on t. However, this assumption is made merely to keep the nota-
tion uncluttered. In the sequel, the results presented can be seen as applicable also to time
inhomogeneous models, allowing e.g. for the dependence on some known input sequence.

Alternatively, an equivalent functional representation of (2.2) may be used (with the same
initial distribution ν for X1),

Xt+1 = f(Xt, Vt), (2.3a)

Yt = h(Xt, Et). (2.3b)

Here, the process noise Vt and the measurement noise Et are mutually independent se-
quences of i.i.d. random variables.

In what follows, we will mostly be concerned with systems in which all random variables
have densities w.r.t. some distributions. Hence, we make the following definitions.

Definition 2.1 (Partially dominated state-space model). The state-space model (2.2)
is said to be partially dominated if there exists a probability measure µ on Y such that
G( · | xt) ≪ µ( · ) for all xt ∈ X. The density of G(dyt | xt) w.r.t. µ will be denoted
p(yt | xt) and be referred to as the measurement density function.

Definition 2.2 (Fully dominated state-space model). The state-space model (2.2) is
said to be fully dominated if, in addition to the conditions of Definition 2.1, there exists a
probability measure λ on X such that ν ≪ λ and Q( · | xt) ≪ λ( · ) for all xt ∈ X. The
density of Q(dxt+1 | xt) w.r.t. λ will be denoted p(xt+1 | xt) and be referred to as the
transition density function.
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Remark 2.1 (A notational convention). In Definition 2.2 the same symbol p has been deliberately
used to represent both the measurement density function and the transition density function. Which
one of the two densities that is referred to is solely indicated by the arguments of the function. This
abuse of notation is common, e.g. in statistical signal processing and automatic control, and shall be
adopted in this thesis as well. Furthermore, the model (2.2) implicitly defines the distribution of any
finite collection of variables from the processes Xt and Yt, as well as marginals and conditionals
thereof. If the model is fully dominated, these distribution will also have densities (w.r.t. some
product of µ and λ), and all such densities will be denoted p (again, letting the arguments indicate
which density that is referred to). This notational convention will be exemplified in Section 2.3 and
is widely applied in the remaining of this thesis. Finally, in case the model is fully dominated, we
will also write dx instead of λ(dx) whenever integrating w.r.t. λ.

Remark 2.2. In many practical applications it is common to have (X,X ) = (Rnx ,B(Rnx)) and
(Y,Y) = (Rny ,B(Rny )) for some integers nx and ny (the state and measurements dimensions,
respectively). Also, if the random variables of the model are continuous, both µ and λ can often be
taken as Lebesgue measure, further motivating the convention to replace λ(dx) with dx.

2.2.1 Linear Gaussian state-space models

A time inhomogeneous linear Gaussian state-space (LGSS) model is given by,

Xt+1 = AtXt + bt + Vt, Vt ∼ N (0, Qt), (2.4a)

Yt = CtXt + dt + Et, Et ∼ N (0, Rt), (2.4b)

where the process noise Vt and the measurement noise Et are sequences of independent
Gaussian random variables. Here, At and Ct are sequences of matrices with appropriate
dimensions, Qt and Rt are sequences of covariance matrices and bt and dt are sequences
of known vectors, e.g. originating from an input signal exciting the system.

Strictly speaking, (2.4) is not a special case of (2.2), since the latter is time homogeneous
and the former is not (the kernelsQ andG in (2.2) are not t-dependent). Of course, a time
homogeneous special case of (2.4) is obtained if all known quantities mentioned above
(At, Ct, etc.) are constant w.r.t. t. However, for reasons that will become clear in the next
section, we choose this (more general) definition for an LGSS model.

LGSS models are without doubt the most important and most well studied class of SSMs.
There are basically two reasons for this. First, LGSS models provide sufficiently accurate
descriptions of many interesting dynamical systems. Second, the class of LGSS models is
one of the few model classes, simple enough to allow for an analytical treatment.

Example 2.1: Partially or fully dominated SSM

Now that we have defined the class of LGSS models, let us exemplify the difference be-
tween partially and fully dominated SSMs, as defined in Definition 2.1 and Definition 2.2,
respectively. Consider the time homogeneous LGSS model,

Xt+1 = AXt + Vt, Vt ∼ N (0, Q), (2.5)

Yt = CXt + Et, Et ∼ N (0, R), (2.6)

with state-space (Rnx ,B(Rnx)) and observation space (R,B(R)). Then, the measure-
ment kernel G(dyt | xt) is Gaussian (for all xt ∈ R

nx ) and dominated by Lebesgue
measure. Hence, the model is partially dominated.
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If the process noise covariance Q is full rank, then the transition kernel Q(dxt+1 | xt) is
also Gaussian (for all xt ∈ R

nx ) and dominated by Lebesgue measure. In this case, the
model is fully dominated. However, if the process noise covariance is rank deficient, then
Vt has no density function (w.r.t. Lebesgue measure) and the model is not fully dominated.
To have a rank deficient process noise covariance is common in many applications, for
instance if there is a physical connection between some of the states (such as between
position and velocity) or if the model is single input, single output with input and output
noises.

There are many other examples of non-fully dominated SSMs, e.g. if the state-space is
continuous but there is a nonzero probability that the state “jumps” to some specific point.

2.2.2 Conditionally linear Gaussian state-space models

A conditionally linear Gaussian state-space (CLGSS) model is defined as below.

Definition 2.3 (CLGSS model). Let Xt, the state process in an SSM, be partitioned ac-
cording to Xt = {Ξt, Zt} and X = Xξ ×Xz . The SSM is a CLGSS model if the conditional
process {Zt | Ξ1:t}t≥1 is a time inhomogeneous LGSS model.

The reason for this, rather abstract definition is that there are many different functional
forms (see the examples below), that all share the same fundamental property; conditioned
on one part of the state, the remaining part behaves as an LGSS model. Since this is the
property that we wish to exploit when constructing algorithms for this type of models, it
is better to make the definition as general as possible, leading to algorithms that are more
widely applicable. Since the Z-process is conditionally linear, we shall call Zt the linear
state whereas Ξt will be called the nonlinear state.

Remark 2.3. Note that, for most CLGSS models of interest, it is necessary to condition on the entire
nonlinear trajectory Ξ1:t for the conditional process to be linear, i.e. to condition on just Ξt is not
sufficient. We comment further on this in Example 2.2 below.

To explicate what kind of models that are of CLGSS type, we give two examples of such
models below.

Example 2.2: Hierarchical CLGSS model
One of the most commonly seen examples of a CLGSS model is what we here denote a
hierarchical CLGSS model. The name refers to the relationship between the variables Ξt

and Zt, where Ξt is at the top of the hierarchy, evolving according to a Markov kernel
Qξ(dξt+1 | ξt) independently of Zt. The conditional dependencies of the model are
illustrated in Figure 2.2. The linear state Zt obeys an LGSS model, parameterised by Ξt,
i.e. the model is given by,

Ξt+1 ∼ Qξ(dξt+1 | Ξt), (2.7a)

Zt+1 = f(Ξt) +A(Ξt)Zt + Vt, (2.7b)

Yt = h(Ξt) + C(Ξt)Zt + Et, (2.7c)
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Ξt−1 Ξt Ξt+1

Zt−1 Zt Zt+1

Yt−1 Yt Yt+1

Figure 2.2: Graphical model of a hierarchical CLGSS model.

with Gaussian noise sources Vt and Et. The initial distribution of the process if defined
by Ξ1 ∼ νξ(dξ1) and

Z1 | Ξ1 ∼ N (z̄1|0(Ξ1), P1|0(Ξ1)). (2.8)

Here we have assumed that the matrices A, C etc. are functions of the state Ξt, but
otherwise independent of time. That is, (2.7) is a time homogeneous SSM (with state
Xt = {Ξt, Zt}). However, for any fixed time t ≥ 1 and conditioned on Ξ1:t, the se-
quences {A(Ξk)}tk=1, {C(Ξk)}tk=1, etc. are known. That is, conditioned on Ξ1:t, (2.7b,c)
describe a time inhomogeneous LGSS model with state Zt.

As previously pointed out, to condition on just Ξt is not sufficient. In that case, the
sequence {A(Ξk)}tk=1 (for instance) would consist of random elements, where only the
final element is known.

We continue with another CLGSS example, which will play a more central role in this
thesis.

Example 2.3: Mixed linear/nonlinear Gaussian state-space model
A mixed linear/nonlinear Gaussian state-space model can be expressed on functional form,
according to

Ξt+1 = fξ(Ξt) +Aξ(Ξt)Zt + V ξ
t , (2.9a)

Zt+1 = fz(Ξt) +Az(Ξt)Zt + V z
t , (2.9b)

Yt = h(Ξt) + C(Ξt)Zt + Et, (2.9c)

where the process noise Vt ,
[
(V ξ

t )
T (V z

t )
T
]T

and the measurement noise Et are mu-
tually independent, white and Gaussian according to,

Vt ∼ N (0, Q(Ξt)) , (2.10a)

Et ∼ N (0, R(Ξt)) , (2.10b)
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Ξt−1 Ξt Ξt+1

Zt−1 Zt Zt+1

Yt−1 Yt Yt+1

Figure 2.3: Graphical model of a mixed linear/nonlinear Gaussian state-space
model.

with

Q(Ξt) =

[
Qξ(Ξt) Qξz(Ξt)
Qξz(Ξt)

T Qz(Ξt)

]
. (2.10c)

The initial distribution of the process if defined by Ξ1 ∼ νξ(dξ1) and

Z1 | Ξ1 ∼ N (z̄1|0(Ξ1), P1|0(Ξ1)). (2.11)

For this type of model (as opposed to hierarchical CLGSS models), the evolution of the
nonlinear state (2.9a) depends on the Z-process and can not simply be neglected when
considering the conditional process. In fact, conditioned on Ξ1:t the relationship (2.9a)
holds information about the Z-process and can be seen as an extra measurement. The
conditional dependencies of the model are illustrated in Figure 2.3.

We will in the sequel make frequent use of a more compact reformulation of (2.9) accord-
ing to

Xt+1 = f(Ξt) +A(Ξt)Zt + Vt, (2.12a)

Yt = h(Ξt) + C(Ξt)Zt + Et, (2.12b)

with

Xt =

[
Ξt

Zt

]
, f(Ξt) =

[
fξ(Ξt)
fz(Ξt)

]
, A(Ξt) =

[
Aξ(Ξt)
Az(Ξt)

]
. (2.12c)

2.3 Filtering and smoothing recursions

This section will treat the fundamental problem of state inference, mentioned in Chapter 1,
using the SSM setting. The material of this section is to a large extent influenced by Cappé
et al. [2005], who provide a much more in-depth treatment of the subject. Assume that a
partially (or fully) dominated SSM is given, according to Definition 2.1 (or Definition 2.2).
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Table 2.1: Filtering, smoothing and predictive distributions and densities

Distribution Density

Filtering Φt|t(dxt) p(xt | y1:t)
Joint smoothing Φ1:T |T (dx1:T ) p(x1:T | y1:T )
Marginal smoothing (t ≤ T ) Φt|T (dxt) p(xt | y1:T )
Fixed-interval smoothing (s < t ≤ T ) Φs:t|T (dxs:t) p(xs:t | y1:T )
Fixed-lag smoothing (ℓ fixed) Φt−ℓ+1:t|t(dxt−ℓ+1:t) p(xt−ℓ+1:t | y1:t)
k-step prediction Φt+k|t(dxt+k) p(xt+k | y1:t)

Since the state Xt holds all information about the system at time t, it is natural to ask
what is known about the state process, given a sequence of observations Y1:T = y1:T .
More precisely, what is the distribution of some state sequence Xs:t conditioned on the
measurements Y1:T ? Before we answer this question, let us make the following definition.

Definition 2.4 (Likelihood function). The likelihood function p(y1:T ) is the PDF of the
measurement sequence Y1:T .

In terms of the quantities of the model (2.2), the likelihood function can be expressed as,

p(y1:T ) =

∫
···
∫
ν(dx1)

T∏

i=1

p(yi | xi)
T−1∏

i=1

Q(dxi+1 | xi). (2.13)

In the sequel, it will be implicit that all results hold only for y1:T in the set of probability
one, for which p(y1:T ) is strictly positive.

Let us now define a family of conditional probability distributions by

Φs:t|T (A) = P(Xs:t ∈ A | Y1:T = y1:T ), (2.14)

for A ∈ X (t−s+1) and for some indices s, t, T ∈ N, s ≤ t. For ease of notation, when
s = t we use Φt|T as shorthand for Φt:t|T . There are a few special cases that are of par-
ticular interest, summarised in Table 2.1. Apart from the distributions according to (2.14),
the table also provides their densities using the notational convention of Remark 2.1 on
page 14. Hence, the rightmost column of the table should only be seen as valid for fully
dominated models.

Remark 2.4 (Readers uncomfortable with the construction (2.14) are encouraged to read this re-
mark). To define a measure according to (2.14) is not really rigorous and conditional probability
is a more complicated business than what is indicated by (2.14). Basically, the problem arises since
we wish to condition on the set {ω : Y1:T (ω) = y1:T } which in many cases has probability zero.
We should rather have written that Φs:t|T (dxs:t | y1:T ) is a kernel from Y

T to X
(t−s+1) such that

Φs:t|T (A | Y1:T ) is a version of the conditional probability P(Xs:t ∈ A | Y1:T ). In (2.14), the
dependence on y1:T on the left hand side is implicit. If one does not like the definition (2.14), the
expression (2.15) can alternatively be taken as the definition of the Φ-family of distributions. How-
ever, it is still instructive to think of Φs:t|T as the distribution of Xs:t given a fixed sequence of
measurements y1:T , and the interpretation is the same regardless of how we choose to define it.
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By simple substitution or from Bayes’ rule, the following result is easily obtained.

Proposition 2.1. Let a partially (or fully) dominated SSM be given, with initial distribu-

tion ν, transition kernelQ and measurement density function p(yt | xt). Let the likelihood

function be given by (2.13). Then, for any T ≥ 1 and k ≥ 0 and for A ∈ X (T+k),

Φ1:T+k|T (A) =
1

p(y1:T )

∫

A

ν(dx1)
T∏

i=1

p(yi | xi)
T+k−1∏

i=1

Q(dxi+1 | xi). (2.15)

Proof: See e.g. Cappé et al. [2005], Proposition 3.1.4.

By marginalisation, (2.15) provides an explicit expression for any member of the family
(2.14). Hence, the state inference problem might at first glance appear to be of simple
nature, since its solution is provided by (2.15). There are however two reasons for why
this is not the case.

1. To be able to evaluate the distributions of Table 2.1 in a systematic manner, e.g.
in a computer program, we often seek more structured expressions than what is
provided by (2.15). Typically, this means to express the distribution of interest
recursively. This is required also if the distribution is to be evaluated online.

2. The (multidimensional) integral appearing in (2.15) is in most cases not analytically
tractable, and some approximate method of evaluation is required.

In the remainder of this section, the first of these problems will be addressed. Recur-
sive expressions for the filtering distribution and the joint smoothing distribution will be
provided. The k-step predictive distribution can straightforwardly be obtained from the
filtering distribution, and will be paid no further attention. See also the discussion in Sec-
tion 2.3.1. The second, more intricate problem of how to evaluate the intractable integrals
will be discussed in Chapter 3 and in Chapter 5.

2.3.1 Forward recursions

Let us start by considering the filtering distribution. By marginalisation of (2.15) we have,
for any t ≥ 1,

Φt|t(dxt) =
1

p(y1:t)

∫

Xt−1

ν(dx1)
t∏

i=1

p(yi | xi)
t−1∏

i=1

Q(dxi+1 | xi). (2.16)

Here we have used the convention that
∏0

i=1( · ) = 1.

Remark 2.5. When analysing expressions such as (2.16), some “pattern matching” is required to
determine the meaning of the integral on the right hand side. We see that the filtering distribution
on the left hand side is a measure on X , indicated by the “dxt”. This means that “dxt” should be a
residue on the right hand side as well, i.e. the integral is with respect to dx1 . . . dxt−1 (hence over
the set Xt−1), but dxt is left untouched.
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Furthermore, the 1-step predictive distribution (at time t− 1) is given by,

Φt|t−1(dxt) =
1

p(y1:t−1)

∫

Xt−1

ν(dx1)
t−1∏

i=1

p(yi | xi)
t−1∏

i=1

Q(dxi+1 | xi). (2.17)

Hence, by combining the above results we get the following, two-step recursion for the
filtering distribution,

Φt|t(dxt) =
p(yt | xt)Φt|t−1(dxt)

p(yt | y1:t−1)
, (2.18a)

Φt+1|t(dxt+1) =

∫

X

Q(dxt+1 | xt)Φt|t(dxt), (2.18b)

where we have made use of the relation p(yt | y1:t−1) = p(y1:t)p(y1:t−1)
−1 and adopted

the convention Φ1|0(dx1) = ν(dx1). As can be seen from (2.18b), the 1-step predictive
distribution is given as a byproduct in the filtering recursion. Also, the k-step predictive
distribution can easily be obtained from the filtering distribution similarly to (2.18b), by
applying the kernel Q iteratively k times.

The recursion (2.18) is known as the Bayesian filtering recursion. Step (2.18a) is often
called the measurement update, since the “current” measurement yt is taken into account.
Step (2.18b) is known as the time update, moving the distribution forward in time, from t
to t+ 1.

Assuming that the model is fully dominated, we can express the recursion in terms of
densities instead, leading to,

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
, (2.19a)

p(xt+1 | y1:t) =
∫
p(xt+1 | xt)p(xt | y1:t) dxt. (2.19b)

By a similar procedure we can obtain a recursion for the joint smoothing distribution,

Φ1:t|t(dx1:t) =
p(yt | xt)Φ1:t|t−1(dx1:t)

p(yt | y1:t−1)
, (2.20a)

Φ1:t+1|t(dx1:t+1) = Q(dxt+1 | xt)Φ1:t|t(dx1:t), (2.20b)

or in terms of densities,

p(x1:t | y1:t) =
p(yt | xt)p(x1:t | y1:t−1)

p(yt | y1:t−1)
, (2.21a)

p(x1:t+1 | y1:t) = p(xt+1 | xt)p(x1:t | y1:t). (2.21b)

The above recursion for the joint smoothing distribution will be denoted the forward re-
cursion, since it propagates forward in time (increasing indices t). As we shall see in the
coming section, it is also possible to find a time-reversed recursion for this distribution.
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2.3.2 Backward recursions

Assume that we have made observations of the measurement sequence up to some “fi-
nal” time T , i.e. we have observed Y1:T = y1:T . Conditioned on these measurements,
the state process {Xt}Tt=1 is an inhomogeneous Markov process. Under some weak as-
sumptions (see Cappé et al. [2005], Section 3.3.2 for details), the same holds true for the
time-reversed chain, starting at time T and evolving backward in time according to the so
called backward kernel,

Bt(A | xt+1) , P(xt ∈ A | Xt+1 = xt+1, Y1:T = y1:T ), (2.22a)

for A ∈ X . Note that the backward kernel is time inhomogeneous, hence the dependence
on t in the notation. It is not always possible to give an explicit expression for the back-
ward kernel. However, for a fully dominated model, this can always be done, and its
density is given by

p(xt | xt+1, y1:T ) =
p(xt+1 | xt)p(xt | y1:t)∫
p(xt+1 | xt)p(xt | y1:t) dxt

. (2.22b)

It also holds true that p(xt | xt+1, y1:T ) = p(xt | xt+1, y1:t). This fact is related to the
conditional independence properties of the SSM; if we know the state at time t + 1, there
is no further information available in the measurements yt+1:T .

Using the backward kernel, the joint smoothing distribution can be shown to obey the
following backward recursion (see e.g. [Douc et al., 2010]),

Φt:T |T (dxt:T ) = Bt(dxt | xt+1)Φt+1:T |T (dxt+1:T ), (2.23)

starting with the filtering distribution ΦT |T at time T . When the recursion is “complete”,
i.e. at t = 1, the joint smoothing distribution for the time interval 1, . . . , T is obtained.
By marginalisation of (2.23), we also obtain a recursion for the marginal smoothing dis-
tribution,

Φt|T (dxt) =

∫

X

Bt(dxt | xt+1)Φt+1|T (dxt+1) (2.24)

and based on this, an expression for the fixed-interval smoothing distribution,

Φs:t|T (dxs:t) = Bs(dxs | xs+1) · · ·Bt−1(dxt−1 | xt)Φt|T (dxt). (2.25)

The backward kernel at time t depends on the filtering distribution Φt|t. This is most
clearly visible in the explicit expression for its density (2.22b), where the filtering den-
sity p(xt | y1:t) appears. Hence, to utilise the backward recursion (2.23) for smoothing,
the filtering distributions must first be computed for t = 1, . . . , T . Consequently, this
procedure is generally called forward filtering/backward smoothing.

Remark 2.6. As a final remark of this section, it is worth to mention that other types of recursions
can be used to obtain the same, or related distributions as treated above. Most notable are the two-
filter recursion and the backward filtering/forward smoothing recursion, as alternatives to (2.23)
(see e.g. [Cappé et al., 2005, Chapter 3]). The reason for why (2.23) is the only recursion presented
here, is that it will be used in the smoothing algorithms that will be discussed in Chapter 5, which
are of the type forward filtering/backward smoothing.
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2.4 Sampling theory

In the coming chapters, a few concepts from sampling theory will be frequently used.
These include importance sampling (IS), sampling importance resampling (SIR) and rejec-
tion sampling (RS). For readers unfamiliar with these concepts, they will be reviewed in
this section. We will not make a formal treatment of the theory. Instead, the current sec-
tion aims at providing an intuition for the mechanisms underlying the different methods.

For the purpose of illustration, let µ be a probability distribution. We are interested in
evaluating the expectation of some integrable function f under this distribution,

µ(f) =

∫
f(x)µ(dx). (2.26)

Now, if the above integral is intractable, it can be approximated using Monte Carlo (MC) in-
tegration. This is done by sampling a sequence {Xi}Ni=1 of i.i.d. random variables dis-
tributed according to µ, and computing the approximation

µ(f) ≈ 1

N

N∑

i=1

f(Xi). (2.27)

By the strong law of large numbers, this approximation converges almost surely to the
true expectation as N tends to infinity.

It is convenient to introduce a distribution µN
MC, as an approximation of µ, based on the

samples Xi as

µN
MC =

1

N

N∑

i=1

δXi
, (2.28)

where δx is a point-mass located at x. The approximation (2.27) is then given by µN
MC(f).

Note that (2.28) is a random probability distribution.

2.4.1 Importance sampling

The problem that one often faces is that it is hard to sample from the desired distribution
µ, which from now on will be denoted the target distribution. IS a way to circumvent this
problem.

Let η be a probability distribution (called the proposal) such that µ ≪ η. Besides from
this constraint, the distribution can be chosen arbitrarily. We then have

µ(f) =

∫
f(x)µ(dx) =

∫
f(x)

dµ

dη
(x)η(dx) = η

(
f · dµ

dη

)
. (2.29)

If the proposal distribution η is chosen so that it easily can be sampled from, we can
approximate µ(f) by

µ(f) ≈ 1

N

N∑

i=1

dµ

dη
(Zi)f(Zi), (2.30a)

where {Zi}Ni=1 is a sequence of i.i.d. random variables distributed according to η. We
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see that this leads to the same type of approximation as in (2.27), but the samples are
weighted with the quantities,

W̃i ,
1

N

dµ

dη
(Zi), (2.30b)

known as importance weights. This corrects for the errors introduced by sampling from
the wrong distribution. The quality of the approximation (2.30) will be affected by the
mismatch between the proposal and the target distributions. To get good performance
from the IS method (for arbitrary, integrable test functions f ), it is important that the
proposal resembles the target as closely as possible.

It is often the case that the Radon-Nikodym derivative dµ/dη(x) can be evaluated only
up to proportionality (see e.g. the application of IS for sequential Monte Carlo (SMC) in
Chapter 3). Thus, assume that,

dµ

dη
(x) =

1

C
κ(x), (2.31)

where κ(x) can be evaluated, but C is an unknown constant. To estimate this constant,
the same set of samples {Zi}Ni=1 can be used. Since

∫
dµ

dη
(x)η(dx) = 1, (2.32a)

it follows that

C =

∫
κ(x)η(dx) ≈ 1

N

N∑

i=1

κ(Zi) =
N∑

i=1

W ′
i , (2.32b)

where we have introduced the unnormalized importance weights

W ′
i ,

1

N
κ(Zi) ∝

dµ

dη
(Zi). (2.32c)

An approximation of the (normalised) importance weights (2.30b) is then given by

W̃i =
1

NC
κ(Zi) ≈Wi ,

W ′
i∑

kW
′
k

. (2.33)

Similarly to (2.28) we can construct a point-mass distribution µN
IS , approximating µ, as

µN
IS =

N∑

i=1

WiδZi
. (2.34)

The approximation (2.30) together with (2.33) is then attained as µN
IS (f). Note that, even

if the constant C would be known, the weight normalisation is required for (2.34) to be
interpretable as a probability distribution. We shall refer to the collection {Zi,Wi}Ni=1 as
a weighted particle system (implicitly, with nonnegative weights Wi that sum to one, see
Definition 3.1 in the next chapter). Such a system uniquely defines a probability measure
according to (2.34), and we say that the system targets the distribution µ. The importance
sampling method is summarised in Algorithm 2.1.
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Algorithm 2.1 Importance sampling

Input: A target distribution µ and a proposal distribution η, s.t. µ≪ η.
Output: A weighted particle system {Zi,Wi}Ni=1 targeting µ.

1: Draw N i.i.d. samples {Zi}Ni=1 from the proposal.
2: Compute the unnormalised importance weights,

W ′
i ∝

dµ

dη
(Zi), i = 1, . . . , N.

3: Normalise the weights,

Wi =
W ′

i∑
kW

′
k

, i = 1, . . . , N.

2.4.2 Sampling importance resampling

As pointed out in the previous section, the IS scheme will result in a weighted particle
system {Zi,Wi}Ni=1, targeting some distribution µ. If we for some reason seek an un-
weighted sample, targeting the same distribution (this is for instance important in the SMC

methods discussed Chapter 3), we can employ SIR.

The idea is very simple. As previously pointed out, the reason for resorting to IS (or SIR) is
that we cannot straightforwardly sample from the target distribution µ directly. However,
since (2.34) provides an approximation of µ, we can drawM new, i.i.d. samples from this
distribution,

Z̄j ∼ µN
IS , j = 1, . . . , M. (2.35)

Since µN
IS has finite support, sampling from it is straightforward. We set Z̄j = Zi with

probability Wi, i.e.

P
(
Z̄j = Zi

∣∣ {Zk,Wk}Nk=1

)
=Wi, j = 1, . . . , M. (2.36)

This results in an equally weighted particle system {Z̄j , 1/M}Mj=1 targeting the same
distribution µ. The particle system defines a point-mass distribution µM

SIR approximating
µ, analogously to (2.28) (with X replaced by Z̄).

The procedure which (randomly) turns a weighted particle system into an unweighted one,
is called resampling. The method defined by (2.36) is known as multinomial resampling,
and it is the simplest and most intuitive method. However, there are other types of resam-
pling methods that are preferable, since they introduce less variance in the approximation
µM

SIR(f). We will return to this in Section 3.1.2.

2.4.3 Rejection sampling

An alternative to IS and SIR is RS. This is a sampling method which in fact generate i.i.d.
samples from the target distribution µ. The main drawback with RS is that it can be
computationally demanding, and there is no upper bound on the execution time required
to generate a sample of fixed size. We return to these issues at the end of this section.
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Algorithm 2.2 Rejection sampling

Input: A target distribution µ and a proposal distribution η, s.t. µ ≪ η, dµ/dη(x) ∝
κ(x) < ρ.

Output: N i.i.d. samples {Zi}Ni=1 from the target distribution.

1: L← {1, . . . , N}.
2: while L is not empty do
3: n← card(L).
4: δ ← ∅.
5: Sample independently {Z ′

k}nk=1 ∼ η.
6: Sample independently {Uk}nk=1 ∼ U([0, 1]).
7: for k = 1 to n do
8: if Uk ≤ κ(Z ′

k)/ρ then
9: ZL(k) ← Z ′

k.
10: δ ← δ ∪ {L(k)}.
11: end if
12: end for
13: L← L \ δ.
14: end while

Analogously to the IS procedure, we choose a proposal distribution η, such that µ ≪ η.
As in (2.31) we assume that the Radon-Nikodym derivative dµ/dη(x) can be evaluated,
at least up to proportionality, i.e.

dµ

dη
(x) =

1

C
κ(x), (2.37)

where κ can be evaluated and C is a (possibly) unknown constant. Furthermore, we shall
assume that the function κ is bounded from above by some known constant ρ <∞. The
RS procedure is then as follows. First, we draw a sample Z ′ from the proposal distribution,
and sample a random variable U uniformly over the unit interval, i.e.

Z ′ ∼ η, (2.38a)

U ∼ U([0, 1]). (2.38b)

The variable U serves as an indicator on whether we should accept Z ′ as a valid sam-
ple from the target distribution µ or not. More precisely, we accept the sample and set
Z := Z ′ ifU ≤ κ(Z ′)/ρ. If this is not the case, we reject the sampleZ ′ and repeat the pro-
cedure (2.38) until a sample is accepted. The RS method is summarised in Algorithm 2.2,
in which N samples are generated in parallel.

The procedure outlined above does indeed produces a sample Z, distributed according to
the target distribution µ. To see this, let X be the σ-algebra on which the distributions µ
and η are defined. Take A ∈ X and consider,

P(Z ∈ A) = P(Z ′ ∈ A | U ≤ κ(Z ′)/ρ) =
P(Z ′ ∈ A ∩ U ≤ κ(Z ′)/ρ)

P(U ≤ κ(Z ′)/ρ)
. (2.39)
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r(Z ′)U

p(Z ′)/ρ

r(Z ′)

Z ′

Figure 2.4: Illustration of RS. A sample Z ′ is proposed from the density r(x). The
sample is accepted if r(Z ′)U ≤ p(Z ′)/ρ.

Since Z ′ is distributed according to η, the numerator in the expression above is given by,
∫

A

P(U ≤ κ(x)/ρ)η(dx) =
∫

A

κ(x)

ρ
η(dx) =

C

ρ
µ(A), (2.40)

where we have made use of the relation (2.37) and the fact that U is distributed according
to (2.38b). The denominator in (2.39) can, by similar calculations, be show to equal C/ρ.
Hence, we get

P(Z ∈ A) = µ(A), (2.41)

which confirms that Z has the desired distribution. The RS approach is illustrated in
Example 2.4, which also provides an intuitive explanation of the mechanism.

Example 2.4: Rejection sampling
Assume that we wish to sample from the GMM with density,

p(x) =
3

4
N (x;−0.3, 0.7) + 1

4
N (x; 1, 0.2), (2.42)

using RS. We choose a Gaussian proposal distribution with density r(x) = N (x; 0, 1.3)
and let ρ be a constant such that p(x)/r(x) < ρ. A sample Z ′ is draw from the proposal
distribution and U is drawn uniformly from the unit interval, as in (2.38). Then, the
pair {Z ′, r(Z ′)U} can be seen as uniformly distributed over the grey area in Figure 2.4,
bounded by the PDF r(x). However, we only wish to accept the sample if it appears as if
being a sample from the target distribution, i.e. if it falls within the white area bounded
by p(x)/ρ. That is, we accept Z ′ as a sample from p(x) if U ≤ p(Z ′)/(r(Z ′)ρ). The
acceptance probability is the ratio between the areas under the curves in Figure 2.4, but
since both densities are normalised, this ratio is simply 1/ρ.

As previously mentioned, the main problem with RS is that it can be computationally
expensive and that there is no upper bound on the number of executions required to draw a
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fixed number of samples. Clearly, the applicability of the algorithm relies on a sufficiently
high acceptance probability. If the acceptance probability is low, much computational
effort is spent on proposing samples that are later rejected. Now, let us see what happens
when we apply RS in spaces of increasing dimension. For the sake of illustration, assume
that we wish to draw samples from the d-dimensional, standard Gaussian distribution.
As proposal distribution, we use a d-dimensional, zero-mean Gaussian distribution with
covariance matrix σ2

rId×d. For the quotient between the target and the proposal to be
bounded, we require that σr ≥ 1. Then, the lowest bound on this quotient is given
by ρ = σd

r , which implies that the acceptance probability is at best 1/σd
r . Hence, the

acceptance probability decays exponentially as we increase the dimension of the problem,
and for high-dimensional problems the method can be impractical. This issue is known
as the curse of dimensionality.





3
Sequential Monte Carlo

In Section 2.3, recursive expressions for several distributions of interest were given. How-
ever, to compute any of these distributions, we still face the problem of evaluating their
updating formulas, e.g. (2.18) or (2.20) on page 20. As previously mentioned, analytical
evaluation of these formulas is tractable only in a few special cases, basically if the un-
derlying state-space model (SSM) is linear Gaussian or with a finite state-space. In the
general case, we thus need to resort to approximations. The focus in this thesis will be on
Monte Carlo (MC) approximation, as outlined in Section 2.4, leading to class of methods
known as sequential Monte Carlo (SMC).

The basic procedure, underlying all the methods that we will consider in the sequel, is
to approximate probability measures by targeting them with weighted particle systems.
Hence, let us start by making the following definition.

Definition 3.1 (Weighted particle system). A weighted particle system on a measur-
able space (Z,Z) is a collection of random variables {Zi,Wi}Ni=1 on a probability space
(Ω,F ,P) s.t.,

i) Zi : Ω→ Z for i = 1, . . . , N .

ii) Wi : Ω→ [0, 1] for i = 1, . . . , N .

iii)
∑

iWi = 1.

We say that a weighted particle system defines an empirical probability distribution µN

on Z by,

µN =
N∑

i=1

WiδZi
. (3.1)

29
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3.1 A general SMC sampler

Common to many inference problems is the objective of recursively evaluating a sequence
of measures. This can for instance be the sequence of filtering distributions Φt|t or the
sequence of joint smoothing distributions Φ1:t|t for an increasing index t, but it is not
limited to these cases (see e.g. Section 3.3). When analysing different MC based algo-
rithms for these problems, it is inconvenient to be forced to treat each problem separately.
Hence, we seek a unifying framework for sequential MC approximation of any sequence
of measures; this framework will be denoted SMC. This section presents a general SMC

sampler, which in the coming sections will be applied to different problems, leading to
well known algorithms such as the particle filter (PF) and the Rao-Blackwellised particle
filter (RBPF). The language and notation used in this section is largely influenced by Douc
and Moulines [2008].

As mentioned above, we are generally interested in recursively approximating a sequence
of measures, which in SMC is done by targeting these measures by a sequence of weighted
particle systems. However, it can be realised that it is sufficient to consider a single
step in such a recursion. If we find procedures of moving from one step to the next,
these procedures can then serve as building blocks to construct sequential algorithms.
Hence, let ν and µ be probability measures on the measurable spaces (X̃, X̃ ) and (X,X ),
respectively. Let {ξ̃i, ω̃i}Mi=1 be a weighted particle system, targeting the distribution
ν. The basic component of the SMC sampler is then to transform this system into another
weighted particle system {ξi, ωi}Ni=1, which is targeting the distribution µ. We distinguish
between two different cases. If ν and µ agree on the space (X̃, X̃ ) = (X,X ), i.e. they are
the same measure, the transformation of the weighted particle system is called selection.
If this is not the case, the transformation is called mutation. The name mutation can
be motivated by the fact that we “mutate” the particle system into targeting a different
distribution. Selection, on the other hand, refer to transforming the particle system in a
way which does not change the target distribution. This is typically done by “selecting”
among the existing particles {ξ̃i, ω̃i}Mi=1 to construct the new particles {ξi, ωi}Ni=1.

SMC can be seen as a combination and generalisation of the sequential importance sam-
pling (SIS) [Handschin and Mayne, 1969] and sampling importance resampling (SIR) [Ru-
bin, 1987] methods, where mutation is related to the former and selection to the latter.
The multinomial resampling method outlined in Section 2.4.2 is an example of selection,
but as we shall see in Section 3.1.2 the concept is much more general.

3.1.1 Mutation

To mutate a weighted particle system targeting ν, into a new system, targeting µ, we need
to know how the two measures are related to each other. Hence, let L(dξ | ξ̃) be a (not
necessarily transition) kernel from X̃ to X, such that,

µ(dξ) =

∫
L(dξ | ξ̃)ν(dξ̃)∫
L(X | ξ̃)ν(dξ̃)

. (3.2)

Clearly, for the expression to make sense, we also require that L is such that the denomina-
tor in (3.2) is strictly positive. A kernel L satisfying (3.2) will be called a transformation
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kernel for the measures ν and µ, since is tells us how to transform the initial measure ν
into the target measure µ. For two given measures, ν and µ, there are many such kernels.
From a superficial point of view we can choose to work with either one of them. For
instance, to take L(dξ | ξ̃) ≡ µ(dξ) would suffice and as we shall see in Section 3.2.4,
this is actually one of the choices that are used in practice. It is important to understand
that a certain choice of L may impose a specific SMC algorithm, or a class of algorithms.
However, since the analyses of these methods are independent of which L we use, as long
as it satisfies (3.2), general results can be obtained which apply to all of them. See also
the discussion in Section 3.2.3.

Next, we introduce a proposal kernel R(dξ | ξ̃), as a transition kernel from X̃ to X. R
can be chosen arbitrarily, preferably so that we easily can sample from it, with the only
constraint that L( · | ξ̃)≪ R( · | ξ̃), for all ξ̃ ∈ X̃. We further define the weight function
W : (X̃× X)→ R+ by,

W (ξ̃, ξ) =
dL( · | ξ̃)
dR( · | ξ̃)

(ξ). (3.3)

Given a weighted particle system {ξ̃i, ω̃i}Mi=1 targeting ν, we now generate new particles
according to the following procedure. To allow for a varying number of particles before
and after the mutation, we assume that each particle ξ̃i gives rise to α offsprings, i.e.
N = αM . Rubin [1987] suggested to use multiple draws (α ≫ 1) in the SIR context,
with the motivation that an increased number of particles before the resampling step will
increase the number of distinct particles after the resampling step (see Section 3.1.2). The
offsprings are generated from the proposal kernel according to,

ξα(i−1)+k | {ξ̃j , ω̃j}Mj=1 ∼ R(dξ | ξ̃i), (3.4)

and are assigned (unnormalised) importance weights using the weight function (3.3),

ω′
α(i−1)+k = ω̃iW (ξ̃i, ξα(i−1)+k), (3.5a)

for k = 1, . . . , α and i = 1, . . . , M . After normalisation of the weights, i.e. by setting

ωi =
ω′
i∑

k ω
′
k

, i = 1, . . . , N, (3.5b)

we obtain a weighted particle system {ξi, ωi}Ni=1 targeting the distribution µ.

Remark 3.1. We have used the terminology that a weighted particle system targets a certain dis-
tribution, but we have yet not defined what this means. For the time being, it is enough with the
“intuitive” interpretation that the sample behaves as if it was sampled from the targeted distribution
using importance sampling (IS). In Chapter 4 the concept is more clearly pinned down, by introduc-
ing the notions of consistency and asymptotic normality.

3.1.2 Selection

SMC methods are designed to approximate a sequence of distributions, and by the muta-
tion procedure described above we have a way of moving from one distribution in the
sequence to the next. If we simply concatenate such mutation steps, we end up with the
SIS algorithm. However, there is a problem with this approach. The recursive updating
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of the weights according to (3.5) is not stable, in the sense that the variance of the nor-
malised weights ωi (almost always) increases over “time” [Cappé et al., 2005, page 232].
This means that, as we move forward through the sequence, one of the weights will tend
to one, whereas the remaining weights all tend to zero. The weighted particle system is
generally used to compute approximations similarly to (2.30) on page 22. It is clear that
a particle with a very small weight will have a minor contribution to the sum. We say that
the effective number of particles has decreased. Consequently, when all but one weights
tend to zero, we are basically left with a single particle, which of course is not enough to
do accurate MC integration. This problem is known as depletion of the particle system.

To circumvent depletion, we introduce the second basic component of SMC, namely selec-
tion. Given a weighted particle system {ξi, ωi}Ni=1 targeting the distribution µ, we wish to
transform this into a new system {ξ̃i, ω̃i}Mi=1 targeting the same distribution µ. The aim is
to do this in such a way that the sample variance of {ω̃i}Mi=1 is lower than that of {ωi}Ni=1.
In most cases in practice, this idea is driven as far as possible by minimising the weight
variance, i.e. by making sure that ω̃i ≡ 1/M after selection.

It should be noted that selection generally increase the variance of any estimator derived
from the weighted particle system. It should thus be conducted with care, since it degrades
the performance of the SMC method. In practical applications, it is generally a good idea to
keep track of the effective number of particles, and only apply selection when this number
is below some threshold. Gustafsson [2010], among others, provide technical details.

We distinguish between three different approaches to selection.

Resampling

The most common way (at least in the literature) to do selection, is by resampling. In
this approach, the new particle set is constructed by random draws among the existing
particles, i.e. ξ̃i ∈ {ξj}Nj=1 for i = 1, . . . , M . The number of particles after resampling
is fixed a priori, i.e. M is FN -measurable, with FN = σ({ξj , ωj}Nj=1). Furthermore, the
sampling is required to be unbiased; if Mj is the number of times particle j is replicated,
it should be the case that,

E[Mj | FN ] =Mωj , j = 1, . . . , N. (3.6)

This property also implies that the resulting weights should all be equal, i.e. resampling
produces an equally weighted particle system {ξ̃i, 1/M}Mi=1.

The simplest resampling scheme is multinomial resampling (see [Rubin, 1987] and the
discussion in Section 2.4.2). In this method, the new particles are generated as condition-
ally i.i.d. samples from the empirical distribution defined by {ξj , ωj}Nj=1, i.e.

P(ξ̃i = ξj | FN ) = ωj , i = 1, . . . , M. (3.7)

The name multinomial resampling comes from the fact that the number of offsprings
{Mj}Nj=1 of each particle is multinomially distributed. Multinomial resampling was used
in the seminal SMC paper by Gordon et al. [1993]. However, to reduce the variance in-
duced by the selection step, several alternatives have emerged. These include residual
resampling [Whitley, 1994, Liu and Chen, 1998] and stratified resampling [Kitagawa,
1996], which both can be shown to introduce less variance than multinomial resampling
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(see [Cappé et al., 2005, Section 7.4.2] and [Douc and Moulines, 2008]). Another alterna-
tive, often recommended as the method of choice, is systematic resampling by Carpenter
et al. [1999] (also mentioned by Whitley [1994] under the name universal sampling). It is
often conjectured that systematic resampling always outperforms multinomial resampling,
but this is not true, as shown by Cappé et al. [2005], page 249. However, in practice it
often performs well, as indicated by the empirical study by Hol et al. [2006]. See also
[Hendeby, 2008] for an illustrative review of the different resampling methods.

Branching

An alternative selection strategy to resampling is branching. The difference between the
two strategies, is that the latter uses a random number of particles. Hence, a branching
procedure generates M particles, where M is a (non FN -measurable) random variable.
That is, based on the particles and weights available before the selection, we cannot a
priori compute the number of particles that will be given after the selection. Just as for
resampling, there are many different ways to do branching, see e.g. [Crisan et al., 1999].
A simple approach, related to multinomial resampling, is binomial branching. In this
method, we choose a fixed number M ′, which is the desired, or nominal number of par-
ticles. The number of offsprings {Mj}Nj=1 of each particle are then independent draws
from a binomial distribution according to,

Mj ∼ Bin(M ′, ωj). (3.8)

This approach is unbiased, similarly to (3.6), but as previously mentioned, it may very
well be the case that,

N∑

j=1

Mj 6=M ′. (3.9)

One of the main motives for using branching is to open up for parallel implementation of
SMC methods. Branching methods can also be easier to implement than resampling. The
drawback, of course, is that the user cannot control the number of particles. Just as with
resampling, the branching procedures produce equally weighted particle systems.

Fractional reweighting

As indicated by the preceding notation, it is not necessary that the selection step generates
an equally weighted particle system. Liu et al. [2001] have suggested a method which
retains a fraction of the weights through the selection step. This approach has by Douc
and Moulines [2008] been called fractional reweighting. This idea can then be combined
with the resampling or branching methods mentioned above. Other ways to transform
a weighted particle system into a new system with non-equal weights are of course also
possible. We group these methods together into their own category, separate from the
resampling and branching methods, simply to emphasise the fact that selection need not
always lead to an equally weighted particle system.

Remark 3.2. Throughout the remaining of this thesis, we shall confine ourselves to using resam-
pling as selection procedure. In all experiments conducted, multinomial resampling has been used.
Furthermore, for notational simplicity, we shall assume that the number of particles is kept constant
at N . However, it is important to remember that a varying number of particles indeed can be inter-
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esting from a practical point of view, as mentioned in Section 3.1.1. The ideas and results provided
in this thesis can all be easily extended to deal with different selection procedures and a varying
number of particles.

3.2 Particle filter

This section is devoted to the particle filter (PF), the flagship of the SMC methods. The
PF is often credited Gordon et al. [1993], who were the first to combine the two crucial
parts, mutation and selection, resulting in a functioning algorithm. The SIS method by
Handschin and Mayne [1969] shows great resemblance to the PF, but lacks the selection
step. Hence, the method will suffer from weight depletion. During the 90’s, independent
developments were made by, among others Kitagawa [1996] and Isard and Blake [1998].
The research in the area has since then steadily intensified. For an overview and further
reference, see e.g. the work by Doucet et al. [2001a], Arulampalam et al. [2002], Cappé
et al. [2007] and Doucet and Johansen [2011].

In Section 3.2.3, the PF is derived with the general SMC framework of Section 3.1 in mind.
However, before that, we give a more intuitive presentation of the PF in Section 3.2.1. The
intention is to present the material in a more easily digested form, which may also be
more familiar to some readers. In that way, we provide some links between the different
types of notation.

The PF is an SMC method designed to target either the filtering distribution or the joint
smoothing distribution. It turns out that the algorithms will be identical for these two
choices of target distributions. This is not that surprising, since the filtering distribution is
one of the marginals of the joint smoothing distribution. Hence, if we attain the latter, we
also have the former. Due to this, we provide the details of the derivation, only for the PF

targeting the joint smoothing distribution. At the end on Section 3.2.3, we comment on
the difference in point of view, if we instead wish to target the filtering distribution.

3.2.1 An intuitive preview of the PF

Throughout this section, we assume that the model is fully dominated. As mentioned
above, the PF aims at approximating the joint smoothing distribution using sequences of
weighted particle systems. Hence, the density of the target distribution is p(x1:t | y1:t).
To sequentially draw samples from this distribution using IS, we choose a proposal density
which factorises according to,

r′t(x1:t | y1:t) = rt(xt | x1:t−1, y1:t) r
′
t−1(x1:t−1 | y1:t−1)︸ ︷︷ ︸

previous proposal

. (3.10)

Remark 3.3. The proposal density at time t is usually allowed to depend on the “old” state tra-
jectory, x1:t−1 as well as the measurement sequence up to time t, y1:t. It is common practice to
indicate this dependence, by writing the proposal as a conditional PDF as in (3.10).

The reason for why we require a factorisation according to (3.10), is to allow for a se-
quential algorithm. Let {x̃i1:t−1, w̃

i
t−1}Ni=1 be a weighted particle system targeting the

joint smoothing distribution at time t − 1. Sampling from (3.10) is done by keeping the
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existing particle trajectories and extending them with samples at time t, i.e.

xit ∼ rt(xt | x̃i1:t−1, y1:t), (3.11a)

xi1:t := {x̃i1:t−1, x
i
t}, (3.11b)

for i = 1, . . . , N .

Since we sample from a proposal density, rather than from the target density itself, the
samples need to be weighted in accordance with (2.32c) on page 23. The importance
weights are given by,

wi
t =

p(xi1:t | y1:t)
r′t(x

i
1:t | y1:t)

. (3.12a)

By using the forward recursion for the joint smoothing distribution (2.21) on page 20, the
numerator in the expression above can be expanded, yielding

wi
t ∝

p(yt | xit)p(xit | xit−1)

rt(xit | xi1:t−1, y1:t)

p(xi1:t−1 | y1:t−1)

r′t−1(x
i
1:t−1 | y1:t−1)︸ ︷︷ ︸
=w̃i

t−1

. (3.12b)

Hence, we obtain a sequential updating formula also for the importance weights. Since
we only know the weights up to proportionality, they are normalised to sum to one, as
discussed in Section 2.4.1. The resulting weighted particle system {xi1:t, wi

t}Ni=1 targets
the density p(x1:t | y1:t). To avoid depletion of the particle system, we may also choose
to apply a selection scheme, e.g. one of the methods discussed in Section 3.1.2. We
summarise the steps of the PF in Algorithm 3.1.

One obvious question at this point is how to choose the proposal density rt. The simplest
choice is to sample from the transition density function p(xt | xt−1), i.e. by simulating
the system dynamics one time step for each particle. In this case, the weight expression
(3.12b) reduces to wi

t ∝ p(yt | xit)w̃i
t−1. If this choice of proposal density is combined

with multinomial resampling, performed at each iteration of the algorithm, we obtain the
original PF by Gordon et al. [1993], known as the bootstrap filter. Since we will refer to
this specific version of the PF in the following chapters, we make an explicit definition of
what is meant by the bootstrap PF.

Definition 3.2 (Bootstrap PF). The bootstrap PF is a PF according to Algorithm 3.1 in
which,

i) the transition density is used as proposal, i.e. rt(xt | x1:t−1, y1:t) = p(xt | xt−1).

ii) selection is done by multinomial resampling at each iteration of the algorithm.

Though widely used in practice, it should be noted that the transition density function may
not be the best choice of proposal. The reason is that it does not take the measurement yt
into account, when proposing particles at time t. Hence, it might be that the particles are
placed in regions of the state-space with low posterior probability (given yt). Based on
this insight, it is natural to instead try to sample from the density p(xt | xt−1, yt). This
is known as the optimal proposal function. However, this density is in most cases not
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Algorithm 3.1 Particle filter (PF)
Note: This PF targets the joint smoothing distribution in a fully dominated SSM.

Input: A weighted particle system {xi1:t−1, w
i
t−1}Ni=1 targeting p(x1:t−1 | y1:t−1).

Output: A weighted particle system {xi1:t, wi
t}Ni=1 targeting p(x1:t | y1:t).

Selection:
1: Optionally, generate a new weighted particle system {x̃i1:t−1, w̃

i
t−1}Ni=1 by selection,

or set {x̃i1:t−1, w̃
i
t−1}Ni=1 = {xi1:t−1, w

i
t−1}Ni=1.

Mutation:
2: Augment the sample trajectories. For i = 1, . . . , N ,

xit ∼ rt(xt | x̃i1:t−1, y1:t),

xi1:t = {x̃i1:t−1, x
i
t}.

3: Compute the unnormalised importance weights. For i = 1, . . . , N ,

w′ i
t =

p(yt | xit)p(xit | xit−1)

rt(xit | xi1:t−1, y1:t)
w̃i

t−1,

4: Normalise the weights. For i = 1, . . . , N ,

wi
t =

w′ i
t∑

k w
′ k
t

,

available to sample from. One option is then to approximate the optimal proposal, e.g. by
using local linearisation of the measurement equation [Doucet et al., 2000b]. We will not
review the details of this approach here, but in Section 3.3.4 we make similar calculations
to approximate the optimal proposal function for the RBPF.

At the beginning of Section 3.2, we claimed that a PF targeting the filtering distribution
would result in an identical algorithm as when targeting the joint smoothing distribu-
tion. So, how do we obtain a weighted particle system targeting the filtering distribution
from Algorithm 3.1? The answer is very simple. The empirical distribution defined by
{xi1:t, wi

t}Ni=1 is,

Φ̂N
1:t|t(dx1:t) =

N∑

i=1

wi
tδxi

1:t
(dx1:t). (3.13)

By marginalising this over dx1:t−1 we get,

Φ̂N
t|t(dxt) =

∫

Xt−1

Φ̂N
1:t|t(dx1:t) =

N∑

i=1

wi
tδxi

t
(dxt). (3.14)

Hence, by throwing away the history of the particle trajectories, we end up with a weighted
particle system {xit, wi

t}Ni=1 targeting the filtering distribution. In fact, even though the PF

in Algorithm 3.1 targets the joint smoothing distribution, it is in practice used mostly for
filtering or fixed-lag smoothing. The reason is, as we shall see in the next section, that the
particle trajectories degenerate, providing good estimates of marginals Φt−ℓ+1:t|t only for
small enough ℓ. How to circumvent this problem will be the topic of Chapter 5.
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Figure 3.1: Particle trajectories at time t = 50.

3.2.2 Degeneracy

Assume that we employ a PF to target the joint smoothing distribution. At time s, we gen-
erateN particles {xis}Ni=1 from a proposal kernel and append these to the existing particle
trajectories, according to (3.11). Assuming that all the generated particles are unique, we
say that the unique particle count at time s is N . We thus have a weighted particle sys-
tem {xi1:s, wi

s}Ni=1 targeting the joint smoothing distribution at time s. Now, assume that
the particle trajectories are resampled at time s (e.g. due to significant weight depletion),
resulting in an unweighted particle system {x̃i1:s, 1/N}Ni=1. Then, there is a nonzero prob-
ability that the unique particle count at time s has decreased. This is in fact the purpose of
any selection scheme, to remove particles with small weights and duplicate particles with
large weights, which has the effect of decreasing the unique number of particles. Now,
as we proceed through time, each consecutive resampling of the particle trajectories will
cause the unique particle count at time s to decrease. Eventually the unique particle count
will tend to one. In other words, for a large enough time t ≫ s all particle trajectories
{xi1:t}Ni=1 will share a common ancestor at time s (and consequently for any time prior
to s). The implication of this is that the particle trajectories generated by the PF, though
targeting the joint smoothing distribution, only provide accurate approximations of fixed-
lag smoothing distributions for short enough lags. This problem, known as degeneracy, is
further illustrated in the example below.

Example 3.1: Degeneracy
A bootstrap PF with N = 30 particles is used to target the joint smoothing distribution
for a one-dimensional Gaussian random walk process measured in Gaussian noise. At
time t = 50 the joint smoothing distribution is targeted by a weighted particle system
{xi1:50, wi

50}30i=1. Figure 3.1 depicts the particle trajectories over time. For any time point
s ≤ 32 all particle trajectories coincide, i.e. the unique particle count is one.
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Assume, for instance, that we are interested in the smoothed estimate of the initial condi-
tion, E[X1 | Y1:50 = y1:50]. Based on the PF trajectories, we would compute an estimate
according to,

x̂1 =
30∑

i=1

wi
50x

i
1, (3.15)

but since xi1 are identical for all i = 1, . . . , 30, this is in effect a MC integration using
a single sample. Hence, due to the degeneracy, we can not expect to obtain an accurate
estimate from the PF.

Remark 3.4. It should be noted that the PF indeed generates “proper” weighted samples from the
joint smoothing distribution. The problem that we face when using these samples for MC integration
is that the selection procedure introduces a dependence between the samples. When the trajectories
have degenerated to the extent that the unique particle count is one, the sample trajectories are
perfectly correlated.

3.2.3 The PF in the general SMC framework

In Section 3.2.1 we gave a self-contained presentation of the PF. We shall now see how
this fits into the general SMC framework of Section 3.1.

Transformation and proposal kernels for the joint smoothing distribution

Assume that {x̃i1:t−1, w̃
i
t−1}Ni=1 targets the joint smoothing distribution at time t − 1, i.e.

Φ1:t−1|t−1. We wish to transform this system into a new weighted particle system, target-
ing Φ1:t|t. Define a sequence of kernels by,

Lt(dx1:t | x̃1:t−1) = p(yt | xt)Q(dxt | xt−1)δx̃1:t−1
(dx1:t−1). (3.16)

Now, consider (3.2) in which we let L be given by (3.16) and let Φ1:t−1|t−1 take the role
of ν. It can be straightforwardly verified that (3.2) in this case coincides with the forward
recursions for the joint smoothing distribution given by (2.20) on page 20. Hence, the
sequence of kernels (3.16) tells us how the joint smoothing distribution evolves over a se-
quence of state-spaces Xt of increasing dimension. We say that (3.16) defines a sequence
of transformation kernels for the joint smoothing distribution. Note that Lt is a kernel
from the space X

t−1 to X
t. Hence, from this point of view we “decouple” the state tra-

jectory at time t − 1, x̃1:t−1, from the state trajectory at time t, x1:t. The kernel (3.16)
then tells us what the distribution of x1:t is for a given x̃1:t−1. However, by analysing the
form of (3.16) we realise that the trajectories are indeed coupled, due to the presence of a
point mass δx̃1:t−1

(dx1:t−1). This implies that the kernel (3.16), for a given x̃1:t−1, does
not “move” the old trajectory, but simply extends the distribution to the larger set Xt.

So far, we have identified the kernel describing how the joint smoothing distribution
evolves (or rather a kernel since it is not unique; see the discussion below). Next, we
seek a proposal kernel Rt(dx1:t | x̃1:t−1) which will be used to propose new sample
trajectories in the PF. Since we require that Lt( · | x̃1:t−1) ≪ Rt( · | x̃1:t−1) for any
x̃1:t−1 ∈ X

t−1, it must follow that Rt also assigns some probability mass to the singleton
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x̃1:t−1. Due to this, we restrict ourselves to proposal kernels of the form

Rt(dx1:t | x̃1:t−1) = rt(dxt | x̃1:t−1)δx̃1:t−1
(dx1:t−1). (3.17)

Remark 3.5 (The proposal kernel depends on the observations). At this point, we encounter an
unpleasant inconsistency in the notation used in this thesis. Still, it is believed that this notation is
in least conflict with the common practice used in the literature. As pointed out in Remark 3.3 on
page 34, when dealing with fully dominated models and expressing the PF in terms of densities, we
let the proposal density have an explicit dependence on the measurement sequence y1:t as in (3.10).
On the contrary, the proposal kernel in (3.17) has an implicit dependence on the measurements
y1:t, indicated only by the time index t. For instance, the density of the kernel rt(dxt | x̃1:t−1)
is thus (if it exists) given by rt(xt | x̃1:t−1, y1:t); see (3.10). The implicit dependence on the
measurements for the proposal kernel, is consistent with the notation used for e.g. the filtering
distribution Φt|t(dxt) and the transformation kernel (3.16) (these too, depend implicitly on the
measurements). What we seek to clarify by this remark, is that the proposal kernel/density in
general is allowed to depend on the measurement, whether this is explicit in the notation or not.

To sample from the above kernel, given x̃1:t−1, is exactly the sampling procedure de-
scribed in Section 3.2.1. We simply keep the “old” trajectory up to time t− 1 and append
a sample from time t. Hence, we generate

xit ∼ rt(dxt | x̃i1:t−1) (3.18)

and set xi1:t := {x̃i1:t−1, x
i
t} for i = 1, . . . , N . The importance weights are computed

from (3.5) using the weight function (3.3), resulting in

wi
t ∝ w̃i

t−1p(yt | xit)
dQ( · | xit−1)

drt( · | xi1:t−1)
(xit) (3.19)

Note that the weight function here depends solely on the “new” particle trajectory xi1:t.

The above procedure shows how to mutate a weighted particle system {x̃i1:t−1, w̃
i
t−1}Ni=1

targeting Φ1:t−1|t−1, into a new system {xi1:t, wi
t}Ni=1 targeting Φ1:t|t. We may also, if we

so wish, combine this with a selection step as described in Section 3.1.2, which completes
the PF.

Non-uniqueness of the transformation kernel

As previously mentioned, the transformation kernel can often be chosen in many different
ways. It is thus natural to ask, is (3.16) the only kernel describing the evolution of the
joint smoothing distribution? The answer is no. As pointed out in Section 3.1, another
option would be to take (see also Section 3.2.4),

L′
t(dx1:t | x̃1:t−1) = Φ1:t|t(dx1:t). (3.20)

Then, why did we make the particular choice (3.16)? There are basically two reasons.

1. The transformation kernel should preferably be of known functional form, other-
wise it is not possible to compute the weight function (3.3). This is not the case e.g.
for the choice (3.20).

2. The choice of transformation kernel must be guided by the algorithm that we are
aiming for. A specific choice of kernel may impose certain algorithmic properties.
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In the derivation of the PF above, the transformation kernel was chosen according to (3.16)
mainly to allow for a factorisation of the proposal kernel according to (3.17). Since we
are aiming for a sequential algorithm, it is natural to construct the sample trajectories in
the way described above, i.e. to keep the “old” trajectory and append a new sample at
each time point. This requirement implies the form (3.17) for the proposal kernels, which
in turn suggests the choice (3.16) for the transformation kernel.

To see that other choices of transformation kernels indeed can be of interest, let us con-
sider the resample-move algorithm by Gilks and Berzuini [2001] (see also [Doucet et al.,
2001b] for a similar approach). To increase the sample diversity after resampling, they
suggest to apply a Markov chain Monte Carlo (MCMC) move on the particle trajectories.
That is, we sample new trajectories from a kernel κt−1(dx1:t−1 | x̃1:t−1), with invariant
distribution Φ1:t−1|t−1, i.e.

∫
κt−1(dx1:t−1 | x̃1:t−1)Φ1:t−1|t−1(dx̃1:t−1) = Φ1:t−1|t−1(dx1:t−1). (3.21)

The effect of this additional MCMC step, is that the sequence of proposal kernels (3.17) is
replaced by,

R′′
t (dx1:t | x̃1:t−1) = rt(dxt | x̃1:t−1)κt−1(dx1:t−1 | x̃1:t−1). (3.22)

Since we require the proposal kernel to dominate the transformation kernel, the above
choice of proposal kernel may not be compatible with the transformation kernel according
to (3.16). However, (3.22) suggests that we instead should consider a transformation
kernel according to,

L′′
t (dx1:t | x̃1:t−1) = p(yt | xt)Q(dxt | xt−1)κt−1(dx1:t−1 | x̃1:t−1), (3.23)

which, due to the Φ1:t−1|t−1-invariance of κt−1, also satisfies the forward recursions for
the joint smoothing distribution (2.20).

Hence, the transformation kernel does not tell us how to construct SMC algorithms. On
the contrary, the algorithms often arise on heuristic grounds, and are not put into the gen-
eral framework until a later stage. Why then, should we bother about the transformation
kernel at all, if it does not influence the construction of the algorithms? The reason is, as
mentioned also in Section 3.1, to simplify an analysis of the methods. If the algorithms
can be expressed in a common form, general conclusions can be drawn by analysing this
unifying framework.

Filtering or joint smoothing?

Before we leave this section, we should comment on the differences in point of view, if
we choose to target the filtering distribution instead of the joint smoothing distribution. In
this case, we target the measure Φt−1|t−1(dx̃t−1) at time t − 1 and Φt|t(dxt) at time t,
i.e. they are both measures on X. Hence, both the transformation kernel and the proposal
kernel from X to X. By studying the filtering recursions (2.18) on page 20, we see that a
natural choice is to take,

L′′′
t (dxt | x̃t−1) = p(yt | xt)Q(dxt | x̃t−1). (3.24)

Similarly, we “drop the tail” from the proposal kernel as well, which takes the (most
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general) form

R′′′
t (dxt | x̃t−1). (3.25)

By going through the steps of the PF, it can be easily seen that the algorithms turn out to
be identical, regardless of the target being the joint smoothing distribution or the filtering
distribution. The only difference is that, in the former case we keep the history of the par-
ticle trajectories, whereas in the latter we throw the trajectories away. This is in agreement
with the PF presentation in Section 3.2.1.

Finally, a technical detail worth mentioning is that, for the PF targeting the joint smoothing
distribution, the weight function (3.3) depends only on the “new” particle trajectories (in
the notation of (3.3), the function is independent of ξ̃, see also (3.19)). This is not the case
if the target is the filtering distribution, i.e. the weight function (3.3) will depend on both
x̃t−1 and xt (or ξ̃ and ξ in the notation of (3.3)).

3.2.4 Marginal particle filter

Above, it was mentioned that (3.20) is one possible transformation kernel for the joint
smoothing distribution. We also said that this choice would not be of any use, since it
does not allow for evaluation of the weight function (3.3). However, this is not completely
true, since an approximate evaluation of the weight function still may be feasible. This
idea has been investigated for the filtering problem by Klaas et al. [2005], resulting in
what they call the marginal particle filter (MPF). Klaas et al. [2005] provide two reasons
for why the MPF is an interesting alternative to the PF. First, they show that the weight
variance will be lower in the MPF than in the PF. Second, it is conjectured that the MPF

should be more robust to errors in the transition model, which always will be present for
real world problems.

Guided by the forward filtering recursion (2.18) on page 20 we define a sequence of
measures by,

Lt(dxt) = p(yt | xt)
∫

X

Q(dxt | x̃t−1)Φt−1|t−1(dx̃t−1) ∝ Φt|t(dxt). (3.26)

With the target measure (µ in (3.2)) being Φt|t, the above measure Lt serves as a transfor-
mation kernel in (3.2). However, since Lt does not depend on any “ancestor particle”, we
choose to call it a measure rather than a kernel. Note also that, for this choice of L, the
initial measure ν is arbitrary in (3.2).

Now, assume that we have generated a weighted particle system {xit−1, w
i
t−1}Ni=1 target-

ing the filtering distribution at time t − 1, Φt−1|t−1. Guided by Klaas et al. [2005], we
choose a proposal distribution according to,

Rt(dxt) =
N∑

i=1

wi
t−1rt(dxt | xit−1). (3.27)

Hence, the proposal distribution is a mixture, in which each component originates from
one of the particles at time t − 1. We note that sampling from (3.27) is equivalent to
multinomial resampling followed by a mutation step in the PF. Hence, the difference be-
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tween the MPF and the PF lies solely in the computation of the importance weights. After
proposing a set of particles {xit}Ni=1 from (3.27), the weights should by (3.3) be computed
according to,

wi
t ∝

dLt

dRt
(xit). (3.28)

However, due to the dependence on Φt−1|t−1 (and also the presence of the generally
intractable integral) in (3.26), it is in general not possible to evaluate this Radon-Nikodym
derivative. To circumvent this, Klaas et al. [2005] replace the filtering distribution in
(3.26) with its empirical approximation, leading to an approximation of Lt,

L̂N
t (dxt) = p(yt | xt)

N∑

i=1

wi
t−1Q(dxt | xit−1). (3.29)

By using this approximation in (3.28), the weights can often be computed more straight-
forwardly.

Remark 3.6. For a fully dominated model, the MPF importance weights are given by a quotient of
densities,

wi
t ∝

p(yt | x
i
t)
∑N

j=1 w
j
t−1p(x

i
t | x

j
t−1)∑N

j=1 w
j
t−1rt(x

i
t | x

j
t−1, y1:t)

.

We summarise the MPF in Algorithm 3.2. Both the PF and the MPF can be seen as targeting
the filtering distribution, and the big difference between the two is in the computation of
the weights. Since the latter uses approximate weight evaluation, it is in fact not an SMC

method in terms of the general framework as defined in Section 3.1. Hence, an analysis
of this framework may not be applicable to the MPF, and one should proceed with care
if making claims about e.g. the convergence properties of the MPF, based on the general
analysis. Finally, as pointed out also by Klaas et al. [2005], it should be noted that the
MPF is equivalent to the PF if the transition kernel is used as proposal, i.e. if rt = Q.

3.3 Rao-Blackwellised particle filter

The application of a PF to address the filtering problem is, of course, mainly of interest
when an analytic evaluation of the filtering recursions is not possible. As previously men-
tioned, this is the case for basically any nonlinear and/or non-Gaussian model. However,
for certain problems it may be possible to evaluate some “part” of the filtering recursions
analytically, and it can then be sufficient to employ particles only for the remaining, in-
tractable “part”. If this is the case, we say that there exists a tractable substructure in the
model. By exploiting any such substructure, we can possibly obtain better estimates than
provided by a PF, targeting the full model. This is the idea behind the Rao-Blackwellised
particle filter (RBPF), suggested by Doucet et al. [2000b] and Schön et al. [2005].

Assume, as in Section 2.2.2, that the state variable can be partitioned according to Xt =
{Ξt, Zt} and X = Xξ × Xz . This suggests that we can factorise the joint smoothing
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Algorithm 3.2 Marginal particle filter (MPF)

Input: A weighted particle system {xi1:t−1, w
i
t−1}Ni=1 targeting p(x1:t−1 | y1:t−1).

Output: A weighted particle system {xi1:t, wi
t}Ni=1 targeting p(x1:t | y1:t).

1: Draw samples from a mixture proposal. For i = 1, . . . , N ,

xit ∼ Rt(dxt) =

N∑

j=1

wj
t−1rt(dxt | xjt−1).

2: Compute the unnormalised importance weights. For i = 1, . . . , N ,

w′ i
t =

dL̂N
t

dRt
(xit) =

p(yt | xit)
∑N

j=1 w
j
t−1p(x

i
t | xjt−1)∑N

j=1 w
j
t−1rt(x

i
t | xjt−1, y1:t)

.

Note: The second equality holds for a fully dominated SSM.

3: Normalise the weights. For i = 1, . . . , N ,

wi
t =

w′ i
t∑

k w
′ k
t

,

distribution according to,

Φ1:t|t(dx1:t) = Φm
1:t|t(dξ1:t)Φ

c
1:t|t(dz1:t | ξ1:t), (3.30)

where {ξt, zt} identifies to xt. Here, Φm
1:t|t is the marginal distribution of Ξ1:t given

Y1:t = y1:t. Since this distribution is a marginal of the joint smoothing distribution, it
will be called the state-marginal smoothing distribution. The prefix “state” is used to
distinguish it from what we normally mean by the marginal smoothing distribution, i.e.
Φt|T (see Table 2.1). Furthermore, Φc

1:t|t is the conditional smoothing distribution of Z1:t

given Ξ1:t = ξ1:t and Y1:t = y1:t.

Remark 3.7. More precisely, Φc
1:t|t is a transition kernel from X

t
ξ to X

t
z . For each fixed ξ1:t,

Φc
1:t|t( · | ξ1:t) is a probability measure on X

t
z , and can hence be viewed as a conditional distri-

bution. In the notation introduced in (3.30), the meaning is that Φ1:t|t is the product of the measure
Φm

1:t|t and the kernel Φc
1:t|t.

Now, assume that the conditional distribution Φc
1:t|t is analytically tractable. It is then

sufficient to employ particles for the intractable part Φm
1:t|t and make use of the analytic

tractability for the remaining part. Too see the difference between the PF and RBPF, assume
that we seek to estimate the expectation of some function ϕ : Xt → R under the joint
smoothing distribution, Φ1:t|t(ϕ) = E[ϕ({Ξ1:t, Z1:t}) | Y1:t = y1:t]. In the PF, we would
then generate a weighted particle system {xi1:t, wi

t}Ni=1 targeting Φ1:t|t and compute an
estimate according to,

ϕ̂N
PF =

N∑

i=1

wi
tϕ(x

i
1:t). (3.31a)

In the RBPF, the key observation is that (3.30) implies that the estimand can be decom-
posed as Φ1:t|t(ϕ) = Φm

1:t|t(Φ
c
1:t|t(ϕ)). If Φc

1:t|t(ϕ) is assumed to be a known function
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of ξ1:t, we can generate a weighted particle system {ξi1:t, ωi
t}Ni=1 targeting Φm

1:t|t and com-
pute an estimate as,

ϕ̂N
RBPF =

N∑

i=1

ωi
tΦ

c
1:t|t(ϕ({ξi1:t, · }) | ξi1:t)

=
N∑

i=1

ωi
tE[ϕ({Ξ1:t, Z1:t}) | Ξ1:t = ξi1:t, Y1:t = y1:t]. (3.31b)

Moving from (3.31a) to (3.31b) resembles a Rao-Blackwellisation of the estimator (3.31a),
as briefly discussed in Section 1.1.2 (see also [Lehmann, 1983]). In some sense, we move
from a Monte Carlo integration to a partially analytical integration. This is also the reason
for why the RBPF is called as it is. However, it is not clear that the RBPF estimator (3.31b)
truly is a Rao-Blackwellisation of (3.31a), in the factual meaning of the concept. That
is, it is not obvious that the conditional expectation of (3.31a) given {ξi1:t}Ni=1 results in
the expression (3.31b). This is due to the nontrivial relationship between the normalised
weights generated by the PF {wi

t}Ni=1, and those generated by the RBPF {ωi
t}Ni=1. It can

thus be said that the RBPF has earned its name from being inspired by the Rao-Blackwell
theorem, and not because it is a direct application of it.

Still, the motivation for the RBPF is to improve the accuracy of the filter, in a similar way
as what we expect from Rao-Blackwellisation. That is, any estimator derived from the
RBPF is believed have lower variance than the corresponding estimator derived from the
standard PF. Informally, the reason for this is that in the RBPF, the particles are spread
in a lower dimensional space, yielding a denser particle representation of the underlying
distribution. This conjecture will be further investigated in Section 4.2.

The RBPF is most commonly used for conditionally linear Gaussian state-space (CLGSS)
models (see Section 2.2.2). In this case, the conditional distribution Φc

1:t|t is Gaussian,
and can be computed using the Kalman filter (KF) recursions. Consequently, the KF up-
dates are often shown as intrinsic steps in the presentation of the RBPF algorithm, see e.g.
[Schön et al., 2005]. We shall follow this example and derive an RBPF algorithm for mixed
linear/nonlinear Gaussian state-space models (defined in Example 2.3 in Section 2.2.2).
This is done to exemplify the derivation of an RBPF, but remember that the RBPF is not
restricted to this type of model.

Recall the mixed linear/nonlinear Gaussian state-space model given by (2.9) on page 16,

Ξt+1 = fξ(Ξt) +Aξ(Ξt)Zt + V ξ
t , (3.32a)

Zt+1 = fz(Ξt) +Az(Ξt)Zt + V z
t , (3.32b)

Yt = h(Ξt) + C(Ξt)Zt + Et. (3.32c)

With state-space (Rnx ,B(Rnx)) and observation space (Rny ,B(Rny )), this model is fully
dominated by Lebesgue measure. Hence, we shall do the derivation in terms of densities.

Furthermore, the RBPF is typically used to address the filtering problem, i.e. to approxi-
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mate expectations of the form,

E [ϕ(Ξt, Zt) | Y1:t = y1:t] =

∫∫
ϕ(ξt, zt)p(ξt, zt | y1:t) dξtdzt

=

∫∫
ϕ(ξt, zt)p(zt | ξ1:t, y1:t)p(ξ1:t | y1:t) dξ1:tdzt, (3.33)

for some test function ϕ. Hence, the task at hand can be formulated as,

1. Target p(ξ1:t | y1:t) with an SMC sampler, generating a sequence of weighted parti-
cle systems {ξi1:t, ωi

t}Ni=1.

2. Sequentially compute the sufficient statistics for the densities p(zt | ξi1:t, y1:t) for
i = 1, . . . , N .

3.3.1 Updating the linear states

We shall start the derivation of the RBPF by showing how to obtain the conditional filter-
ing density p(zt | ξ1:t, y1:t) sequentially. As already stated this density will turn out to
be Gaussian, and we thus only need to keep track of its first and second moment. The
updating formulas will show great resemblance with the Kalman filter, which is not sur-
prising since the conditional process {Zt | Ξ1:t}t≥1 obeys an LGSS model. The only trick
is that, in the eyes of the linear Z-process, the evolution of the nonlinear process (3.32a)
will behave as an extra “measurement” that we need to pay attention to. However, despite
this similarity with the Kalman filer, we shall derive the updating formulas from basic
principles. In the process we will (if you like) also derive the Kalman filter.

The derivation will be given as a proof by induction. By the end of this section we shall
see that p(z1 | ξ1, y1) is Gaussian and can thus be written according to p(z1 | ξ1, y1) =
N (z1; z̄1|1(ξ1), P1|1(ξ1)) where we have defined z̄1|1(ξ1) and P1|1(ξ1) as the mean and
covariance of the distribution, respectively. Hence, assume that, for t ≥ 2,

p(zt−1 | ξ1:t−1, y1:t−1) = N
(
zt−1; z̄t−1|t−1(ξ1:t−1), Pt−1|t−1(ξ1:t−1)

)
, (3.34)

where the mean and covariance are functions of the nonlinear state trajectory ξ1:t−1 (natu-
rally, they do also depend on the measurements y1:t−1, but we shall not make that depen-
dence explicit). We shall now see that this implies

p(zt | ξ1:t, y1:t) = N
(
zt; z̄t|t(ξ1:t), Pt|t(ξ1:t)

)
(3.35)

and show how we can obtain the sufficient statistics for this distribution.

Using the Markov property and the state transition density given by the model (3.32), we
have,

p(zt, ξt | zt−1, ξ1:t−1, y1:t−1) = p(zt, ξt | zt−1, ξt−1)

= N
([

ξt
zt

]

︸︷︷︸
=xt

;

[
fξ(ξt−1)
fz(ξt−1)

]

︸ ︷︷ ︸
=f(ξt−1)

+

[
Aξ(ξt−1)
Az(ξt−1)

]

︸ ︷︷ ︸
=A(ξt−1)

zt−1,

[
Qξ(ξt−1) Qξz(ξt−1)

(Qξz(ξt−1))
T Qz(ξt−1)

]

︸ ︷︷ ︸
=Q(ξt−1)

)
,

(3.36)
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which is affine in zt−1. Since affine transformations preserves Gaussianity (see Corol-
lary B.1 in Appendix B), by combining (3.34) and (3.36) we get,

p(zt, ξt | ξ1:t−1, y1:t−1)

= N
([

ξt
zt

]
;

[
αt|t−1(ξ1:t−1)
ζt|t−1(ξ1:t−1)

]

︸ ︷︷ ︸
=χt|t−1(ξ1:t−1)

,

[
Σξ

t|t−1(ξ1:t−1) Σξz
t|t−1(ξ1:t−1)

(Σξz
t|t−1(ξ1:t−1))

T Σz
t|t−1(ξ1:t−1)

]

︸ ︷︷ ︸
=Σt|t−1(ξ1:t−1)

,

)
,

(3.37a)with

χt|t−1(ξ1:t−1) = f +Az̄t−1|t−1, (3.37b)

Σt|t−1(ξ1:t−1) = Q+APt−1|t−1A
T; (3.37c)

to keep the notation simple, the dependencies on ξt−1 and ξ1:t−1 have been dropped from
the right hand side. This is simply a prediction of the state at time t, conditioned on
ξ1:t−1 and y1:t−1. In (3.37b) the system dynamics is simulated and (3.37c) shows how
the uncertainty in the prediction depends on the process noise and the prior uncertainty in
the linear state.

By marginalisation of (3.37a) we obtain (Theorem B.1),

p(ξt | ξ1:t−1, y1:t−1) = N
(
ξt;αt|t−1(ξ1:t−1),Σ

ξ
t|t−1(ξ1:t−1)

)
, (3.38)

and by conditioning (3.37a) on ξt (Theorem B.2) we get,

p(zt | ξ1:t, y1:t−1) = N
(
zt; z̄t|t−1(ξ1:t), Pt|t−1(ξ1:t)

)
, (3.39a)

with

z̄t|t−1(ξ1:t) = ζt|t−1 + Lt(ξt − αt|t−1), (3.39b)

Pt|t−1(ξ1:t−1) = Σz
t|t−1 − LtΣ

ξz
t|t−1, (3.39c)

Lt(ξ1:t−1) = (Σξz
t|t−1)

T(Σξ
t|t−1)

−1. (3.39d)

The above expressions constitute the time update of the filter. The prediction of the non-
linear state, which will be used during sampling (see Section 3.3.2), is given by (3.38).
Once the nonlinear state trajectory is augmented with a new sample we can condition the
prediction of the linear state on this sample, according to (3.39). In doing so we provide
some information about the linear state, through the connection between the linear and
the nonlinear parts of the state vector. From (3.39) we see that the estimate is updated
accordingly and that the covariance is reduced. This update is very similar to a Kalman
filter measurement update, and is therefore sometimes denoted the “extra measurement
update” of the RBPF. However, note that we have not used any information about the
current measurement yt up to this point. This is what we will do next.

From the measurement likelihood given by model (3.32), and the conditional indepen-
dence properties of the model, we have

p(yt | ξ1:t, zt, y1:t−1) = p(yt | ξt, zt) = N (yt;h(ξt) + C(ξt)zt, R(ξt)) , (3.40)

which is affine in zt. Again appealing to Corollary B.1 and using the result (3.39) we
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obtain the measurement prediction density,

p(yt | ξ1:t, y1:t−1) = N (yt; ŷt(ξ1:t), St(ξ1:t)) , (3.41a)

with

ŷt(ξ1:t) = h+ Cz̄t|t−1, (3.41b)

St(ξ1:t) = R+ CPt|t−1C
T, (3.41c)

and also the posterior of zt conditioned on yt,

p(zt | ξ1:t, y1:t) = N
(
zt; z̄t|t(ξ1:t), Pt|t(ξ1:t)

)
, (3.42a)

with

z̄t|t(ξ1:t) = z̄t|t−1 +Kt(yt − ŷt), (3.42b)

Pt|t(ξ1:t) = Pt|t−1 −KtCPt|t−1, (3.42c)

Kt(ξ1:t) = Pt|t−1C
TS−1

t . (3.42d)

Now, if we define y1:0 , ∅, so that p(z1 | ξ1:1, y1:0) = p(z1 | ξ1) and analogously
for other densities, we see that the expression (3.39a) coincides with the prior (2.11)
on page 17 at t = 1. The computations in (3.39) to (3.42) will thus hold at t =
1, which in turn confirms the validity of the induction assumption, p(z1 | ξ1, y1) =
N (z1; z̄1|1(ξ1), P1|1(ξ1)).

3.3.2 Sampling nonlinear state trajectories

In the previous section, we obtained closed form expressions for the conditional filtering
density for the linear state, p(zt | ξ1:t, y1:t). However, it remains to find the state-marginal
smoothing density, p(ξ1:t | y1:t). Due to the nonlinear dependence on Ξt in the model
(3.32), this density is not available in closed form. Instead, we target it with an SMC

sampler.

Let us assume that t ≥ 2. Sampling at time t = 1 can be done by straightforward
modifications of the results given here. First, using Bayes’ rule we note the following
about the target density,

p(ξ1:t | y1:t) ∝ p(yt | ξ1:t, y1:t−1)p(ξ1:t | y1:t−1)

= p(yt | ξ1:t, y1:t−1)p(ξt | ξ1:t−1, y1:t−1)p(ξ1:t−1 | y1:t−1). (3.43)

Second, similarly to (3.10) we choose a proposal density which factorises according to,

r′t(ξ1:t | y1:t) = rt(ξt | ξ1:t−1, y1:t) r
′
t−1(ξ1:t−1 | y1:t−1)︸ ︷︷ ︸

previous proposal

. (3.44)

Given a weighted particle system {ξ̃i1:t−1, ω̃
i
t−1}Ni=1 targeting p(ξ1:t−1 | y1:t−1), sample

trajectories are constructed as in (3.11),

ξit ∼ rt(ξt | ξ̃i1:t−1, y1:t), (3.45a)

ξi1:t := {ξ̃i1:t−1, ξ
i
t}, (3.45b)
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for i = 1, . . . , N . Using (3.38) and (3.41), the importance weights are then given by,

ωi
t =

p(ξi1:t | y1:t)
r′t(ξ

i
1:t | y1:t)

∝ p(yt | ξi1:t, y1:t−1)p(ξ
i
t | ξi1:t−1, y1:t−1)

rt(ξit | ξi1:t−1, y1:t)

p(ξi1:t−1 | y1:t−1)

r′t−1(ξ
i
1:t−1 | y1:t−1)︸ ︷︷ ︸
=ω̃i

t−1

=
N
(
yt; ŷt(ξ

i
1:t), St(ξ

i
1:t)
)
N
(
ξit;αt|t−1(ξ

i
1:t−1),Σ

ξ
t|t−1(ξ

i
1:t−1)

)

rt(ξit | ξi1:t−1, y1:t)
ω̃i
t−1. (3.46)

Since we only know the weights up to proportionality, they are normalised to sum to one.
Finally, a selection strategy (e.g. resampling) should be applied to the RBPF just as for the
regular PF.

3.3.3 RBPF algorithm

We summarise the RBPF in Algorithm 3.3. To simplify the notation; for functions in
argument ξt or ξ1:t, e.g. R(ξt) and z̄t|t(ξ1:t), we write Ri

t , R(ξit) and z̄it|t , z̄t|t(ξ
i
1:t),

etc. We also make the following definition of an augmented weighted particle system.

Definition 3.3 (Augmented weighted particle system). An augmented weighted par-
ticle system targeting a factorised density p(z | ξ)p(ξ), is a collection of quadruples
{ξi, ωi, z̄i, P i}Ni=1 s.t.,

i) {ξi, ωi}Ni=1 is a weighted particle system targeting p(ξ).

ii) The conditional density p(z | ξ) is Gaussian, with p(z | ξi) = N (z; z̄i, P i) for
i = 1, . . . , N .

Furthermore, in the interest of giving a somewhat more compact presentation, the algo-
rithm is only given for time t ≥ 2. Initialisation at time t = 1 can be done by straightfor-
ward modifications of the steps of the algorithm.

3.3.4 Proposal construction by local linearisation

Choosing a proposal kernel for the RBPF can be done similarly as for the PF. However,
there are some differences. To start with, since the nonlinear state process is not nec-
essarily Markovian, sampling from the transition kernel might not be an option in the
RBPF. One alternative is to sample from the 1-step predictive distribution for the nonlin-
ear process. For a mixed linear/nonlinear Gaussian state-space model, this distribution
is Gaussian and given by (3.38). For this choice of proposal, we get a cancellation in
the weight expression (3.46), just as for the bootstrap PF (see Definition 3.2). Hence, the
1-step predictive distribution can be seen as an analogue of the bootstrap kernel in the PF.
We thus make the following definition.

Definition 3.4 (Bootstrap RBPF). The bootstrap RBPF for mixed linear/nonlinear Gaus-
sian state-space models is an RBPF according to Algorithm 3.3 in which,

i) the 1-step predictive distribution for the nonlinear process, given by (3.38), is used
as proposal, i.e. rt(ξt | ξ1:t−1, y1:t) = p(ξt | ξ1:t−1, y1:t−1).

ii) selection is done by multinomial resampling at each iteration of the algorithm.
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Algorithm 3.3 RBPF for mixed linear/nonlinear Gaussian state-space models

Input: An augmented weighted particle system {ξi1:t−1, ω
i
t−1, z̄

i
t−1|t−1, P

i
t−1|t−1}Ni=1,

targeting p(zt−1 | ξ1:t−1, y1:t−1)p(ξ1:t−1 | y1:t−1).
Output: An augmented weighted particle system {ξi1:t, ωi

t, z̄
i
t|t, P

i
t|t}Ni=1, targeting

p(zt | ξ1:t, y1:t)p(ξ1:t | y1:t).
Selection:

1: Optionally, generate a new weighted particle system {ξ̃i1:t−1, ω̃
i
t−1}Ni=1 by selection,

or set {ξ̃i1:t−1, ω̃
i
t−1}Ni=1 = {ξi1:t−1, ξ

i
t−1}Ni=1.

Sampling:
2: Augment the sample trajectories. For i = 1, . . . , N ,

ξit ∼ rt(ξt | ξ̃i1:t−1, y1:t),

ξi1:t = {ξ̃i1:t−1, ξ
i
t}.

Prediction:
3: Predict the state and condition the linear state on the newly drawn particles {ξit}Ni=1.

For i = 1, . . . , N ,

αi
t|t−1 = fξ,it−1 +Aξ,i

t−1z̄
i
t−1|t−1,

z̄it|t−1 = fz,it−1 +Az,i
t−1z̄

i
t−1|t−1 + (Σξz,i

t|t−1)
T(Σξ,i

t|t−1)
−1(ξit − αi

t|t−1),

P i
t|t−1 = Σz,i

t|t−1 − (Σξz,i
t|t−1)

T(Σξ,i
t|t−1)

−1(Σξz,i
t|t−1),

with

Σi
t|t−1 = Qi

t−1 +Ai
t−1P

i
t−1|t−1(A

i
t−1)

T.

Weighting:
4: Evaluate the unnormalised importance weights. For i = 1, . . . , N ,

ω′ i
t =

N
(
yt; ŷ

i
t, S

i
t

)
N
(
ξit;α

i
t|t−1,Σ

ξ,i
t|t−1

)

rt(ξit | ξi1:t−1, y1:t)
ω̃i
t−1,

with

ŷit = hit + Ci
t z̄

i
t|t−1,

Si
t = Ri

t + Ci
tP

i
t|t−1(C

i
t)

T.

5: Normalise the importance weights. For i = 1, . . . , N , set ωi
t = ω′ i

t /
∑

k ω
′ k
t .

Update the linear states:
6: Compute the sufficient statistics for the linear states, given the current measurement.

For i = 1, . . . , N ,

z̄it|t = z̄it|t−1 +Ki
t(yt − ŷit),

P i
t|t = P i

t|t−1 −Ki
tC

i
tP

i
t|t−1,

Ki
t = P i

t|t−1(C
i
t)

T(Si
t)

−1.
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However, as pointed out in Section 3.2.1, the bootstrap kernel might not be the most
suitable choice in practice. The reason is that the current measurement yt is not taken
into account when proposing particles at time t. Due to this, we will now consider an
alternative way of constructing a proposal kernel for mixed linear/nonlinear Gaussian
state-space models. The construction is based on a local linearisation of the measurement
equation (3.32c). The same technique has been used by Doucet et al. [2000b] to construct
a proposal kernel for the PF. To start with, note that for some matrix valued function
M : Rm 7→ R

p×n,

M(x) =



M1(x)

...
Mp(x)


 , (3.47)

and a constant n-vector v, the Jacobian matrix of the function M(x)v is given by,

∂(M( · )v)
∂x

=



vTJMT

1
(x)

...
vTJMT

p
(x),


 (3.48)

where JMT

i
is the Jacobian matrix of the function MT

i : Rm → R
n.

Now, consider a first order Taylor expansion of the measurement equation (3.32c), around
some point x̄t = {ξ̄t, z̄t}. Observe that we need to linearise the measurement function in
the zt-direction as well, to get rid of the cross terms between ξt and zt. We thus have,

h(ξt) + C(ξt)zt ≈ h(ξ̄t) + C(ξ̄t)z̄t +
[
Jh(ξ̄t) + Γ(ξ̄t, z̄t)

]
(ξt − ξ̄t) + C(ξ̄t)(zt − z̄t)

= h(ξ̄t) +
[
Jh(ξ̄t) + Γ(ξ̄t, z̄t)

]
(ξt − ξ̄t) + C(ξ̄t)zt, (3.49a)

where we have defined,

Γ(ξ̄t, z̄t) ,
∂(C( · )z̄t)

∂ξt |ξt=ξ̄t

=



z̄Tt JCT

1
(ξ̄t)

...
z̄Tt JCT

ny
(ξ̄t)


 . (3.49b)

From (3.32c) and (3.49) we have that,

Yt ≈ h(ξ̄t) +
[
Jh(ξ̄t) + Γ(ξ̄t, z̄t)

]
(Ξt − ξ̄t) + C(ξ̄t)Zt + Et. (3.50)

Hence, we have that the density function p(yt | ξ1:t, zt, y1:t−1) = p(yt | ξt, zt) is approx-
imately Gaussian and affine in xt = {ξt, zt}. In fact, this density is Gaussian and affine
in zt, but the linearisation has the effect of removing any cross terms between ξt and zt.

From (3.39a) we have that Zt | {Ξ1:t, Y1:t−1} is Gaussian. Furthermore, let us assume
that the measurement noise covariance R is independent of Ξt (recall from (2.10b) on
page 16 that we otherwise allow for a dependence). Then, (3.50) is an affine transfor-
mation of a Gaussian variable. Hence, we get an approximate Gaussian density for Yt,
according to,

p(yt | ξ1:t, y1:t−1) ≈ N (yt; ŷ
′
t(ξ1:t), S

′
t(ξ1:t−1)), (3.51a)
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with,

ŷ′t(ξ1:t) = h(ξ̄t) +
[
Jh(ξ̄t) + Γ(ξ̄t, z̄t)

]
(ξt − ξ̄t) + C(ξ̄t)z̄t|t−1(ξ1:t), (3.51b)

S′
t(ξ1:t−1) = R+ C(ξ̄t)Pt|t−1(ξ1:t−1)C(ξ̄t)

T. (3.51c)

From (3.39b) we see that the last term in (3.51b) has an affine dependence on ξt, which is
then also the case for ŷ′t(ξ1:t). We can thus write,

ŷ′t(ξ1:t) = Htξt + dt, (3.52a)

Ht(ξ1:t−1) , Jh(ξ̄t) + Γ(ξ̄t, z̄t) + C(ξ̄t)Lt, (3.52b)

dt(ξ1:t−1) , h(ξ̄t)−
[
Jh(ξ̄t) + Γ(ξ̄t, z̄t)

]
ξ̄t + C(ξ̄t)

[
ζt|t−1 − Ltαt|t−1

]
. (3.52c)

Finally, (3.38) and (3.51) is again (approximately) an affine transformation of a Gaussian
variable (this time Ξt). Hence, we get

p(ξt | ξ1:t−1, y1:t) ≈ N (ξt;mt(ξ1:t−1),Πt(ξ1:t−1)), (3.53a)

with

mt(ξ1:t−1) = Πt(H
T

t (S
′
t)

−1(yt − dt) + (Σξ
t|t−1)

−1αt|t−1)

= αt|t−1 +Σξ
t|t−1H

T

t (S
′
t +HtΣ

ξ
t|t−1H

T

t )
−1(yt − dt −Htαt|t−1),

(3.53b)

Πt(ξ1:t−1) =
[
(Σξ

t|t−1)
−1 +HT

t (S
′
t)

−1Ht

]−1

= Σξ
t|t−1 − Σξ

t|t−1H
T

t (S
′
t +HtΣ

ξ
t|t−1H

T

t )
−1HtΣ

ξ
t|t−1. (3.53c)

A natural choice of linearisation point is the 1-step prediction, i.e. {ξ̄t, z̄t} = {αt|t−1, ζt|t−1}.
For this choice, the expression (3.52c) reduces to

dt(ξ1:t−1) = h(αt|t−1) + C(αt|t−1)ζt|t−1 −Htαt|t−1. (3.54a)

This further implies that, in (3.53b), we get

yt − dt −Htαt|t−1 = yt − h(αt|t−1)− C(αt|t−1)ζt|t−1. (3.54b)

Guided by the approximation of the optimal proposal in (3.53a), we can use as proposal
density,

rt(ξt | ξ1:t−1, y1:t) = N (ξt;mt(ξ1:t−1),Πt(ξ1:t−1)). (3.55)

The same density is then also used to compute the weights according to (3.46).

3.3.5 Application example: RBPF for UAV localisation

A numerical illustration of how the the RBPF performs in comparison to the PF and the KF

is postponed to Section 5.3.5, where we at the same time consider the smoothing problem.
However, in this section we will illustrate the use of the RBPF in an application example.
The problem that we will consider here is unmanned aerial vehicle (UAV) localisation
through visual odometry (VO) and geo-referencing (GR). The present section is a short
summary of the material previously published in [Lindsten et al., 2010].
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Figure 3.2: Map over the operational environment (left) and a manually classified
reference map with grass, asphalt and houses as prespecified classes (right). Aerial
photograph by courtesy of the UAS Technologies Lab, Artificial Intelligence and
Integrated Computer Systems Division (AIICS) at the Department of Computer and
Information Science (IDA), Linköping University, Linköping, Sweden.

The work is motivated by the fact that navigation of commercial UAVs today is depending
on global navigation satellite systems, e.g. GPS. However, to solely rely on GPS is associ-
ated with a risk. When operating close to obstacles, reflections can make the GPS signal
unreliable. It is also easy to jam the GPS making it vulnerable to malicious attacks. Due
to the possibility of signal failure, a drift free backup system might be necessary.

As shown by Törnqvist et al. [2009], a sensory setup using an inertial measurement unit
(IMU) together with vision from an on-board camera enables accurate pose estimates
through the process of VO fused with the IMU measurements. In VO, a set of distinct land-
marks are tracked between consecutive camera frames. By assuming that the landmarks
are static, this provides a measurement of the velocity of the own vehicle. However, with-
out any absolute position reference the estimated position of the UAV will always suffer
from a drift.

In [Lindsten et al., 2010] we proposed to use an existing, preclassified map over the
operational environment, as shown in Figure 3.2. By matching the images from the on-
board camera with this map, we obtain an additional measurement which can be used to
remove the drift.

Without going into any details (these can can found in [Lindsten et al., 2010]), the match-
ing is done in the following way. First, once we obtain an image from the onboard camera,
we use an image segmentation technique by Felzenszwalb and Huttenlocher [2004] to di-
vide the image into uniform regions, called superpixels. For each superpixel, we then
extract a descriptor, consisting of color and texture information. These descriptors are
then fed into a trained neural network classifier. The output from the classifier is an
assignment of each superpixel into one of three prespecified classes; grass, asphalt and
buildings.

Once we have classified the image into its environmental content, we need to match it with
the preclassified map of the operational environment. As argued in [Lindsten et al., 2010],
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Figure 3.3: Image from on-board camera (top-left), extracted superpixels (top-
right), superpixels classified as grass, asphalt or house (bottom-left) and three cir-
cular regions used for computing the class histograms (bottom-right).

to avoid introducing instability in the observer, we seek a measurement which is invariant
to the rotation of the image. To attain this, we extract several circular regions from the
image. For each such region we then compute a class histogram, i.e. the proportions of
the three different classes in the region. The above described procedure is illustrated in
Figure 3.3.

Finally, the class histograms are matched with class histograms computed from the map.
To evaluate the likelihood that the vehicle is located at a certain horisontal position, this
position is projected onto the map. The class histograms from the corresponding point in
the map are thereafter compared with the class histograms extracted from the on-board
camera image. If there is a good resemblance, the likelihood is high and vice versa.
As shown in [Lindsten et al., 2010], this relationship can be expressed as a nonlinear
measurement equation,

YGR,t = hGR(Xp,t) + EGR,t, (3.56)

where the measurement YGR,t consist of the class histograms extracted from the on-board
image, the function hGR is given as a look-up table, related to the reference map, and
the measurement noise EGR,t is modelled as zero-mean Gaussian with a time-varying
covariance, related to the classification uncertainty.

Using the reference map shown in Figure 3.2 and the classification result from Figure 3.3,
the resulting likelihood evaluated over the entire map is illustrated in Figure 3.4. We
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Figure 3.4: Computed likelihood over the reference map.

see that the likelihood is high in regions where we have both asphalt and houses in the
reference map, since this is the case for the classified image. Along the roads, where the
reference map consists of asphalt and grass but no houses, the likelihood is lower but still
significantly above zero. This is desired, since the houses in the on-board image very well
could be incorrectly classified. Finally, in regions where the reference map solely consists
of grass, the matching is very poor and the likelihood is close to zero.

Combining the geo-reference measurement (3.56) with the VO framework used by Törn-
qvist et al. [2009], we end up with the following dynamic model, used in the navigation
system of the UAV. The vehicle state consists of position Xp,t, velocity Xv,t, acceleration
Xa,t, a quaternion Xq,t representing the orientation of the UAV and its angular velocity
Xω,t. The state vector is also augmented with bias states for accelerationBa,t and angular
velocity Bω,t to account for sensor imperfections.

The dynamic model turns out to be mixed linear/nonlinear Gaussian, enabling the appli-
cation of the RBPF. Hence, the state vector is divided into nonlinear states Ξt and linear
states Zt,

Ξt =
[
XT

p,t XT
q,t

]T
, (3.57a)

Zt =
[
XT

v,t XT
a,t BT

ω,t BT
a,t XT

ω,t

]T
. (3.57b)

VO is incorporated into the estimation problem by tracking a set of landmarks Mt =
{Mj,t}Jt

j=1 in consecutive frames. The landmark positions in an absolute coordinate sys-
tem are included in the linear part of the state vector. In summary, the dynamic model of



3.3 Rao-Blackwellised particle filter 55

the system is given by,

Ξt+1 = fξ(Ξt) +Aξ(Ξt)Zt +Gξ(Ξt)V
ξ
t , (3.58a)

Zt+1 = Az(Zt)Zt +Gz(Ξt)V
z
t , (3.58b)

Mj,t+1 =Mj,t, j = 1, . . . , Jt, (3.58c)

where the process noises V ξ
t and V z

t are assumed white and Gaussian with zero means.

The landmarks are initiated from distinct Harris corners in the on-board images and
tracked between frames using normalised cross correlation. This gives rise to a mea-
surement available at 4 Hz (the image frequency), given by

YVO,t = hVO(Ξt) + CVO(Ξt)Mt + EVO,t. (3.59)

The vehicle is also equipped with an IMU and a barometric sensor, operating at 20 Hz,
yielding a second measurement,

YIMU,t = hIMU(Ξt) + CIMU(Ξt)Zt + EIMU,t. (3.60)

The measurement noises EVO,t and EIMU,t are assumed white and Gaussian with zero
means. Finally, we have a third measurement, also available at 4 Hz, from the geo-
referencing according to (3.56).

Before we continue with experimental result, we note that the model described above has
several properties making the RBPF a suitable choice of filter. First, the model is highly
nonlinear, especially through the geo-reference measurement (3.56). Also, this measure-
ment model is available only as a look-up table. The model can be evaluated pointwise,
but linearisation can be quite problematic. This rules out deterministic filters such as the
extended KF. On the contrary, any particle based method can straightforwardly handle the
measurement (3.56). However, a standard PF will suffer from the high dimensionality of
the state-space. At any given time t, the state vector has dimension1 21+ 3Jt where Jt is
the number of landmarks tracked at time t. However, all but six of these “states” are con-
ditionally linear Gaussian. Hence, by using the RBPF, we only need to spread the particles
on a six-dimensional manifold embedded in the full, high-dimensional state-space.

Now, to test the UAV localisation system, data was collected during a 400 m test flight in
southern Sweden, using an unmanned Yamaha RMAX helicopter. Figure 3.5 shows a map
over the area with the UAVs true flight trajectory (a Kalman filtered GPS signal) illustrated
with circles. Without using the GPS signal, we employ a bootstrap RBPF with N = 500
particles to estimate the vehicle position. First, we do not make use of the geo-reference
measurement, i.e. we use the VO solution by Törnqvist et al. [2009]. The result is plotted
as a dashed line in the figure. We can see that the estimate is fairly accurate, but as
expected it suffers from a drift. In the same plot, also the solution using both VO and geo-
referencing is shown as a solid line. The estimated trajectory in this case is very close to
the ground truth, and much of the drift has been removed.

1When counting the dimension of the state-space we note that the quaternion, though represented by four
numbers, belongs to the special orthogonal group SO(3) and is thus three-dimensional.
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Figure 3.5: True trajectory illustrated with circles and the estimated trajectories with
(solid line) and without (dashed line) geo-referencing.

3.4 Rao-Blackwellised marginal particle filter

We shall continue to study the RBPF of the previous section for CLGSS models. As previ-
ously mentioned, the RBPF is typically used to address the filtering problem. To be able
to exploit the conditional tractability of the model, the filtering density is, in accordance
with (3.33), expressed as,

p(xt | y1:t) =
∫
p(zt | ξ1:t, y1:t)p(ξ1:t | y1:t) dξ1:t−1. (3.61)

From (3.35), we have that the first factor of the integrand is Gaussian and analytically
tractable. We also note (the important fact) that the mean and the covariance of this
Gaussian are functions of the nonlinear state trajectory ξ1:t. The second factor of the
integrand, i.e. the state-marginal smoothing density p(ξ1:t | y1:t), is targeted using an SMC

sampler. If this yields a good approximation of the state-marginal smoothing distribution,
(3.61) provides a way to approximate the filtering distribution.

However, a problem with this approach is that it is often not straightforward to obtain
good approximations of the state-marginal smoothing distribution for large t, due to the
degeneracy problem discussed in Section 3.2.2. To get around this problem, one often
relies on the mixing properties of the system. More precisely, the state Zt is supposed
to be more or less independent of {Ξs, s ≤ t − ℓ} for some lag ℓ. In that case, we only
need to keep track of the fixed-lag, state-marginal smoothing density p(ξt−ℓ+1:t | y1:t).
As pointed out in Section 3.2.2, this density can be readily approximated using an SMC

sampler, as long as the lag is not too large.

Clearly, the success of this approach heavily depends on how good the mixing assumption
is. If the system is slowly mixing, e.g. if the Z-process contains some static parameter, the
dependence of Zt | {Ξt−ℓ+1:t, Y1:t} on {Ξs, s ≤ t− ℓ} can be non-negligible. That is, if
the approximation of the density p(ξ1:t−ℓ | y1:t) is poor, using (3.61) to approximate the
filtering distribution can give very poor results. The issue is illustrated in Example 3.2.
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Example 3.2: RBPF for a partially static system
The first order LGSS system,

Ξt+1 = aΞt + Vt, (3.62a)

Yt = Ξt + Et, (3.62b)

is simulated for T = 10000 time steps. The system parameter a has the value −0.8. The
process and measurement noises Vt and Et, are mutually independent sequences of zero-
mean Gaussian variables with variances 0.1 and 1, respectively. The initial distribution
for the state process is zero-mean Gaussian with variance 0.1.

Now, assume that a is an unknown parameter. It can then be incorporated into the state
vector, and a mixed linear/nonlinear Gaussian state-space model for the system is given
by,

Ξt+1 = ΞtZt + Vt, (3.63a)

Zt+1 = Zt, (3.63b)

Yt = Ξt + Et. (3.63c)

The parameter a is modeled as a Gaussian random variable, by assigning an initial dis-
tribution to the linear state process, Z1 ∼ N (1, 3). A bootstrap RBPF using N = 100
particles is applied to the data. The estimate of the state Zt, together with the estimated
3σ-confidence intervals, are shown in Figure 3.6.

The initial distribution for Z1 should have negligible effect at time T = 10000. Hence,
we expect the estimate to converge to the “true” value −0.8. As can be seen in the figure,
this is not the case. Also, the estimated confidence interval is way too small, i.e. the
covariance of the linear state is underestimated. The intuitive explanation is that the RBPF

sample trajectories, in some sense, degenerate faster than the estimate of Zt converges.

We note that the signal to noise ratio (SNR) in this particular example is fairly poor (the
measurement noise variance is a factor ten times the process noise variance). Hence, the
convergence of the estimate is expected to be slow; a large amount of measurement data is
needed to make accurate state inference. Based on this argument, we thus expect that the
use of the RBPF for state estimation in slowly mixing systems, is particularly problematic
when the SNR is low.

Here, we propose an alternative to (3.61), which is to factorise the filtering density as,

p(xt | y1:t) = p(zt | ξt, y1:t)p(ξt | y1:t). (3.64)

The marginal filtering density p(ξt | y1:t) can be approximated using SMC without suf-
fering from degeneracy. Thus, an approximation of the filtering distribution based on the
factorisation (3.64), does not rely on the mixing properties of the system. However, as
opposed to p(zt | ξ1:t, y1:t) given in (3.35), the density

p(zt | ξt, y1:t), (3.65)

is in general non-Gaussian and intractable. The problem we face is thus to find a good
approximation of (3.65), while still enjoying the benefits of a Rao-Blackwellised setting.
The resulting filter will be denoted the Rao-Blackwellised marginal particle filter (RBMPF).
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Figure 3.6: RBPF estimate of Zt (thick black line) and the estimated 3σ-confidence
interval (grey dotted lines), as function of time t. The “true” value is −0.8.

Before we go on with the details of this approximation, it should be mentioned that there
have been previous contributions in this direction. Both Jianjun et al. [2007] and Smal
et al. [2007] have proposed filters under the name RBMPF (or strictly speaking, MRBPF in
the former case). However, these are both focused on combining the RBPF with the MPF

by Klaas et al. [2005] (see also Section 3.2.4), without addressing the problems arising
for slowly mixing systems. In the terminology introduced below, they can be seen as
combining marginal sampling (Alternative S2) to sample from the marginal filtering dis-
tribution, with ancestral dependence (Alternative G1) for approximating the conditional
filtering distribution. We comment further on this in Section 3.4.3.

We start the presentation of the RBMPF with a discussion on how to sample from the
marginal filtering distribution. This material is more or less a restatement of the PF and
the MPF approaches to sampling from the filtering distribution, but with the marginal
filtering distribution in focus. The reason for providing the discussion here, is to allow for
a more thorough treatment of the different approaches to the RBMPF. After this, we turn
to the more central problem of approximating the conditional filtering density (3.65).

3.4.1 Sampling from the marginal

In the RBMPF we seek to target the marginal filtering density p(ξt | y1:t) with an SMC

sampler, as indicated by (3.64). Here, we mention two different alternatives to do this.
The first is analogous to the PF, as we draw sample trajectories and simply discard the
history of these trajectories. The second is analogous to the MPF (see Section 3.2.4), in
the sense that we target the marginal filtering distribution “directly”.

Alternative S1: Auxiliary variable sampling

One option to sample from the marginal filtering distribution is to perform sampling
exactly as for the RBPF. The sampling procedure described in Section 3.3.2 produces
a weighted particle system {ξi1:t, ωi

t}Ni=1 targeting the state-marginal smoothing density
p(ξ1:t | y1:t). By discarding the history of the particle trajectories, we are left with a
weighted particle system {ξit, ωi

t}Ni=1 targeting the marginal filtering density p(ξt | y1:t).
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This is in analogy with the discussion about the PF in Section 3.2.1. As mentioned there,
whether the PF targets the filtering distribution or the joint smoothing distribution is a
matter of point of view.

Observe that, even if we sample the nonlinear states identically in the RBPF and the RBMPF,
the latter can still circumvent the problems with slowly mixing systems as pointed out
above. The reason is, that the problems arising in the RBPF are not due to poor approxima-
tions of the marginal filtering density appearing in (3.64), but due to poor approximations
of the state-marginal smoothing density appearing in (3.61).

This approach to sampling shall be referred to as auxiliary variable sampling. The reason
is that the sampling procedure alternatively can be explained in terms of auxiliary vari-
ables, as we now shall see. Recall that we wish to sample from the marginal filtering
density, which can be expanded according to,

p(ξt | y1:t) =
∫
p(yt | ξt−1:t, y1:t−1)p(ξt | ξt−1, y1:t−1)

p(yt | y1:t−1)
p(ξt−1 | y1:t−1) dξt−1.

(3.66)

Let {ξjt−1, ω
j
t−1}Nj=1 be a weighted particle system targeting p(ξt−1 | y1:t−1). By using

the empirical distribution defined by this particle system in (3.66) we get,

p(ξt | y1:t) ≈
N∑

j=1

ωj
t−1

p(yt | ξjt−1, ξt, y1:t−1)p(ξt | ξjt−1, y1:t−1)

p(yt | y1:t−1)
. (3.67)

Now, instead of trying to sample “directly” from the above mixture (see Alternative S2
below), we aim at sampling a pair {J(i), ξit}, where the random variable J(i) is an index
into the mixture. Sampling from a mixture like (3.67), is naturally thought of as a two-step
procedure. First, we choose one of the components at random, i.e. we draw an ancestor
particle ξjt−1. Second, we draw a new particle ξit from this specific component. The
variable J(i), denoted an auxiliary variable, can then be seen as the index of this ancestor
particle.

A pair {J(i), ξit} is proposed by first sampling the auxiliary variable,

J(i) ∼ Cat
(
{ωj

t−1}Nj=1

)
, (3.68a)

and then, conditioned on this index, draw a new particle from some proposal density

ξit ∼ rt(ξt | ξJ(i)t−1 , y1:t). (3.68b)

The pair is assigned an importance weight,

ωi
t ∝

p(yt | ξJ(i)t−1 , ξ
i
t, y1:t−1)p(ξ

i
t | ξJ(i)t−1 , y1:t−1)

rt(ξit | ξJ(i)t−1 , y1:t)
, (3.69)

and we can thereafter discard the auxiliary variable J(i). Since we only know the weights
up to proportionality, they are normalised to sum to one. By repeating the procedure N
times, we obtain a weighted particle system {ξit, ωi

t}Ni=1 targeting the marginal filtering
distribution at time t.
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As already pointed out, this sampling procedure is analogous to the sampling conducted
in the standard RBPF, using multinomial resampling followed by a mutation step. Here, re-
sampling is replaced by the auxiliary variable sampling (3.68a), and mutation corresponds
to drawing the new particles in (3.68b). However, the observant reader might have noticed
that there is a slight difference between the weight expression for the RBPF (3.46) and for
the RBMPF (3.69). In the former, the densities are conditioned on the full history of the
nonlinear state trajectory Ξ1:t−1, whereas in the latter the conditioning is on just Ξt−1. As
argued in Section 2.2.2, it is in general not sufficient to condition on the nonlinear state
at a single time point, to retain the analytically tractable substructure in a CLGSS model.
Hence, the densities appearing in the weight expression (3.69) are in the general case not
available in closed form.

However, this will in fact not be an issue in the RBMPF setting. The reason is that the
conditional filtering density p(zt−1 | ξt−1, y1:t−1) is approximated by a Gaussian at time
t − 1 (see Section 3.4.2). Given this approximation, conditioning on just Ξt−1 in the
RBMPF, will have the “same effect” as conditioning on Ξ1:t−1 in the RBPF. Hence, the
densities appearing in the weight expression (3.69) will indeed be available for evaluation,
under the above mentioned Gaussian approximation. It can be said that the whole idea
with the RBMPF, is to replace the conditioning on the nonlinear state trajectory, with a
conditioning on the nonlinear state at a single time point.

Before we leave this section, it should be said that the idea of using auxiliary variables is
not restricted to the RBMPF. The same idea can also be used to describe the inner workings
of the PF, targeting the filtering distribution. In fact, auxiliary variables have been used
by Pitt and Shephard [1999] to design the auxiliary particle filter. This is often seen as a
“look-ahead” method, used to improve the performance of the filter. The idea is to use a
different proposal distribution for the auxiliary variables than (3.68a). By modifying the
weights to incorporate information about the current measurement yt, before we sample
the auxiliary variables, we are more likely to draw ancestor particles with a good fit to
the current observation. In the presentation above, we did not make use of the “look-
ahead” ideas of Pitt and Shephard [1999], even if this indeed is an interesting option. On
the contrary, the auxiliary variable sampling presented here is, as previously pointed out,
equivalent to using multinomial resampling followed by mutation in the standard RBPF.

Alternative S2: Marginal sampling

The second alternative for sampling in the RBMPF that we will consider, is to target the
mixture density (3.67) directly. This is in complete analogy with the MPF by Klaas et al.
[2005] (see also Section 3.2.4). That is, given a weighted particle system {ξjt−1, ω

j
t−1}Nj=1

targeting p(ξt−1 | y1:t−1), we construct a proposal as a mixture density according to,

r′t(ξt | y1:t) =
N∑

j=1

ωj
t−1rt(ξt | ξjt−1, y1:t). (3.70)

From this, we draw a set of new particles {ξit}Ni=1. To compute the importance weights, i.e.
the quotient between the target and the proposal densities, we make use of the empirical
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approximation of the target density (3.67), resulting in,

ωi
t ∝

∑N
j=1 ω

j
t−1p(yt | ξjt−1, ξ

i
t, y1:t−1)p(ξ

i
t | ξjt−1, y1:t−1)

∑N
j=1 ω

j
t−1rt(ξ

i
t | ξjt−1, y1:t)

. (3.71)

Finally, since we only know the weights up to proportionality, they are normalised to sum
to one.

3.4.2 Gaussian mixture approximations

We now turn to the more central problem in the RBMPF, namely to find an approximation of
the density (3.65). The general idea that we will employ is to approximate it as Gaussian.
Hence, let us assume that p(zt−1 | ξt−1, y1:t−1) ≈ p̂(zt−1 | ξt−1, y1:t−1) for some t ≥ 2,
with,

p̂(zt−1 | ξt−1, y1:t−1) , N
(
zt−1; z̄t−1|t−1(ξt−1), Pt−1|t−1(ξt−1)

)
, (3.72)

for some mean and covariance functions, z̄t−1|t−1 and Pt−1|t−1, respectively. At time
t = 2, no approximation is in fact needed, since (3.72) then coincides with (3.34).

Remark 3.8. We will in the sequel use p̂ as a generic symbol for any density, which is an approxi-
mation of some density p. Just as for p (see Remark 2.1 on page 14), we will let the argument of p̂
indicate which density that is referred to, so that p̂( · ) ≈ p( · ).

Just as in the standard RBPF, if we augment the conditioning on the nonlinear state to
ξt−1:t, and make a time update and measurement update of (3.72), we obtain

p̂(zt | ξt−1, ξt, y1:t) = N
(
zt; z̃t|t(ξt−1:t), P̃t|t(ξt−1:t)

)
, (3.73)

for some mean and covariance functions, z̃t|t and P̃t|t, respectively. For the case of mixed
linear/nonlinear Gaussian state-space models, this is in analogy with the RBPF updating
steps given in Section 3.3.1. However, note that under the assumption (3.72), the Gaus-
sianity of (3.73) holds true for all types of CLGSS models.

The problem is that once we “remove” the conditioning on ξt−1, the Gaussianity is lost.
Hence, to obtain a recursion, i.e. to end up with (3.72) with time index t−1 replaced by t,
we need to find a Gaussian approximation of p(zt | ξt, y1:t) based on (3.73). Below, we
provide to alternative approaches.

Alternative G1: Ancestral dependence

For both sampling alternatives presented in Section 3.4.1, we note that each proposed
particle at time t can be traced back to an ancestor particle at time t − 1. Using auxil-
iary variable sampling (Alternative S1), the index of the ancestor to particle ξit is simply
the auxiliary variable J(i), given by (3.68a). In the marginal sampling approach (Alter-
native S2), the ancestor is not as clearly visible. However, sampling from the proposal
mixture (3.70) is, from an implementation point of view, done by first choosing a compo-
nent at random, and then drawing a sample from this component. We can then take the
index of this component as the ancestor particle index.

Hence, let J(i) be the index of the ancestor to the particle ξit . By exploiting the ancestral
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dependence, we can straightforwardly approximate (3.65) as,

p̂(zt | ξit, y1:t) , p̂(zt | ξit, ξJ(i)t−1 , y1:t), (3.74)

for i = 1, . . . , N . The right hand side in the above expression is Gaussian and given by
(3.73). In other words, we set

z̄t|t(ξ
i
t) := z̃t|t(ξ

J(i)
t−1 , ξ

i
t), (3.75a)

Pt|t(ξ
i
t) := P̃t|t(ξ

J(i)
t−1 , ξ

i
t), (3.75b)

for i = 1, . . . , N .

Before we go on, let us pause for a moment and consider the meaning of this approxi-
mation. From an implementation point of view, (3.74) and (3.75) implies that there is no
change in the updating formulas for the linear states, compared to the RBPF. Once we iter-
ate over t = 1, 2 . . . , (3.74) further implies that p̂(zt | ξt, y1:t) = p(zt | ξ1:t, y1:t). Hence,
the approximation of (3.65) using ancestral dependence consists of simply neglecting the
dependence on Ξ1:t−1.

In fact, this is exactly the approximation that we would obtain by marginalisation of
the empirical distribution given by the RBPF. The weighted particle system {ξi1:t, ωi

t}Ni=1

produced by the RBPF defines an empirical distribution approximating the state-marginal
smoothing distribution Φm

1:t|t. Similarly to (3.14), we can marginalise this empirical dis-
tribution to find an approximation of the filtering distribution,

Φ̂N
t|t(dξt, dzt) =

∫

X
t−1
ξ

Φc
t|t(dzt | ξ1:t)Φ̂m,N

1:t|t (dξ1:t) =
N∑

i=1

ωi
tΦ

c
t|t(dzt | ξi1:t)δξit(dξt).

(3.76)

By taking the conditional of the approximate filtering distribution on the left hand side,
this further implies that

p̂(zt | ξit, y1:t) = p(zt | ξi1:t, y1:t). (3.77)

Hence, the approximation of (3.65) obtained by the ancestral dependence approximation,
is the same as that given by the RBPF. In fact, if auxiliary variable sampling (Alterna-
tive S1 in Section 3.4.1) is combined with ancestral dependence for approximating the
conditional filtering density (3.65), the RBMPF is identical to the RBPF. Consequently, ap-
proximation using ancestral dependence will not be of any use when dealing with slowly
mixing models, as the RBMPF will clearly suffer from the same issues as the RBPF.

Alternative G2: Mixing

We now present an alternative way of approximating the conditional density (3.65), which
we shall call mixing. We start by noting that the density can be written,

p(zt | ξt, y1:t) =
∫
p(zt | ξt−1:t, y1:t)p(ξt−1 | ξt, y1:t) dξt−1. (3.78)

Now, assume that we wish to evaluate (3.78), conditioned on some particle ξit . It can
then be realised that the ancestral dependence approximation, described in the previous
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section, consist of approximating the above integral using MC integration with a single
particle. That is, we plug the approximation,

p(ξt−1 | ξit, y1:t) dξt−1 ≈ δξJ(i)
t−1

(dξt−1), (3.79)

into the integral, resulting in the approximation (3.74) of the sought density (3.65).

From this point of view, a more natural approach would be to make use of the complete
particle system {ξjt−1, ω

j
t−1}Nj=1, to evaluate the integral. Thus, consider the second factor

of the integrand in (3.78),

p(ξt−1 | ξt, y1:t) =
p(yt | ξt−1:t, y1:t−1)p(ξt | ξt−1, y1:t−1)

p(ξt, yt | y1:t−1)
p(ξt−1 | y1:t−1). (3.80)

The weighted particle system {ξjt−1, ω
j
t−1}Nj=1 defines an empirical distribution, approxi-

mating the marginal filtering distribution at time t− 1,

p(ξt−1 | y1:t−1) dξt−1 ≈ Φ̂m,N
t−1|t−1(dξt−1) =

N∑

j=1

ωj
t−1δξjt−1

(dξt−1). (3.81)

By plugging this into (3.80) and (3.78), conditioned on ξit , we obtain

p(zt | ξit, y1:t) ≈
N∑

j=1

γj,it p(zt | ξjt−1, ξ
i
t, y1:t), (3.82a)

with,

γj,it =
ωj
t−1p(yt | ξjt−1, ξ

i
t, y1:t−1)p(ξ

i
t | ξjt−1, y1:t−1)∑N

k=1 ω
k
t−1p(yt | ξkt−1, ξ

i
t, y1:t−1)p(ξit | ξkt−1, y1:t−1)

. (3.82b)

Furthermore, by the Gaussianity assumption (3.73), we see that (3.82) is a Gaussian mix-
ture model (GMM). Recall that we seek to approximate the left hand side of (3.82a) with
a single Gaussian. To keep the full GMM representation is generally not an option, since
this would result in a mixture with a number of components increasing exponentially over
time. Hence, we propose to approximate the GMM with a single Gaussian, using moment
matching. From (3.73), the mean and covariance of the GMM (3.82a) are given by,

z̄t|t(ξ
i
t) =

N∑

j=1

γj,it z̃j,it|t , (3.83a)

Pt|t(ξ
i
t) =

N∑

j=1

γj,it

(
P̃ j,i
t|t + (z̃j,it|t − z̄it|t)(z̃

j,i
t|t − z̄it|t)T

)
, (3.83b)

respectively. Here we have used the shorthand notation z̃j,it|t instead of z̃t|t(ξ
j
t−1, ξ

i
t), etc.

In conclusion, the above results provide a Gaussian approximation of (3.65) according to,

p̂(zt | ξit, y1:t) , N
(
zt; z̄t|t(ξ

i
t), Pt|t(ξ

i
t)
)
. (3.84)

This approximation procedure, called mixing, is summarised and exemplified in Algo-
rithm 3.4, where the RBMPF is applied to a mixed linear/nonlinear Gaussian state-space
model.
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Algorithm 3.4 RBMPF for mixed linear/nonlinear Gaussian state-space models

Input: An augmented weighted particle system {ξit−1, ω
i
t−1, z̄

i
t−1|t−1, P

i
t−1|t−1}Ni=1,

(approximately) targeting p(zt−1 | ξt−1, y1:t−1)p(ξt−1 | y1:t−1).
Output: An augmented weighted particle system {ξit, ωi

t, z̄
i
t|t, P

i
t|t}Ni=1, (approximately)

targeting p(zt | ξt, y1:t)p(ξt | y1:t).
Sampling:

1: Draw ancestor particle indices, J(i) ∼ Cat
(
{ωj

t−1}Nj=1

)
, for i = 1, . . . , N .

2: Propose new particles, ξit ∼ rt(ξt | ξJ(i)t−1 , y1:t), for i = 1, . . . , N .
Prediction:

3: For j = 1, . . . , N ,

αj
t|t−1 = fξ,jt−1 +Aξ,j

t−1z̄
j
t−1|t−1,

ζjt|t−1 = fz,jt−1 +Az,j
t−1z̄

j
t−1|t−1,

P j
t|t−1 = Σz,j

t|t−1 − (Σξz,j
t|t−1)

T(Σξ,j
t|t−1)

−1(Σξz,j
t|t−1),

with

Σj
t|t−1 = Qj

t−1 +Aj
t−1P

j
t−1|t−1(A

j
t−1)

T.

Moment matching:
4: for i = 1 to N do
5: Condition the linear state on the particle ξit . For j = 1, . . . , N ,

z̃j,it|t−1 = ζjt|t−1 + (Σξz,j
t|t−1)

T(Σξ,j
t|t−1)

−1(ξit − αj
t|t−1).

6: Condition the linear state on the current measurement. For j = 1, . . . , N ,

z̃j,it|t = z̃j,it|t−1 +Kj,i
t (yt − ŷj,it ),

P̃ j,i
t|t = P j

t|t−1 −K
j,i
t Ci

tP
j
t|t−1,

with

ŷj,it = hit + Ci
t z̃

j,i
t|t−1,

Sj,i
t = Ri

t + Ci
tP

j
t|t−1(C

i
t)

T

Kj,i
t = P j

t|t−1(C
i
t)

T(Sj,i
t )−1.

7: For j = 1, . . . , N , compute the mixture weights γj,it according to (3.82b), using
Gaussian approximations of the densities according to,

p̂(yt | ξjt−1, ξ
i
t, y1:t−1) = N

(
yt; ŷ

j,i
t , Sj,i

t

)
,

p̂(ξit | ξjt−1, y1:t−1) = N
(
ξit;α

j
t|t−1,Σ

ξ,j
t|t−1

)
.

8: Compute the mean z̄it|t and covariance P i
t|t of the GMM according to (3.83).

9: end for
Weighting:
10: For i = 1, . . . , N , compute the weights ωi

t according to Alternative S1 (3.69), or
according to Alternative S2 (3.71), using Gaussian approximations of the involved
densities as in step 7 above.
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Figure 3.7: RBMPF estimate of Zt (thick black line) and the estimated 3σ-confidence
interval (grey dotted lines), as function of time t. The “true” value is −0.8.

3.4.3 Discussion

Before we proceed with a discussion on some of the properties of the RBMPF, let us return
to Example 3.2, to see how the RBMPF performs. A more thorough numerical evaluation of
the RBMPF is given in Section 6.2, where the RBMPF is applied to the problem of nonlinear
system identification.

Example 3.3: RBMPF for a partially static system
To cope with the degeneracy problems that arose for the RBPF in Example 3.2, an RBMPF

is applied to the same data. As for the RBPF, a bootstrap RBMPF with N = 100 parti-
cles is used. The RBMPF uses auxiliary variable sampling (Alternative S1) together with
mixing for Gaussian mixture approximation (Alternative G2), as in Algorithm 3.4. The
estimate of the state Zt, together with the estimated 3σ-confidence intervals, are shown in
Figure 3.7. In this example, it is clear that the RBMPF succeeds much better than the RBPF,
in estimating the linear state.

We emphasise that this example is provided as an illustration of the concept, and not an
evaluation of the RBMPF. We have only considered one realisation of data, which of course
is not enough to draw any general conclusions. A more substantial numerical evaluation
of the RBMPF is given in Section 6.2.

As indicated by Example 3.3, and also by the results in Section 6.2, there is indeed a large
potential gain in using the RBMPF instead of the RBPF for certain problems. This gain
is related to how the Gaussian approximations for the conditional filtering distribution
(3.65) are computed. In Section 3.4.2 we argued that, among the two approximations
discussed here, only mixing (Alternative G2) will circumvent the problems that arose in
the RBPF. The reason is that the mixing approximation causes an increase in the estimated
uncertainty about the linear states, which is otherwise underestimated. Since we, in this
thesis, have proposed the RBMPF as a way to deal with slowly mixing systems, it shall
from now on be assumed that the mixing approximation is the default choice, whenever
referring to the RBMPF.
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Table 3.1: RBMPF combinations

Sec. 3.4.1 Sec. 3.4.2 Comment

S1 G1 Equivalent to the RBPF

S2 G1 Jianjun et al. [2007] and Smal et al. [2007]
S1 G2

}
RBMPF proposed in this thesis (Algorithm 3.4)

S2 G2

The RBMPF by Jianjun et al. [2007] and that of Smal et al. [2007], are both focused on
combining the RBPF with the MPF by Klaas et al. [2005]. They both use marginal sampling
(Alternative S2) combined with ancestral dependence (Alternative G1). Consequently,
they will suffer from the same drawbacks as the RBPF when applied to slowly mixing
systems. However, neither are they designed to deal with such systems. The reason for
why the filters proposed by Jianjun et al. [2007] and Smal et al. [2007], are sorted into
the RBMPF framework of this thesis, is to emphasise the differences, and the different
objectives, of these methods compared to the RBMPF proposed here. See also Table 3.1,
where different RBMPF combinations are summarised.

The above mentioned benefits of the RBMPF does (of course) come at a price. Most notably,
the RBMPF has O(N2) complexity. This is easily seen in Algorithm 3.4, where indices i
and j both range from 1 to N . In fact, just as the RBPF can be seen as using N parallel
Kalman filters, the RBMPF uses N2 Kalman filters. In this way, by viewing each particle
as a separate model, the RBMPF very much resembles the 2nd order, generalised pseudo-
Bayesian (GPB2) multiple model filter. Guided by this insight, we could also derive an
RBMPF similar to the 1st order generalised pseudo-Bayesian (GPB1) multiple model filter
(see [Bar-Shalom et al., 2001] for the two GPB filters). This would reduce the complexity
to O(N), but at the cost of coarser approximations, likely to degrade the performance of
the filter. A third approach in this direction, is to start from the IMM filter by Blom [1984]
and Blom and Bar-Shalom [1988]. The IMM filter is a popular choice for multiple model
filtering, since it has lower complexity than GPB2 (still quadratic, but smaller constants),
but is known to have similar performance [Blom and Bar-Shalom, 1988]. However, it is
not clear that the ideas underlying the IMM filter, can be straightforwardly generalised to
the RBMPF. This issue requires further attention.

Another way to reduce the complexity of the algorithm is by numerical approximations
of the mixture models. Due to the exponential decay of the Gaussian components, trun-
cation might aid in making fast, sufficiently accurate, evaluations of the GMM moments.
A related approach is that of Gray and Moore [2000, 2003], used for fast, nonparametric
density estimation. Also, fast summation methods, similar to the ideas underlying the
fast Gauss transform by Greengard and Strain [1991], Greengard and Sun [1998] and the
improved fast Gauss transform by Yang et al. [2003], might be of use. However, as dis-
cussed by Boyd [2010], truncation methods should in general have more to offer than fast
summation methods, for Gaussian components which are quickly decaying.

Finally, another option is of course to seek alternative approximations of the conditional
filtering distribution (3.65), not based on a GMM as in (3.82). By doing so, one can pos-
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sibly find good approximations, which can be evaluated more efficiently than the ones
presented here.





4
Asymptotic properties of SMC

methods

In this chapter we consider the convergence properties of sequential Monte Carlo (SMC)
methods. In Section 4.1 we review some existing convergence results and discuss their
different properties. The main contribution of this chapter lies in Section 4.2, where
we analyse the asymptotic variance of the Rao-Blackwellised particle filter (RBPF) and
compare it to that of the standard particle filter (PF), with the purpose of answering the
question; how much do we gain from using an RBPF instead of a PF?

4.1 Convergence

Assume that we wish to compute the expectation of some function ϕ : X → R under the
filtering distribution, i.e. we seek Φt|t(ϕ). Assume further that we estimate this quantity
by employing a PF, generating a weighted particle system {xit, wi

t}Ni=1 targeting Φt|t, and
construct a randomised estimator according to,

ϕ̂N
PF =

N∑

i=1

wi
tϕ(x

i
t). (4.1)

A natural question to ask is; will this estimator converge to the true expectation as we
increase the number of particles?

There exists a vast amount of literature dedicated to answering this question, and there are
still many results that remain to be found. The reason is that the question is not as simple
as it first appears. If we dig a little deeper into the problem we may elaborate the question
and ask;

• What type of convergence can be guaranteed and at what rate will the estimator
convergence?

69
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• What constraints do we need to impose on the underlying model (in this case the
SSM) for the convergence results to hold?

• What constraints do we need to impose on the test function ϕ for the results to
hold?

Due to the high variety of different aspects of convergence, it is hard to present a thorough
overview of the existing results. There is an interplay between the strengths of the results
and the strengths of the assumptions. A full spectrum of results, ranging from weak to
strong, can be found in the literature. In this section, we give a brief survey of some of the
aspects of SMC convergence, but we emphasise that this overview is in no way complete.

4.1.1 Consistency and central limits for general SMC

The first observation that we make, which is a very comforting one, is that SMC methods
do converge as the number of particles tend to infinity, and that they do so very generally.
However, in this claim, we do not consider the strength, or the rate of the convergence.
To begin with, we will focus on asymptotic results on consistency (i.e. convergence in
probability) and asymptotic normality of weighted particle systems. The material of this
section is based on the (quite recent) work by Douc and Moulines [2008], basically be-
cause these are the results that we will use in Section 4.2. However, it should be noted
that many convergence results for SMC methods were established prior to this work; see
the references below.

Before we go on, we introduce some additional notation that will be used in this chapter.
First of all, we note that so far in this thesis, we have mostly considered weighted parti-
cle systems with a fixed number of particles. In this section, the idea is to analyse the
properties of these systems as the number of particles tend to infinity. Hence, we must
allow the number of particles N to vary. We will indicate this by considering a sequence
of integers {Nn}∞n=1, corresponding to the number of particles. Naturally, this sequence
is increasing and divergent, so that Nn →∞ as n→∞, but it is not necessarily the case
that Nn = n.

Furthermore, the particle systems generated by an SMC method follow different laws de-
pending on the number of particles used. Hence, we are in fact dealing with triangular
arrays of random variables, i.e. constructs of the form,

Z1,1

Z2,1 Z2,2

Z3,1 Z3,2 Z3,3

...
...

...
. . .

A generic weighted particle system will thus, in this section (and also in Section 4.2), be
written {Zn,i,Wn,i}Nn

i=1. Though cumbersome, it is important to keep the dependence on
n in the notation (cf. Definition 3.1).

Finally, convergence in distribution and convergence in probability are denoted by
D−→

and
P−→, respectively.

Now, let us introduce the concept of weighted particle system consistency, borrowed from
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Douc and Moulines [2008].

Definition 4.1 (Consistency). A weighted particle system {Zn,i,Wn,i}Nn

i=1 on Z is said
to be consistent for the probability measure µ and the set C ⊆ L

1(Z, µ) if,

Nn∑

i=1

Wn,iϕ(Zn,i)
P−→ µ(ϕ), for any ϕ ∈ C, (4.2a)

max
i=1, ..., Nn

Wn,i P−→ 0, (4.2b)

as n→∞.

Hence, if a weighted particle system is consistent for some probability measure µ, then
the MC estimate of the expectation of a function ϕ ∈ C, converges in probability to the
true expectation as the number of particles tends to infinity. Furthermore, by (4.2b), we
note the definition of consistency also requires that the individual contribution to the MC

estimate from each particle should tend to zero.

Douc and Moulines [2008] show that the general SMC framework, as outlined in Sec-
tion 3.1, produces consistent particle systems. More precisely, if we start with a consistent
weighted particle system, then any step of an SMC method will retain the consistency. We
reproduce two of the main results from [Douc and Moulines, 2008].

Theorem 4.1 (Mutation: preservation of consistency). Let ν and µ be probability

measures on the measurable spaces (X̃, X̃ ) and (X,X ), respectively. Let L be a transfor-

mation kernel for ν and µ according to (3.2). Let {ξ̃n,i, ω̃n,i}Mn

i=1 be a weighted particle

system, consistent for (ν, C̃) and assume that L(X | · ) ∈ C̃. Then, the weighted particle

system {ξn,i, ωn,i}Nn

i=1 generated by mutation according to (3.4) and (3.5) is consistent

for (µ,C) with, C = {ϕ ∈ L
1(X, µ), L(|f |) ∈ C̃}.

Proof: See [Douc and Moulines, 2008], Theorem 1.

Theorem 4.2 (Selection: preservation of consistency). Let µ be a probability measure

on the measurable space (X,X ) and let {ξn,i, ωn,i}Nn

i=1 be a weighted particle system,

consistent for (µ,C). Then, the equally weighted particle system {ξ̃n,i, 1/Mn}Mn

i=1 gen-

erated by either multinomial or residual resampling (see Section 3.1.2) is consistent for

(µ,C).

Proof: See [Douc and Moulines, 2008], Theorem 3.

It should be mentioned that Douc and Moulines [2008] provide similar consistency results
for several additional selection schemes, in the categories of branching and fractional
reweighting.

As mentioned above, the results on consistency tell us that general SMC methods do con-
verge, in the sense that the sequence of random variables {∑Nn

i=1 ω
n,iϕ(ξn,i)}∞n=1 con-

verges in probability to the expectation µ(ϕ). It is also possible to assess the asymp-
totic distribution for this sequence of random variables, which provides a central limit
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theorem (CLT) for SMC methods. This theory has been studied and gradually developed
by Del Moral and Miclo [2000], Gilks and Berzuini [2001], Del Moral [2004], Chopin
[2004], Künsch [2005] and Douc and Moulines [2008]. Here, we continue to review the
results by Douc and Moulines [2008], and introduce the concept of asymptotic normality.

Definition 4.2 (Asymptotic normality). Let µ be a probability measure and γ a finite
measure, both on the measurable space (Z,Z). Let A ⊆ L

1(Z, µ) and W ⊆ L
1(Z, γ) be

sets of real-valued, measurable functions on Z. Let σ be a real nonnegative function on A

and {an}∞n=1 a nondecreasing real sequence diverging to infinity.

A weighted particle system {Zn,i,Wn,i}Nn

i=1 on Z is said to be asymptotically normal for
(µ,A,W, σ, γ, {an}) if,

an

Nn∑

i=1

Wn,i
(
ϕ(Zn,i)− µ(ϕ)

) D−→ N (0, σ2(ϕ)), for any ϕ ∈ A, (4.3a)

a2n

Nn∑

i=1

(Wn,i)2ϕ(Zn,i)
P−→ γ(ϕ), for any ϕ ∈W, (4.3b)

an max
i=1, ..., Nn

Wn,i P−→ 0, (4.3c)

as n→∞.

Here, the convergence rate is given by the divergent sequence {an}∞n=1, which in general
need not be equal to {√Nn}∞n=1. However, for the results that we will encounter in the
sequel, this is indeed the case. We review two additional theorems given by Douc and
Moulines [2008], which establish the asymptotic normality for general SMC methods.

Theorem 4.3 (Mutation: preservation of asymptotic normality). Suppose that the as-

sumptions of Theorem 4.1 hold. Assume in addition that the weighted particle system

{ξ̃n,i, ω̃n,i}Mn

i=1 is asymptotically normal for (ν, Ã, W̃, σ̃, γ̃, {an}) and that R(W 2) ∈
W̃. Then, the weighted particle system {ξn,i, ωn,i}Nn

i=1 generated by mutation accord-

ing to (3.4) and (3.5) is asymptotically normal for (µ,A,W, σ, γ, {an}) with, γ(f) ,

MnNn
−1γ̃(R(W 2f))/[ν(L(X | · ))]2,

σ2(f) =
σ̃2(L(f̄)) +MnNn

−1γ
(
R
(
[Wf̄ −R(Wf̄)]2

))

[ν(L(X | · ))]2
, (4.4a)

f̄ = f − µ(f), (4.4b)

and

A , {f : L(|f |) ∈ Ã, R(W 2f2) ∈ W̃}, (4.4c)

W , {f : R(W 2|f |) ∈ W̃}. (4.4d)

Proof: See [Douc and Moulines, 2008], Theorem 2.

Theorem 4.4 (Selection: preservation of asymptotic normality). Suppose that the as-

sumptions of Theorem 4.2 hold. Assume in addition that the weighted particle system
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{ξn,i, ωn,i}Nn

i=1 is asymptotically normal for (µ,A,W, σ, γ, {an}) and that a−2
n Nn

P−→
β−1 ∈ R+. Let Mn = ℓNn for some ℓ ∈ R+. Then, the equally weighted particle sys-

tem {ξ̃n,i, 1/Mn}Mn

i=1 generated by multinomial resampling is asymptotically normal for

(µ, Ã,C, σ̃, γ̃, {an}) with γ̃ = βℓ−1µ, Ã , {f : f ∈ A, f2 ∈ C} and

σ̃2(f) = βℓ−1Varµ(f) + σ2(f). (4.5)

Proof: See [Douc and Moulines, 2008], Theorem 4.

Douc and Moulines [2008] provide similar theorems for several additional selection meth-
ods, such as residual resampling and different branching procedures.

Related to the material presented in this section is the work by Douc et al. [2009], in
which consistency and asymptotic normality for the auxiliary PF is established (see also
the work by Johansen and Doucet [2008]). Furthermore, Douc et al. [2010] analyse the
smoothing problem (which we will discuss in the subsequent chapter) and provide central
limit theorems for certain particle smoothers.

4.1.2 Non-asymptotic and strong convergence

The convergence results reviewed in the previous section were all asymptotic, i.e. they
considered the limits of the particle approximations as the number of particles tended to
infinity. Another, common approach to analysing the convergence of SMC methods is to
fix the number of particles N . The error (in some appropriate sense) is then bounded
by a function decreasing in N , yielding a qualitative result on the convergence rate of
the method. In this section, we provide a brief and informal discussion on this type of
results. For a more in-depth theoretical treatment, we refer to the various articles and
books, referenced below.

A common approach is to consider the L
p-error of an estimator derived from the PF (or a

similar method). For ϕ ∈ L
p(X,Φt|t) the L

p-error can typically be bounded according to,

E
[
|Φ̂N

t|t(ϕ)− Φt|t(ϕ)|p
]1/p

≤ Cϕ(t, p)√
N

, (4.6)

where Cϕ(t, p) is a ϕ-dependent function of t and p, but independent of the number
of particles N . This type of results are provided by e.g. Del Moral and Miclo [2000]
and Del Moral [2004] for bounded functions ϕ. In this case, it holds that Cϕ(t, p) =
C(t, p)‖ϕ‖∞ for some function C and where ‖ · ‖∞ is the supremum norm. Hu et al.
[2008, 2011] extend these results, for p ≥ 2, to unbounded functions ϕ. It should be noted
that to enable this, they are forced to make certain algorithmic modifications. However,
as pointed out by Hu et al. [2008], similar modifications have previously been introduced
on heuristic grounds, to obtain a more practically applicable algorithm. Furthermore,
Douc et al. [2009] provide results on the L

p-error for the auxiliary PF (for bounded test
functions).

Related to L
p-bounds are exponential deviation inequalities, typically of the form,

P
(
|Φ̂N

t|t(ϕ)− Φt|t(ϕ)| ≥ ǫ
)
≤ Aϕ(t)e

−Nǫ2/Bϕ(t), (4.7)
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for some Aϕ( · ), Bϕ( · ), and ǫ > 0. This type of results are (for bounded functions ϕ)
given by e.g. Del Moral and Miclo [2000] and Douc et al. [2010] (the results by Douc
et al. [2010] also apply to certain particle smoothers). Furthermore, from (4.7) and by the
Borel-Cantelli lemma, almost sure convergence follows;

P
(

lim
N→∞

Φ̂N
t|t(ϕ) = Φt|t(ϕ)

)
= 1. (4.8)

It should be noted that the bounds given above are in general not uniform in the time
parameter t. That is, there is no guarantee that the functions Aϕ, Bϕ and Cϕ do not
increase over time. To obtain time uniform bounds, some mixing assumptions on the
model are needed. The most common assumption, is to bound the transition density
function from above and below. Under this assumption, time uniform bounds have been
established by for instance Del Moral and Guionnet [2001], Le Gland and Oudjane [2004]
and Künsch [2005]. However, this is a strong assumption, which can be satisfied basically
only if the state-space is compact. Quite recently, Handel [2009] has established time
uniform results under weaker mixing assumptions. However, the expense of this is that
the results are weakened and that no convergence rate is obtained. To find stronger, time
uniform bounds under weak mixing assumption (if such bounds exist) is a topic for future
work.

4.2 Variance reduction for the RBPF

In Section 3.3 we presented the RBPF, an SMC method designed to exploit a type of condi-
tional, tractable substructure in the model at hand. We motivated the RBPF by claiming that
it will improve the accuracy of the filter, in the sense that any estimator derived from the
RBPF will intuitively have lower variance than the corresponding estimator derived from
the standard PF. Informally, the reason for this is that in the RBPF, the particles are spread
in a lower dimensional space, yielding a denser particle representation of the underlying
distribution. The improved accuracy is also something that is experienced by practitioners.
However, it can be argued that it is still not beneficial to resort to Rao-Blackwellisation
in all cases. The reason is that the RBPF in general is computationally more expensive per
particle, compared to the standard PF. For instance, for an RBPF targeting a conditionally
linear Gaussian state-space (CLGSS) model, each particle is equipped with a Kalman filter
(KF), all which need to be updated at each iteration. Hence, for a fixed computational
effort, we can choose to either use Rao-Blackwellisation or to run a standard PF, but in-
stead increase the number of particles. Both these alternatives will reduce the variance of
the estimators. Hence, it is important to understand and to be able to quantify how large
variance reduction we can expect from the RBPF, in order to make suitable design choices
for any given problem.

In this section we will study the asymptotic (in the number of particles) variances for the
RBPF and the PF. We provide an explicit expression for the difference between the vari-
ance of an estimator derived from the PF and the variance of the corresponding estimator
derived from the RBPF. The material of the present section has previously been published
in [Lindsten et al., 2011b].

Of course, there has been previous work regarding the variance reduction for the RBPF.
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Doucet et al. [2000b] motivates the RBPF by concluding that the weight variance will be
lower than for the PF, but they do not consider the variances of any estimators. This is
done by Chopin [2004], who, under certain assumptions, concludes that the variance of an
estimator based on the PF always is at least as high as for the RBPF. However, no explicit
expression for the difference is given, and the test functions considered are restricted
to one partition of the state-space. Doucet et al. [2000a] also analyse the RBPF and the
reduction of asymptotic variance. However, they only consider an importance sampling
setting and neglect the important selection step. Karlsson et al. [2005] studies the problem
empirically, by running simulations on a specific example. Here, they have also analysed
the number of computations per iteration in the RBPF and the PF, respectively.

4.2.1 PF and RBPF revisited

Before we go on with the results on variance reduction, let us revisit the PF of Section 3.2.3
and the RBPF of Section 3.3 to establish the notation used in this section.

We shall assume that a PF is used to target the joint smoothing distribution Φ1:t|t. Let Lt

be a transformation kernel for this distribution, i.e. a kernel from X
t−1 to X

t such that,

Φ1:t|t(dx1:t) =
Φ1:t−1|t−1Lt(dx1:t)

Φ1:t−1|t−1Lt(Xt)
. (4.9)

In the mutation step of the filter, we mutate the particle trajectories at time t− 1 into new
particle trajectories at time t, by sampling from a proposal kernel (a transition kernel from
X
t−1 to X

t),

Rt(dx1:t | x̃1:t−1). (4.10)

Recall that the proposal kernel very well may depend on the measurement sequence y1:t,
but we do not make this dependence explicit. The kernels Lt and Rt are chosen such that
Lt( · | x̃1:t−1) ≪ Rt( · | x̃1:t−1) for all x̃1:t−1 ∈ X

t−1. Furthermore, we shall assume
that the weight function according to (3.3) on page 31, here given by,

W ′
t (x1:t) =

dLt( · | x̃1:t−1)

dRt( · | x̃1:t−1)
(x1:t), (4.11)

only depends on the “new” trajectory x1:t. As discussed in Section 3.2.3 this is often the
case when the target is the joint smoothing distribution. In particular, it is true whenever
the proposal kernel has the form given by (3.17) on page 39, i.e. when the proposal is such
that we keep the old trajectory up to time t− 1 and simply append a sample at time t.

Let us define a measure on X t according to,

π1:t|t(dx1:t) ,

∫

Xt−1

Rt(dx1:t | x̃1:t−1)Φ1:t−1|t−1(dx̃1:t−1). (4.12)

This can be seen as the “proposed joint smoothing distribution” at time t under the pro-
posal kernelRt. In the analysis that follows, it is convenient to replace (4.11) with another
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weight function defined by,

Wt(x1:t) ,
dΦ1:t|t

dπ1:t|t
(x1:t). (4.13)

In fact, with Ct = Φ1:t−1|t−1Lt(X
t) we may write (4.9) as,

Φ1:t|t(dx1:t) =
1

Ct

∫

Xt−1

Lt(dx1:t | x̃1:t−1)Φ1:t−1|t−1(dx̃1:t−1)

=
1

Ct

dLt( · | x̃1:t−1)

dRt( · | x̃1:t−1)
(x1:t)π1:t|t(dx1:t), (4.14)

which implies that,

Wt(x1:t) =
1

Ct
W ′

t (x1:t), π1:t|t-a.s. (4.15)

Hence, (4.13) is an “unnormalised” weight function, since it equals (4.11) up to a con-
stant. However, whether we use (4.11) or (4.13) will not make any difference in the actual
PF algorithm, since either way, the weights are normalised to sum to one. As previously
pointed out, the reason for why we prefer (4.13) over (4.11) is because it is more conve-
nient to work with.

Remark 4.1. Alternatively, we may go the other way around and define a function according to
(4.13). Then, taking Lt(dx1:t | x̃1:t−1) , Wt(x1:t)Rt(dx1:t | x̃1:t−1) gives a plausible transfor-
mation kernel in (4.9) with Φ1:t−1|t−1Lt(X

t) = 1, meaning that Wt = W ′
t .

The second crucial step of an SMC method is selection, as discussed in Section 3.1.2. As
mentioned there, many different selection strategies are available. Here, we shall assume
that selection is done by multinomial resampling which is performed at each iteration of
the algorithm. This gives a PF for the joint smoothing distribution which we summarise
in Algorithm 4.1. However, results similar to those presented in Section 4.2.3 could be
obtained for other types of PFs as well, such as the auxiliary PF by Pitt and Shephard
[1999] and PFs with more sophisticated selection schemes.

Now, as in Section 3.3 we assume that there is an analytically tractable substructure in the
model. Thus, we partition the state variable as Xt = {Ξt, Zt} with X = Xξ × Xz , and
factorise the joint smoothing distribution according to,

Φ1:t|t(dx1:t) = Φm
1:t|t(dξ1:t)Φ

c
1:t|t(dz1:t | ξ1:t), (4.16)

where {ξt, zt} identifies to xt. Here, Φm
1:t|t is the state-marginal smoothing distribution

of Ξ1:t and φc1:t|t is the conditional joint smoothing distribution of Z1:t given Ξ1:t = ξ1:t.
The conditional distribution is assumed to be analytically tractable, typically Gaussian or
with finite support.

Remark 4.2. More precisely, as pointed out in Remark 3.7 on page 43, Φc
1:t|t is a kernel from X

t
ξ

to X
t
z . For each fixed ξ1:t, Φc

1:t|t( · | ξ1:t) is a measure on X
t
z , and can hence be viewed as a

conditional distribution. In the notation used in (4.16), the meaning is that Φ1:t|t is the product of
the measure Φm

1:t|t and the kernel Φc
1:t|t. In the remainder of this section we shall make frequent

use of a Fubini like theorem for such products, see e.g. [Uglanov, 1991].
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Algorithm 4.1 Particle filter (PF)

Input: A weighted particle system {xN,i
1:t−1, w

N,i
t−1}Ni=1 targeting Φ1:t−1|t−1.

Output: A weighted particle system {xN,i
1:t , w

N,i
t }Ni=1 targeting Φ1:t|t.

Selection:
1: Generate an equally weighted particle system by multinomial resampling,

P(J(i) = j | {xN,k
1:t−1, w

N,k
t−1}Nk=1) = wN,j

t−1, i = 1, . . . , N.

2: Set x̃N,i
1:t−1 = x

N,J(i)
1:t−1 for i = 1, . . . , N .

Mutation:
3: Sample new particle trajectories from a proposal kernel according to,

xN,i
1:t ∼ Rt(dx1:t | x̃N,i

1:t−1), i = 1, . . . , N.

4: Compute the unnormalised importance weights using the weight function (4.13),

w′N,i
t ∝Wt(x

N,i
1:t ), i = 1, . . . , N

5: Normalise the weights.

wN,i
t =

w′N,i
t∑

k w
′N,k
t

, i = 1, . . . , N.

Instead of running a PF targeting the “full” joint smoothing distribution, we have the
option to target the state-marginal smoothing distribution Φm

1:t|t with an SMC sampler, and
then make use of an analytical expression for Φc

1:t|t. Hence, we choose a proposal kernel

Rm
t (dξ1:t | ξ̃1:t−1) from X

t−1
ξ to X

t
ξ, such that Φm

1:t|t ≪ πm
1:t|t and define a weight function

Wm
t (ξ1:t) analogously to (4.13). The measure πm

1:t|t on X t
ξ is defined analogously to

(4.12).

A weighted particle system {ξN,i
1:t , ω

N,i
t }Ni=1, targeting Φm

1:t|t, can then be generated in
the same manner as in Algorithm 4.1. We simply replace the weighted particle sys-
tems {xN,i· , wN,i· }Ni=1 with {ξN,i· , ωN,i· }Ni=1 and Φt, Rt, Wt with Φm

t , Rm
t , Wm

t , re-
spectively (again, superscript m for marginal). The resulting filter is what we call the
Rao-Blackwellised particle filter.

Remark 4.3. As pointed out in Section 3.3, the most common way to present the RBPF is for
CLGSS models. In this case, the conditional joint smoothing distribution Φc

1:t|t is Gaussian and can
be computed using the KF recursions. Consequently, the KF updates are often shown as intrinsic
steps in the presentation of the RBPF algorithm. This was the case, e.g. for the RBPF presented
in Algorithm 3.3, designed for mixed linear/nonlinear Gaussian SSMs. In this chapter, we adopt a
more general view and simply see the RBPF as a “regular” SMC method targeting the state-marginal
smoothing distribution Φm

1:t|t. We then assume that the conditional distribution Φc
1:t|t is available by

some means (for the CLGSS case, this would of course be by the KF), but it is not important for the
results of this chapter what those means are. Hence, in the view adopted in this chapter, there is no
fundamental difference between the PF and the RBPF. They are simply two SMC methods, targeting
different distributions.



78 4 Asymptotic properties of SMC methods

4.2.2 Problem formulation

The PF and the RBPF can both be used to estimate expectations under the joint smoothing
distribution. Assume that we, for some function f ∈ L

1(Xt,Φ1:t|t), seek the expectation
Φ1:t|t(f). For the PF we use the natural estimator,

f̂NPF ,

N∑

i=1

wN,i
t f(xN,i

1:t ). (4.17)

For the RBPF we use the fact that Φ1:t|t(f) = Φm
1:t|t(Φ

c
1:t|t(f)), and define the estimator,

f̂NRBPF ,

N∑

i=1

ωN,i
t Φc

1:t|t

(
f({ξN,i

1:t , · })
∣∣∣ ξN,i

1:t

)
. (4.18)

The question then arise, how much better is (4.18) compared to (4.17)?

One analysis of this question, sometimes seen in the literature, is to simply consider a
decomposition of variance,

Var(f)︸ ︷︷ ︸
PF

= Var(E[f | Ξ1:t])︸ ︷︷ ︸
RBPF

+E[Var(f | Ξ1:t)]︸ ︷︷ ︸
≥0

. (4.19)

Here, the last term is claimed to be the variance reduction obtained in the RBPF. The
decomposition is of course valid, the problem is that it does not answer our question.
What we have in (4.19) is simply an expression for the variance of the test function f , it
does not apply to the estimators (4.17) and (4.18).

Remark 4.4. It is not hard to see why the “simplified” analysis (4.19) has been considered. If the PF

would produce i.i.d. samples from the target distribution (which it does not), then the analysis would
be correct. More precisely, for i.i.d. samples, the central limit theorem states that the asymptotic
variance of an estimator of a test function f , coincides with the variance of the test function itself (up
to a factor 1/N ). However, as we have already pointed out, the PF does not produce i.i.d. samples.
This is due to the selection step, in which a dependence between the particles is introduced. At the
end of Section 4.2.5, one of the inadequacies of (4.19) will be pointed out.

Hence, we are interested in the asymptotic variances of (4.17) and (4.18). These are given
in the following two theorems (slight modifications of what has previously been given
by Douc and Moulines [2008]), in which we claim asymptotic normality of the weighted
particle systems generated by the PF and the RBPF, respectively.

Theorem 4.5 (Asymptotic normality of the PF). Assume that the initial particle system

{xN,i
1 , wN,i

1 }Ni=1 is asymptotically normal for (Φ1|1,A1,W1, σ1,Φ1|1, {
√
N}). Define

recursively the sets

At , {f ∈ L
2(Xt,Φ1:t|t) : Rt(Wtf) ∈ At−1, Rt(W

2
t f

2) ∈Wt−1}, (4.20a)

Wt , {f ∈ L
1(Xt,Φ1:t|t) : Rt(W

2
t |f |) ∈Wt−1}. (4.20b)

Assume that, for any t ≥ 1, Rt+1(W
2
t+1) ∈ Wt. Then, for any t ≥ 1, the weighted

particle system {xN,i
1:t , w

N,i
t }Ni=1 generated by the PF in Algorithm 4.1 is asymptotically

normal for (Φ1:t|t,At,Wt, σt,Φ1:t|t, {
√
N}). The asymptotic variance is, for f ∈ At,



4.2 Variance reduction for the RBPF 79

given by

σ2
t (f) = σ2

t−1

(
Rt(Wtf̄)

)
+Φ1:t−1|t−1

[
Rt

(
(Wtf̄)

2
)]
, (4.21a)

f̄ = f − Φ1:t|t(f). (4.21b)

Proof: The proof is given by induction and is a direct consequence of Theorem 4.3 and
Theorem 4.4 (see also [Douc and Moulines, 2008], Theorem 10).

Theorem 4.6 (Asymptotic normality of the RBPF). Under analogous conditions and

definitions as in Theorem 4.5, for any t ≥ 1 the weighted particle system {ξN,i
1:t , ω

N,i
t }Ni=1

generated by the RBPF, is asymptotically normal for (Φm
1:t|t,A

m
t ,W

m
t , τt,Φ

m
1:t|t, {

√
N}).

The asymptotic variance is, for g ∈ A
m
t , given by

τ2t (g) = τ2t−1 (R
m
t (Wm

t ḡ) + Φm
1:t−1|t−1

[
Rm

t

(
(Wm

t ḡ)
2
)]
, (4.22a)

ḡ = g − Φm
1:t|t(g). (4.22b)

Proof: The proof is given by induction and is a direct consequence of Theorem 4.3 and
Theorem 4.4 (see also [Douc and Moulines, 2008], Theorem 10).

Recall from Remark 4.3 that the PF and the RBPF are really just two SMC methods, targeting
different distributions, hence the similarity between the two theorems above. Actually, we
could have sufficed with one, more general, theorem applicable to both filters. The reason
for why we have chosen to present them separately is for clarity and to introduce all the
required notation.

As previously pointed out, the RBPF will intuitively produce better estimates than the PF,
i.e. we expect τ2t (Φ

c
1:t|t(f)) ≤ σ2

t (f). Let us therefore define the variance difference,

∆t(f) , σ2
t (f)− τ2t (Φc

1:t|t(f)). (4.23)

Now, the problem that we are concerned with is to find an explicit expression for this
quantity. This will be provided in the next section.

4.2.3 The main result

To analyse the variance difference (4.23) we will need the following assumption (similar
to what is used by Chopin [2004]).

Assumption A1. For each ξ̃1:t−1 ∈ X
t−1
ξ , the two measures

∫

X
t−1
z

Rt(dx1:t | {ξ̃1:t−1, z̃1:t−1})Φc
1:t−1|t−1(dz̃1:t−1 | ξ̃1:t−1) (4.24)

and

at(ξ1:t)π
c
1:t|t(dz1:t | ξ1:t)Rm

t (dξ1:t | ξ̃1:t−1) (4.25)

agree on X t, for some positive function at : Xt
ξ → R++ and some transition kernel πc

1:t|t

from X
t
ξ to X

t
z , for which Φc

1:t|t( · | ξ1:t)≪ πc
1:t|t( · | ξ1:t).
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The basic meaning of this assumption is to create a connection between the proposal
kernels Rt and Rm

t . It is natural that we need some kind of connection. Otherwise the
asymptotic variance expressions (4.21a) and (4.22a) would be completely decoupled, and
it would not be possible to draw any conclusions from a comparison. Still, as we shall see
in the next section, Assumption A1 is fairly weak.

We are now ready to state the main result of this section.

Theorem 4.7. Under Assumption A1, and using the definitions from Theorem 4.5 and

Theorem 4.6, for any f ∈ Ãt,

∆t(f) = ∆t−1(Rt(Wtf̄)) + Φm
1:t−1|t−1

[
Rm

t

((
1−at

at

)
(Wm

t ψ̄)
2 + atVarπc

1:t|t
(Wtf̄)

)]
,

(4.26)

where

ψ̄ = Φc
1:t|t(f)− Φ1:t|t(f), (4.27a)

Ãt = {f ∈ F(Xt) : Φc
1:t|t(f) ∈ A

m
t } ∩ At. (4.27b)

Proof: See Appendix 4.A.

4.2.4 Relationship between the proposal kernels

To understand the results given in the previous section, we shall have a closer look at the
relationship between the proposal kernels imposed by Assumption A1. We shall do this
for a certain family of proposal kernels. More precisely, similarly to (3.17) on page 39 we
assume that the kernels can be written

Rt(dx1:t | x̃1:t−1) = rt(dxt | x1:t−1)δx̃1:t−1
(dx1:t−1), (4.28a)

Rm
t (dξ1:t | ξ̃1:t−1) = rmt (dξt | ξ1:t−1)δξ̃1:t−1

(dξ1:t−1). (4.28b)

Informally, this means that when a particle trajectory (xN,i
1:t or ξN,i

1:t ) is sampled at time t,
we keep the “old” trajectory up to time t− 1 and simply append a sample from time t. As
discussed in Section 3.2.3, this is the case for most PFs when targeting the joint smoothing
distribution, but not all.

Furthermore, let rt be factorised as

rt(dxt | x1:t−1) = qct (dzt | ξ1:t, z1:t−1)q
m
t (dξt | ξ1:t−1, z1:t−1). (4.29)

Assume that qmt ( · | ξ1:t−1, z1:t−1) ≪ rmt−1( · | ξ1:t−1) for any {ξ1:t−1, z1:t−1} ∈ X
t−1

and define the kernel

νt(dz1:t | ξ1:t) ,
dqmt ( · | ξ1:t−1, z1:t−1)

drmt ( · | ξ1:t−1)
(ξt)

× qct (dzt | ξ1:t, z1:t−1)Φ
c
1:t−1|t−1(dz1:t−1 | ξ1:t−1). (4.30)
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It can now be verified that the choice

at(ξ1:t) =

∫

Xt
z

νt(dz1:t | ξ1:t), (4.31)

πc
1:t|t(dz1:t | ξ1:t) =

νt(dz1:t | ξ1:t)
at(ξ1:t)

, (4.32)

satisfies Assumption A1, given that Φc
1:t|t( · | ξ1:t)≪ πc

1:t|t( · | ξ1:t).
Hence, the function at takes the role of a normalisation of the kernel νt to obtain a transi-
tion kernel πc

1:t|t. One interesting fact is that, from (4.26), we cannot guarantee that ∆t(f)
is nonnegative for arbitrary functions at. At first this might seem counterintuitive, since
it would mean that the variance is higher for the RBPF than for the PF. The explanation
lies in that Assumption A1, relating the proposal kernels in the two filters, is fairly weak.
In other words, we have not assumed that the proposal kernels are “equally good”. For
instance, say that the optimal proposal kernel is used in the PF, whereas the RBPF uses a
poor kernel. It is then no longer clear that the RBPF will outperform the PF. In the example
below, we shall see that if both filters use their respective bootstrap proposal kernel, a
case when the term “equally good” makes sense, then ∆t(f) will indeed be nonnegative.
However, for other proposal kernels, it is not clear that there is an analogue between the
PF and the RBPF in the same sense.

Example 4.1: Bootstrap kernels
Let Q(dxt | xt−1) be the Markov transition kernel of the state process {Xt}t≥1. In the
bootstrap PF (see Definition 3.2) we choose the proposal kernel according to (4.28a) with

rt−1(dxt | x1:t−1) = Q(dxt | xt−1), (4.33)

where, for A ∈ X ,

Q(A | Xt−1) = P(Xt ∈ A | Xt−1) = P(Xt ∈ A | X1:t−1, Y1:t−1). (4.34)

The second equality follows from the Markov property of the process. In the bootstrap
RBPF (see Definition 3.4), we use a proposal kernel according to (4.28b) with

rmt (A | Ξ1:t−1) = P(Ξt ∈ A | Ξ1:t−1, Y1:t−1), (4.35)

for A ∈ Xξ.

It can be then be verified that, for these choices of proposal kernels, Assumption A1 is
fulfilled with,

at ≡ 1, (4.36a)

and

πc
1:t|t(A | Ξ1:t) = P(Z1:t ∈ A | Ξ1:t, Y1:t−1), (4.36b)

for A ∈ X t
z . Hence, πc

1:t|t is indeed the predictive distribution of Z1:t conditioned on
Ξ1:t and based on the measurements up to time t − 1. In this case we can also write
π1:t|t(dx1:t) = πm

1:t|t(dξ1:t)π
c
1:t|t(dz1:t | ξ1:t), which highlights the connection between

the predictive distributions in the two filters. In this case, due to (4.36a), the variance
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difference (4.26) can be simplified to

∆t(f) = ∆t−1(Rt(Wtf̄)) + Φm
1:t−1|t−1

[
Rm

t

(
Varπc

1:t|t
(Wtf̄)

)]
. (4.37)

Hence, ∆t(f) can be written as a sum (though, we have expressed it in a recursive form
here) in which each term is an expectation of a conditional variance. It is thus ensured to
be nonnegative.

4.2.5 Discussion

In Theorem 4.7 we gave an explicit expression for the difference in asymptotic variance
between the PF and the RBPF. This expression can be used as a guideline for when it is
beneficial to apply Rao-Blackwellisation, and when it is not. The variance expressions
given in this chapters are asymptotic. Consequently, they do not apply exactly to the
variances of the estimators (4.17) and (4.18), for a finite number of particles. Still, a
reasonable approximation of the accuracy of the estimator (4.17) is,

Var
(
f̂NPF

)
≈ σ2

t (f)

N
, (4.38)

and similarly for (4.18),

Var
(
f̂NRBPF

)
≈
τ2t (Φ

c
1:t|t(f))

N
. (4.39)

Now, assume that the computational effort required by the RBPF, usingM particles, equals
that required by the PF, using N particles (thus, M < N since, in general, the RBPF is
more computationally demanding than the PF per particle). We then have,

Var
(
f̂NPF

)

Var
(
f̂MRBPF

) ≈ M

N

(
1 +

∆t(f)

τ2t (Φ
c
1:t|t(f))

)
. (4.40)

Whether or not this quantity is greater than one tells us if it is beneficial to use Rao-
Blackwellisation. The crucial point is then to compute the ratio ∆t(f)/τ

2
t (Φ

c
1:t|t(f)),

which in itself is a challenging problem. However, it is possible that this ratio can be
efficiently estimated, e.g. from a single run of the RBPF.

As a final remark, for the special case discussed in Example 4.1, the variance difference
(4.37) resembles the last term in the expression (4.19). They are both composed of an
expectation of a conditional variance. One important difference though, is that the depen-
dence on the weight function Wt is visible in (4.37). As an example, if the test function
is restricted to f ∈ L

1(Xt
ξ,Φ

m
1:t|t) the gain in variance indicated by (4.19) would be zero

(since Var(f(Ξ1:t) | Ξ1:t) ≡ 0), but this is not the case for the actual gain (4.37).



Appendix

4.A Proof of Theorem 4.7

Let Assumption A1 be satisfied. We shall start by determining the relationship between
the weight functions Wt and Wm

t . Consider

Φ1:t|t(dx1:t) =
dΦ1:t|t

dπ1:t|t
(x1:t)π1:t|t(dx1:t)

=Wt(x1:t)

∫

Xt−1

Rt(dx1:t | x̃1:t−1)Φ1:t−1|t−1(dx̃1:t−1) (4.41)

where we have made use of the definitions in (4.12) and (4.13). Furthermore, from the
factorisation of Φ1:t−1|t−1 (4.16) and Assumption A1 we get,

Φ1:t|t(dx1:t) =Wt(x1:t)

×
∫

X
t−1
ξ

(
Φm

1:t−1|t−1(dξ̃1:t−1)

∫

X
t−1
z

Rt(dx1:t | x̃1:t−1)Φ
c
1:t−1|t−1(dz̃1:t−1 | ξ̃1:t−1)

)

= at(ξ1:t)Wt(x1:t)

∫

X
t−1
ξ

Φm
1:t−1|t−1(dξ̃1:t−1)R

m
t (dξ1:t | ξ̃1:t−1)︸ ︷︷ ︸

integrates to πm
1:t|t

(dξ1:t)

πc
1:t|t(dz1:t | ξ1:t)

= at(ξ1:t)Wt(x1:t)π
m
1:t|t(dξ1:t)π

c
1:t|t(dz1:t | ξ1:t); (4.42)

recall that πm
1:t|t is defined analogously to (4.12). However, we may also write

Φ1:t|t =
dΦm

1:t|t

dπm
1:t|t

dΦc
1:t|t

dπc
1:t|t

πm
1:t|π

c
1:t|t. (4.43)

83
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Hence, we have two candidates for the Radon-Nikodym derivative of Φ1:t|t with respect
to πm

1:t|tπ
c
1:t|t which, πm

1:t|tπ
c
1:t|t-a.s. implies,

at(ξ1:t)Wt(x1:t) =Wm
t (ξ1:t)

dΦc
1:t|t( · | ξ1:t)

dπc
1:t|t( · | ξ1:t)

(z1:t). (4.44)

Now, consider an arbitrary ϕ ∈ Ãt. Using (4.16) and Assumption A1 we may write

Φ1:t−1|t−1 [Rt(ϕ)] = Φm
1:t−1|t−1

[
Rm

t

(
· , atπc

1:t|t(ϕ)
)]
. (4.45)

Comparing (4.45) and (4.21a), we see that we can let ϕ take the role of (Wtf̄)
2. Hence,

consider

πc
1:t|t

(
(Wtf̄)

2
)
=
(
πc
1:t|t(Wtf̄)

)2
+Varπc

1:t|t
(Wtf̄), (4.46)

where, using (4.44) we have πm
1:t|t-a.s.,

πc
1:t|t(Wtf̄) =

∫
Wm

t (ξ1:t)

at(ξ1:t)

dΦc
1:t|t( · | ξ1:t)

dπc
1:t|t( · | ξ1:t)

(z1:t)f̄({ξ1:t, z1:t})πc
1:t|t(dz1:t | ξ1:t)

=
Wm

t (ξ1:t)

at(ξ1:t)
Φc

1:t|t(f̄) =
Wm

t (ξ1:t)

at(ξ1:t)
ψ̄(ξ1:t). (4.47)

Here we have made use of the definition of ψ̄ in (4.27a), yielding

Φc
1:t|t(f̄) = Φc

1:t|t(f − Φ1:t|t(f)) = ψ̄(ξ1:t). (4.48)

Combining (4.46) and (4.47) we get, πm
1:t|t-a.s.,

at(ξ1:t)π
c
1:t|t

(
(Wtf̄)

2
)
=

(
Wm

t (ξ1:t)ψ̄(ξ1:t)
)2

at(ξ1:t)
+ at(ξ1:t)Varπc

1:t|t
(Wtf̄). (4.49)

Using (4.23), (4.21a), (4.22a) and the above results, the difference in asymptotic variance
can now be expressed as,

∆t(f) = σ2
t−1

(
Rt(Wtf̄)

)
− τ2t−1

(
Rm

t (Wm
t ψ̄)

)

+Φ1:t−1|t−1

[
Rt

(
(Wtf̄)

2
)]
− Φm

1:t−1|t−1

[
Rm

t

(
(Wm

t ψ̄)
2
)]

= σ2
t−1

(
Rt(Wtf̄)

)
− τ2t−1

(
Rm

t (Wm
t ψ̄)

)

+Φm
1:t−1|t−1

[
Rm

t

((
1
at
− 1
)
(Wm

t ψ̄)
2 + atVarπc

1:t|t
(Wtf̄)

)]
; (4.50)

recall that πm
1:t|t = Φm

1:t−1|t−1R
m
t which ensures that we, due to the expectation w.r.t.

Φm
1:t−1|t−1R

m
t in (4.50), can make use of the equality in (4.49).
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Finally, consider

Φc
1:t−1|t−1(Rt(Wtf̄))

=

∫

Xt

(
Wt(x1:t)f̄(x1:t)

∫

X
t−1
z

Rt(dx1:t | x̃1:t−1)Φ
c
1:t−1|t−1(dz̃1:t−1 | ξ̃1:t−1)

)

=

∫

Xt
ξ

∫

Xt
z

at(ξ1:t)Wt(x1:t)f̄(x1:t)R
m
t (dξ1:t | ξ̃1:t−1)π

c
1:t|t(dz1:t | ξ1:t)

=

∫

Xt
ξ

(
Wm

t (ξ1:t)R
m
t (dξ1:t | ξ̃1:t−1)

∫

Xt
z

f̄(x1:t)
dΦc

1:t|t( · | ξ1:t)
dπc

1:t|t( · | ξ1:t)
(z1:t)π

c
1:t|t(dz1:t | ξ1:t)

)

= Rm
t−1(W

m
t Φc

1:t|t(f̄)) = Rm
t (Wm

t ψ̄), πm
1:t|t-a.s. (4.51)

The second equality follows from Assumption A1 and the third follows πm
1:t|tπ

c
1:t|t-a.s.

from (4.44). Hence,

σ2
t−1

(
Rt(Wtf̄)

)
− τ2t−1

(
Rm

t (Wm
t ψ̄)

)
= ∆t−1(Rt(Wtf̄)), (4.52)

which completes the proof. �





5
Particle smoothing

As discussed in Section 3.2.2, the particle filter (PF) suffers from degeneration of the
particle trajectories. Due to this, it does in general not provide accurate approximations
of the various smoothing distributions that we might be interested in, other than for fixed-
lag smoothing with a short enough lag (see Table 2.1 on page 18). One way to get around
this problem is to complement the forward filter with a second recursion, evolving in the
time-reversed direction. From this idea, two competing methods have evolved.

The first is known as a the two-filter approach, since it is based on one filter moving for-
ward in time and one filter moving backward in time. When the two filters meet “some-
where in the middle”, the information is merged, enabling computation of smoothed es-
timates. The second approach is based on the forward/backward recursions presented in
Section 2.3. Here, we start by applying a forward filter to the entire data sequence. Once
this is complete, it is supplemented with a backward smoothing pass, in which the output
from the forward filter is updated. The focus of the present chapter is on particle based
forward filtering/backward smoothing, i.e. the second approach mentioned above. For
further reference regarding two-filter smoothing, see e.g. [Briers et al., 2010, Fearnhead
et al., 2010].

The main contribution of this chapter lies in Section 5.3, where a novel Rao-Blackwellised
particle smoother (RBPS) is derived.

5.1 Forward filter/backward smoother

The forward/backward approach to smoothing can be used to supplement the PF with a
backward recursion, enabling approximations of the marginal as well as the joint smooth-
ing distributions. This is the topic of the present section. We will make use of the back-
ward recursion presented in Section 2.3.2. The key ingredient here is the backward kernel

87
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defined by (2.22a) on page 21. To allow for explicit expressions in what follows, we shall
assume that the model is fully dominated and make use of the explicit expression for the
density of the backward kernel given by (2.22b) on page 21.

As previously pointed out, the backward kernel depends on the filtering distribution. The
basic idea underlying particle based forward filtering/backward smoothing (FFBSm), is to
make use of the PF approximation of the filtering distribution to approximate the backward
kernel. This is also the reason for why the FFBSm can succeed where the PF fails. Even
though the PF provides poor approximations of the marginal and joint smoothing distribu-
tions, it can generally provide accurate approximations of the filtering distribution, which
is all that is needed to compute the backward kernel. Now, let us assume that a PF (or
some similar method) has been applied to a measurement sequence y1:T of fixed length T .
For each time t = 1, . . . , T , we have obtained a weighted particle system {xit, wi

t}Ni=1,
approximating the filtering distribution at time t with an empirical distribution according
to,

Φ̂N
t|t(dxt) =

N∑

i=1

wi
tδxi

t
(dxt). (5.1)

By the distribution given above and the expression for the backward kernel density (2.22b),
we can approximate the backward kernel by,

B̂N
t (dxt | xt+1) ,

N∑

i=1

wi
tp(xt+1 | xit)∑

k w
k
t p(xt+1 | xkt )

δxi
t
(dxt). (5.2)

In the coming sections, we will see how this approximation can be used to transform the
output from the PF, to instead target the various smoothing distributions of interest.

5.1.1 FFBSm for joint smoothing

By expanding the backward recursion (2.23) on page 21, the joint smoothing distribution
can be expressed as,

Φ1:T |T (dx1:T ) =

(
T−1∏

t=1

Bt(dxt | xt+1)

)
ΦT |T (dxT ). (5.3)

An empirical filtering distribution at time T is given by (5.1), and the backward kernels
can be approximated by (5.2). By plugging these approximations into (5.3), an empirical
joint smoothing distribution is given by,

Φ̂N
1:T |T (dx1:T ) ,

N∑

i1=1

· · ·
N∑

iT=1

(
T−1∏

t=1

wit
t p(x

it+1

t+1 | xitt )∑
k w

k
t p(x

it+1

t+1 | xkt )

)
wiT

T

︸ ︷︷ ︸
,w1:T |T (i1,...,iT )

δ
x
i1
1 ···x

iT
T

(dx1:T )

=
N∑

i1=1

· · ·
N∑

iT=1

w1:T |T (i1, . . . , iT )δxi1
1 ···x

iT
T

(dx1:T ). (5.4)
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The expression above defines a point-mass distribution on the space X
T , and the cardi-

nality of its support is NT . The meaning of the distribution can be understood in the
following way. For each time t = 1, . . . , T , the particles {xit}Ni=1 generated by the PF is
a set in the space X of cardinality N . By “picking” one particle from each time index, we
obtain a particle trajectory, i.e. a point in the space X

T ,

{xi11 , . . . , xiTT } ∈ X
T . (5.5)

By letting all of the indices i1, i2, . . . , iT vary from 1 to N , we get in total NT such
trajectories. The empirical distribution (5.4) assigns, to each such trajectory, a probability
w1:T |T (i1, . . . , iT ).

Even though (5.4) provides a closed form approximation of the joint smoothing distribu-
tion, it is impractical for any real problem of interest. The reason is of course, that evalu-
ating the discrete probabilities of the distribution is an O(NT ) operation, both in terms of
computational complexity and storage. However, even though it is not practically appli-
cable on its own, the distribution (5.4) still provides interesting means for approximating
the joint smoothing distribution. We will return to this in Section 5.2, but before that we
turn our attention to the marginal smoothing problem.

5.1.2 FFBSm for marginal and fixed-interval smoothing

As pointed out above, evaluating the distribution (5.4) is in general not feasible, since
the cardinality of its support is NT . However, assume that we are only interested in the
sequence of marginal smoothing distributions Φt|T , for t = 1, . . . , T . Based on the
particles from the forward pass of the PF, each marginal smoothing distribution will be
approximated by a weighted particle system with no more than N particles. We thus
expect that the computational complexity of approximating this sequence, is lower than
what is required to evaluate (5.4).

To see that this indeed is the case, we shall make use of the backward recursion for the
marginal smoothing distribution given by (2.24) on page 21. Assume that we have avail-
able a weighted particle system {xjt+1, w

j
t+1|T }Nj=1, targeting Φt+1|T . At time t = T − 1,

this is provided by the PF by letting wj
T |T := wj

T for j = 1, . . . , N . Plugging the empir-
ical distribution defined by this particle system, and the approximation of the backward
kernel (5.2), into the recursion (2.24) results in,

Φ̂N
t|T (dxt) ,

N∑

j=1

wj
t+1|T

N∑

i=1

wi
tp(x

j
t+1 | xit)∑

k w
k
t p(x

j
t+1 | xkt )

δxi
t
(dxt) =

N∑

i=1

wi
t|T δxi

t
(dxt), (5.6a)

where we have defined the smoothing weights,

wi
t|T , wi

t

N∑

j=1

wj
t+1|T

p(xjt+1 | xit)∑
k w

k
t p(x

j
t+1 | xkt )

. (5.6b)

Remark 5.1. Note that the smoothing weights are “self-normalised” since,

N∑

i=1

wi
t|T =

N∑

j=1

wj

t+1|T

∑
i
wi

tp(x
j
t+1 | xi

t)∑
k
wk

t p(x
j
t+1 | xk

t )
= 1.
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Algorithm 5.1 Marginal FFBSm [Doucet et al., 2000b]

Input: A sequence of weighted particle systems {xit, wi
t}Ni=1 targeting the filtering dis-

tributions Φt|t, for t = 1, . . . , T .
Output: A sequence of weighted particle systems {xit, wi

t|T }Ni=1 targeting the marginal
smoothing distributions Φt|T , for t = 1, . . . , T .

1: Initialise the smoothing weights. For i = 1, . . . , N , set wi
T |T = wi

T .
2: for t = T − 1 to 1 do
3: For j = 1, . . . , N , set vjt =

∑N
k=1 w

k
t p(x

j
t+1 | xkt ).

4: For i = 1, . . . , N , compute the smoothing weights,

wi
t|T = wi

t

N∑

j=1

wj
t+1|T

p(xjt+1 | xit)
vjt

.

5: end for

Hence, we have obtained a weighted particle system {xit, wi
t|T }Ni=1, that targets Φt|T .

This smoother, targeting the sequence of marginal smoothing distributions, has previously
been proposed by Doucet et al. [2000b]. We summarise the steps of the procedure in
Algorithm 5.1. The complexity of this algorithm is O(N2(T − 1)), which is a significant
reduction from the O(NT ) complexity of evaluating the full empirical joint smoothing
distribution (5.4). Still, a computational cost growing quadratically with the number of
particles, might be prohibitive for certain problems.

Remark 5.2. Note that the marginal FFBSm keeps the forward filter particles {xi
t}

N
i=1 unchanged. It

simply updates the importance weights of these particles, to target the marginal smoothing distribu-
tion rather than the filtering distribution. The same goes for all “versions” of the FFBSm presented in
this section. The smoothing consists of computing new weights, and does not “move” the particles
generated by the forward filter.

For many problems (see e.g. Section 6.3), it is not sufficient to work with the marginal
smoothing distributions. Instead, we seek to approximate some fixed-interval smoothing
distribution Φs:t|T for s < t (not to be confused with fixed-lag smoothing, see Table 2.1).
This can be obtained in a similar manner as above, based on the expression (2.25) on
page 21. By plugging (5.2) and (5.6a) into (2.25), we get

Φ̂N
s:t|T (dxs:t) ,

N∑

is=1

· · ·
N∑

it=1

(
t−1∏

u=s

wiu
u p(x

iu+1

u+1 | xiuu )
∑

k w
k
up(x

iu+1

u+1 | xku)

)
wit

t|T

︸ ︷︷ ︸
,ws:t|T (is,...,it)

δ
xis
s ···x

it
t
(dxs:t). (5.7)

This can be seen as a reduced version of (5.4), and by taking s = 1 and t = T , we indeed
recover the same expression. Let ℓ = t − s + 1 be the length of the interval. Then, the
complexity of evaluating the fixed-interval smoothing weights ws:t|T is O(N ℓ). If this is
done for all t = ℓ, . . . , T , the total complexity of performing fixed-interval smoothing is
O(N ℓ(T−ℓ+1)+N2(T−ℓ)). This includes the computation of the marginal smoothing
weights according to (5.6b).
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Algorithm 5.2 Two-step fixed-interval FFBSm

Input: A sequence of weighted particle systems {xit, wi
t}Ni=1 targeting the filtering dis-

tributions Φt|t, for t = 1, . . . , T .
Output: A sequence of weighted particle systems {xi,jt:t+1, w

i,j
t:t+1|T }Ni,j=1 targeting the

2-step, fixed-interval smoothing distributions Φt:t+1|T , for t = 1, . . . , T − 1.

1: Initialise the smoothing weights. For i = 1, . . . , N , set wi
T |T = wi

T .
2: for t = T − 1 to 1 do
3: for j = 1 to N do
4: Set vjt =

∑N
k=1 w

k
t p(x

j
t+1 | xkt ).

5: For i = 1, . . . , N , compute the 2-step smoothing weights,

wi,j
t:t+1|T = wi

tw
j
t+1|T

p(xjt+1 | xit)
vjt

.

6: end for
7: Compute the marginal smoothing weights. For i = 1, . . . , N ,

wi
t|T =

N∑

j=1

wi,j
t:t+1|T .

8: end for

We illustrate the fixed-interval FFBSm in Algorithm 5.2, for the special case of 2-step fixed-
interval smoothing. The reason for this restriction is to simplify the notation. Also, 2-step
smoothing is a common special case of the fixed-interval smoothing problem, used e.g.
by Schön et al. [2011] (see also Section 6.3).

5.2 Forward filter/backward simulator

Another approach to particle smoothing, very much related to FFBSm, is forward filter-
ing/backward simulation (FFBSi). This can be seen as a modification of the FFBSm, in
which the backward recursion is done by random sampling. The drawback with this is that
the backward sampling introduces extra variance in the estimators. However, by applying
backward simulation, we can target the joint smoothing distribution with a computational
cost which is significantly lower than for the FFBSm. We start in Section 5.2.1 by review-
ing the original FFBSi formulation, which has O(TN2) complexity. In Section 5.2.2, we
then turn to a novel modification of the FFBSi, resulting in an equivalent algorithm, which
under appropriate assumptions can be shown to reach linear complexity in the number of
particles.

5.2.1 Standard FFBSi

Let us return to the empirical approximation of the joint smoothing distribution (5.4). As
previously pointed out, evaluating the discrete probabilities of this distribution is imprac-
tical for any problem of interest. However, an idea proposed by Doucet et al. [2000c] and
Godsill et al. [2004], is to draw sample trajectories from this empirical distribution, and
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in that way approximate the joint smoothing distribution. Clearly, this can not be done by
simple evaluation of the discrete probabilities, since again, this has O(NT ) complexity.

The key to circumvent this problem lies in the construction of the distribution (5.4). Recall
that this was done by plugging (5.1) and (5.2) into (5.3), which in turn could be traced
back to (2.23) on page 21. Analogously, we can plug the particle approximations into the
backward recursion (2.23) directly, resulting in,

Φ̂N
t:T |T (dxt:T ) = B̂N

t (dxt | xt+1)Φ̂
N
t+1:T |T (dxt+1:T ). (5.8)

We note that the above expression defines the evolution of a Markov chain. More clearly
phrased, (5.4) is the terminal distribution of a time-reversed, inhomogeneous Markov
chain with initial distribution Φ̂N

T |T (dxT ) and transition kernel B̂N
t (dxt | xt+1). Hence,

sampling from the distribution (5.4) is equivalent to sampling a trajectory from the Markov
chain given by (5.8). Recall that the forward filtering pass is assumed to be completed, for
t = 1, . . . , T , and the sequence of weighted particle systems generated by the forward
filter can thus be seen as fixed. Hence, let FN

1:T be the σ-algebra generated by the mea-
surement sequence Y1:T and the full collection of weighted particle systems produced by
the forward filter, i.e.

FN
1:T = σ

(
Y1:T ,

{
{xit, wi

t}Ni=1, t = 1, . . . , T
})
. (5.9)

Now, given FN
1:T , assume that {x̃jt+1:T }Mj=1 is a set of i.i.d.1 samples from the empirical

distribution Φ̂N
t+1:T |T . To each such backward trajectory, we then append a sample from

the kernel (5.2),

x̃jt ∼ B̂N
t (dxt | x̃jt+1), (5.10a)

x̃jt:T := {x̃jt , x̃jt+1:T }, (5.10b)

for j = 1, . . . , M . At time t = 1, the backward trajectories {x̃j1:T }Mj=1 are i.i.d. samples
from the empirical joint smoothing distribution (5.4). Sampling from the empirical back-
ward kernel according to (5.10a) can be done straightforwardly, since it has finite support
with cardinality N ,

B̂N
t (dxt | x̃jt+1) =

N∑

i=1

wi
tp(x̃

j
t+1 | xit)∑N

k=1 w
k
t p(x̃

j
t+1 | xkt )︸ ︷︷ ︸

,w̃i,j

t|T

δxi
t
(dxt). (5.11)

Hence, to sample from the kernel, we only need to compute the N discrete probabilities
{w̃i,j

t|T }Ni=1 and set x̃jt := xit with probability w̃i,j
t|T (see also Algorithm 5.3). The procedure

(5.10) is called backward simulation, and the resulting particle smoother is known as a
forward filter/backward simulator (FFBSi). Similarly to the PF and the FFBSm, the FFBSi
defines an empirical approximation of the joint smoothing distribution, according to,

Φ̃M
1:T |T (dx1:T ) ,

1

M

M∑

j=1

δx̃j
1:T

(dx1:T ). (5.12)

1When using the phrase i.i.d. in the context of backward simulation, we implicitly mean i.i.d. given the
σ-algebra FN

1:T .
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As opposed to the FFBSm, the sample trajectories in the FFBSi are unweighted. This is
basically due to the fact that the backward simulation produces i.i.d. samples from the
empirical joint smoothing distribution and no weighting is therefore needed.

To further motivate the validity of the FFBSi, we make the following observation. Let
ϕ : XT → R be some test function, of which we seek to compute the expectation under
the joint smoothing distribution, i.e. we seek Φ1:T |T (ϕ). We assume that an analytical
evaluation of this expectation is intractable, and a particle method is employed to estimate
it. By (5.4), the FFBSm estimator is given by,

Φ̂N
1:T |T (ϕ) =

N∑

i1=1

· · ·
N∑

iT=1

w1:T |T (i1, . . . , iT )ϕ(x
i1
1 , . . . , x

iT
T ). (5.13)

As previously pointed out, this estimator is, unfortunately, also intractable. However, the
FFBSi provides an unbiased estimator of (5.13), i.e.

Φ̂N
1:T |T (ϕ) = E

[
Φ̃M

1:T |T (ϕ)
∣∣∣ FN

1:T

]
, (5.14)

where Φ̃M
1:T |T (ϕ) =

∑M
j=1 ϕ(x̃

j
1:T ). Here, the expectation is taken w.r.t. the random

components of the backward simulation.

Remark 5.3. From the relation (5.14), we see that the FFBSm estimator in fact can be seen as
a Rao-Blackwellised version of the FFBSi estimator, or the other way around, FFBSi is an “anti-
Rao-Blackwellisation” of FFBSm. Rao-Blackwellisation often aims at reducing the variance of an
estimator, but generally at the cost of increased computational complexity. Here, we go the other
way, and (significantly) reduce the complexity of the FFBSm estimator by instead employing FFBSi.
However, due to the randomness of the backward simulation, this will also increase the variance of
the estimator.

Remark 5.4. The term Rao-Blackwellisation, as used above, should not be confused with Rao-
Blackwellisation of the PF, as described in Section 3.3, and more importantly Rao-Blackwellisation
of the FFBSi, as we shall discuss in Section 5.3. In Remark 5.3, we spoke of “Rao-Blackwellisation
w.r.t. the random components of the backward simulation”. In the RBPF and the RB-FFBSi (see
Section 5.3), we instead deal with “Rao-Blackwellisation w.r.t. one partition of the state variable”.

We summarise the FFBSi in Algorithm 5.3, and illustrate the backward simulation proce-
dure in Example 5.1 below. Also, note that the FFBSi targets the joint smoothing distri-
bution, but (since they are marginals thereof) it can also be used to estimate expectations
under the marginal or fixed-interval smoothing distributions.

Example 5.1: Backward simulation
We illustrate the backward simulation using an example with synthetic data. In Figure 5.1,
we show the particle trajectories generated by a forward PF in a one-dimensional exper-
iment. The dots show the particle positions for the N = 4 particles over T = 5 time
steps and their sizes represent the particle weights. The dots are connected, to illustrate
the ancestral dependence of the particles. All particles at time t = 5 share a common
ancestor at time t = 2, i.e. the particle trajectories have degenerated.

In Figure 5.2 we show the simulation of a single backward trajectory. In the upper left
plot, the backward trajectory is initiated by sampling from the forward filter particles at
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Figure 5.1: Particle trajectories for N = 4 particles over T = 5 time steps after a
completed forward filtering pass. The sizes of the dots represent the particle weights.

Figure 5.2: Backward simulation of a single backward trajectory. See the text for
details.

time t = 5. The probability of sampling a particle is given by its importance weight.
The initiated backward trajectory is shown as a square. The particle weights at t = 4 are
thereafter recomputed according to Row 5 in Algorithm 5.3. The smoothing weights are
shown as circles, whereas the filter weights are illustrated with dots. Another particle is
then drawn and added to the backward trajectory. In the upper right and lower left plots,
the trajectory is appended with new particles at t = 3 and t = 2, respectively. Finally, in
the lower right plot, a final particle is appended at t = 1, forming a complete backward
trajectory. Observe that the backward trajectory differs from the ancestral line of the
forward filter particle as shown in Figure 5.1.

As can be seen in Algorithm 5.3, the smoothing weights in the FFBSi need to be computed
for index i ranging from 1 to N and index j ranging from 1 to M . Hence, the total com-
plexity of the algorithm isO(NMT ). The number of backward trajectoriesM , generated
by Algorithm 5.3 is arbitrary. However, to obtain accurate MC integration from these tra-



5.2 Forward filter/backward simulator 95

Algorithm 5.3 Standard FFBSi [Godsill et al., 2004]

Input: A sequence of weighted particle systems {xit, wi
t}Ni=1 targeting the filtering dis-

tributions Φt|t, for t = 1, . . . , T .
Output: A collection of backward trajectories {x̃j1:T }Mj=1 targeting the joint smoothing

distribution Φ1:T |T .

1: Initialise the backward trajectories. For j = 1, . . . , M,

I(j) ∼ Cat
(
{wi

T }Ni=1

)
,

x̃jT = x
I(j)
T .

2: for t = T − 1 to 1 do
3: for j = 1 to M do
4: Set vjt =

∑N
k=1 w

k
t p(x̃

j
t+1 | xkt ).

5: Compute the smoothing weights. For i = 1, . . . , N ,

w̃i,j
t|T = wi

t

p(x̃jt+1 | xit)
vjt

.

6: Sample from the empirical backward kernel,

I(j) ∼ Cat
(
{w̃i,j

t|T }Ni=1

)
,

x̃jt = x
I(j)
t .

7: Append the sample to the backward trajectory, x̃jt:T = {x̃jt , x̃jt+1:T }.
8: end for
9: end for

jectories, it is clear that M should be large. Assume, for instance, that the FFBSi is used
to estimate the expectation of some test function under the marginal smoothing distribu-
tion. To get similar performance as the marginal FFBSm of Algorithm 5.1, we expect that
M ≈ N backward trajectories (or rather M > N , see the comments below) are needed.
Hence, the computational complexity of the FFBSi is comparable with that of the marginal
and 2-step fixed-interval FFBSm. If fixed-interval smoothing, with an interval length of
three or more, is required, the complexity of the FFBSi will be significantly lower than that
of the FFBSm. Furthermore, and more importantly, it is possible to reduce the computa-
tional cost of the FFBSi to grow only linearly with the number of backward trajectories
drawn. How to achieve this will be the topic of Section 5.2.2.

As argued before, the backward trajectories {x̃j1:T }Mj=1 are i.i.d. samples from the empir-
ical joint smoothing distribution (5.4). Also, if we extract particles from the backward
trajectories at a single time point t, i.e. {x̃jt}Mj=1, we are left with i.i.d. samples from the
empirical marginal smoothing distribution (5.6a). Let us again assume that the FFBSi is
employed to solve the marginal smoothing problem, and assume that we draw M = N
backward trajectories. Then, using the FFBSi to generate an (unweighted) particle system
targeting Φt|T , is equivalent to conducting multinomial resampling of the weighted par-
ticle system generated by the marginal FFBSm. Hence, for M = N , the variance of an
FFBSi estimator will in general be larger than that of the corresponding FFBSm estimator
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(see also Remark 5.3). However, when put in relation to the fast implementation of the
FFBSi, which we will discuss in the next section, this is a minor drawback and the FFBSi is
indeed a strong alternative also for marginal smoothing. In fact, for a fixed computational
cost, the FFBSi can for many problems produce better estimates than the FFBSm. This
is possible since, by using the fast implementation of the FFBSi, we can afford a larger
number of particles already in the forward filter.

5.2.2 Fast FFBSi

There exist several different approaches to reduce the computational complexity of par-
ticle smoothing, based on both numerical approximations and algorithmic modifications.
Klaas et al. [2006] employ so called N -body algorithms to reduce the complexity of the
marginal FFBSm toO(TN logN). These methods impose further approximations, though
the tolerance can usually be specified beforehand. There have also been developments
based on the two-filter algorithm by Briers et al. [2010]. In its original formulation, this
method is quadratic in the number of particles. However, Fearnhead et al. [2010] have pro-
posed a modified two-filter algorithm with linear complexity. Another idea by Fearnhead
[2005], is to use quasi-random numbers for particle smoothing. The smoother proposed
by Fearnhead [2005], which is restricted to one-dimensional problems, has quadratic com-
plexity, but at the same time a quadratic decrease in variance, thanks to the use of quasi-
random numbers. However, here we will focus on the fast FFBSi proposed by Douc et al.
[2010]. This algorithm is equivalent to the original FFBSi by Godsill et al. [2004], pre-
sented above, but has a complexity growing only linearly with the number of particles.

The key insight made by Douc et al. [2010], is that we do not need to evaluate all the
smoothing weights {w̃i,j

t|T }Ni=1 to be able to sample from the empirical backward kernel
(5.11). To convince ourselves that there indeed is room for improvements here, note that
we in the FFBSi in Algorithm 5.3 evaluate N smoothing weights in Step 5, draw a single
sample from the categorical distribution in Step 6 and then discard all the weights. In-
stead of making this full evaluation of the categorical distribution, we can take a rejection
sampling approach (see Section 2.4.3). For this to be applicable, we shall assume that the
transition density function is bounded from above,

p(xt+1 | xt) ≤ ρ, xt+1, xt ∈ X, (5.15)

which is true for many commonly used density functions.

Now, we wish to sample an index I(j), corresponding to the forward filter particle which
is to be appended to the j:th backward trajectory. The target distribution is categorical
over the index space {1, . . . , N}, with probabilities {w̃i,j

t|T }Ni=1 (which we have not com-
puted yet). As proposal, we take another categorical distribution over the same index
space, with (known) probabilities {wi

t}Ni=1. That is, we propose samples based on the
filter weights, rather than the smoothing weights. Now, assume that a sample index I(j)
is proposed for the j:th backward trajectory. To compute the acceptance probability, we
consider the quotient between the target and the proposal, as in (2.37) on page 25. Using
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Algorithm 5.4 Fast FFBSi [Douc et al., 2010]

Input: A sequence of weighted particle systems {xit, wi
t}Ni=1 targeting the filtering dis-

tributions Φt|t, for t = 1, . . . , T .
Output: A collection of backward trajectories {x̃j1:T }Mj=1 targeting the joint smoothing

distribution Φ1:T |T .

1: Initialise the backward trajectories,

{I(j)}Mj=1 ∼ Cat
(
{wi

T }Ni=1

)
,

x̃jT = x
I(j)
T , j = 1, . . . , M.

2: for t = T − 1 to 1 do
3: L← {1, . . . , M}
4: while L is not empty do
5: n← card(L).
6: δ ← ∅.
7: Sample independently {C(k)}nk=1 ∼ Cat({wi

t}Ni=1).
8: Sample independently {U(k)}nk=1 ∼ U([0, 1]).
9: for k = 1 to n do

10: if U(k) ≤ p(x̃L(k)
t+1 | x

C(k)
t )/ρ then

11: I(L(k))← C(k).
12: δ ← δ ∪ {L(k)}.
13: end if
14: end for
15: L← L \ δ.
16: end while
17: Append the samples to the backward trajectories. For j = 1, . . . , N ,

x̃jt = x
I(j)
t ,

x̃jt:T = {x̃jt , x̃jt+1:T }.
18: end for

the definition of the smoothing weights from (5.11), we get,

w̃
I(j),j
t|T

w
I(j)
t

=
1

∑N
k=1 w

k
t p(x̃

j
t+1 | xkt )

p(x̃jt+1 | x
I(j)
t ), (5.16)

which implies that the sample should be accepted with probability p(x̃jt+1 | x
I(j)
t )/ρ (cf.

Section 2.4.3). The fast FFBSi is given in Algorithm 5.4. We also provide MATLAB code
in Listing 5.1.

Douc et al. [2010] have shown that, for M = N the complexity of Algorithm 5.4 con-
verges in probability to O(NT ) as N tends to infinity (we refer the reader to [Douc et al.,
2010] for the details). Informally, we can say that, for a large number of particles N , the
fast FFBSi reaches linear complexity (in the number of particles). However, it is worth to
note that there is no upper bound on the number of times that the while-loop at Row 4 may
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1 % INPUT :

2 % x _ p f − T∗1 c e l l array , each e l e m e n t i s an nx∗N m a t r i x

3 % w i t h forward f i l t e r p a r t i c l e s a t t i m e t .

4 % w_pf − T∗1 c e l l array , each e l e m e n t i s an 1∗N m a t r i x

5 % w i t h forward f i l t e r p a r t i c l e w e i g h t s .

6 % T , M, N , nx , − C o n s t a n t s , s e e t e x t f o r e x p l a n a t i o n .

7 % R_max , rho

8 % OUTPUT:

9 % x _ f f b s i − T∗1 c e l l array , each e l e m e n t i s an nx∗N m a t r i x

10 % w i t h backward t r a j e c t o r i e s a t t i m e t .

11
12 [ ~ , I ] = h i s t c ( rand (M, 1 ) , [0 cumsum ( w_pf {T } ) ] ) ; % Sample I ~ Cat ( w_pf {T } )

13 x _ f f b s i {T} = x_pf { t } ( : , I ) ;
14 f o r ( t = ( T ) : (−1) : 1 )
15 x _ f f b s i { t } = z e r o s ( nx , M) ;
16 c o u n t e r = 0 ;
17 b i n s = [0 cumsum ( w_pf { t } ) ] ; % P r e c o m p u t a t i o n

18 L = 1 :M;
19 whi le (~ i sempty ( L ) && ( c o u n t e r < R_max ) )
20 n = l e n g t h ( L ) ;
21 [ ~ , C] = h i s t c ( rand ( n , 1 ) , b i n s ) ; % Sample C ~ Cat ( w_pf { t } )

22 U = rand ( 1 , n ) ; % Sample U ~ U( [ 0 , 1 ] )

23
24 x_ t1 = x _ f f b s i { t + 1 } ( : , L ) ; % x_ { t +1}^ k f o r k i n L

25 x _ t = x_pf { t } ( : , C ) ; % x _ t ^ i f o r i i n C

26
27 p = t r a n s i t i o n _ d e n s i t y _ f u n c t i o n ( x_t1 , x _ t ) ;
28 a c c e p t = (U <= p / rho ) ; % A c c e p t e d draws

29
30 % L i s t h e i n d e x l i s t o f samples a t t i m e t t h a t s t i l l need

31 % a s s i g n m e n t ( " smoo th ing p a r t i c l e s " ) . C i s t h e i n d e x l i s t o f

32 % c a n d i d a t e samples a t t i m e t ( " f i l t e r p a r t i c l e s " ) . That i s , t h e

33 % forward f i l t e r p a r t i c l e w i t h ( random ) i n d e x C( k ) i s e i t h e r

34 % a c c e p t e d as t h e smoo th ing p a r t i c l e w i t h i n d e x L ( k ) , or n o t .

35
36 x _ f f b s i { t } ( : , L ( a c c e p t ) ) = x _ t ( : , C( a c c e p t ) ) ;
37 L = L(~ a c c e p t ) ; % Remove a c c e p t e d i n d i c e s

38 c o u n t e r = c o u n t e r +1 ;
39 end
40 i f (~ i sempty ( L ) ) % Timeout !

41 f o r ( j = L )
42 x j _ t 1 = x _ f f b s i { t + 1 } ( : , j ) ; % j : t h backward t r a j e c t o r y

43 p = t r a n s i t i o n _ d e n s i t y _ f u n c t i o n ( repmat ( x j _ t 1 , 1 , N) , x_pf { t } ) ;
44 w _ j i = w_pf { t } .∗ p ; % Compute smoo th ing w e i g h t s

45 w _j i = w_ j i / sum ( w_ j i ) ; % Normal i s e

46 I = f i n d ( rand ( 1 ) < cumsum ( w_ j i ) , 1 , ’ f i r s t ’ ) ;
47 x _ f f b s i { t } ( : , j ) = x_pf { t } ( : , I ) ;
48 end
49 end
50 end

Listing 5.1: MATLAB code for fast FFBSi. We have assumed that a function
transition_density_function(x_t1, x_t) is available, where x_t1
and x_t are nx × N matrices (nx being the state dimension). The function com-
putes the transition density function value p(xt+1 | xt) for each pair of columns in
the two matrices, and returns the result as a 1 × N row vector. Also, the “timeout
check”, as described at the end of Section 5.2.2, is included on lines 40–49.
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be executed. Empirical studies indicate that most of the time required by Algorithm 5.4,
is spent on just a few particles. In other words, the cardinality of L decreases fast in the
beginning (we get a lot of accepted samples), but can linger for a long time close to zero.
This can for instance occur when just a single backward trajectory remains, for which all
forward filter particles gets low acceptance probabilities. To circumvent this, a “timeout
check” can be added to Algorithm 5.4. Hence, let Rmax be the maximum allowed number
of executions of the while-loop at Row 4. If L is not empty afterRmax iterations, we make
an exhaustive evaluation of the smoothing weights for the remaining elements in L, i.e. as
in Algorithm 5.3 but with j ranging only over the remaining indices in L. By empirical
studies, such a timeout check can drastically reduce the execution time of Algorithm 5.4,
and seems to be crucial for its applicability for certain problems. A sensible value for
Rmax seems to be in the range M/3 to M/2. Such a “timeout check” is included in the
MATLAB code presented in Listing 5.1.

Finally, for Algorithm 5.4 to reach linear complexity, we note that the sampling at Row 7
must be conducted prior to the for-loop at Row 9. That is, when proposing indices
{C(k)}nk=1 from the categorical distribution with probabilities {wi

t}Ni=1, we draw the
samples “all at once”. The reason is that drawing N i.i.d. samples from a categorical
distribution with support at N points can be done in O(N). However, if we instead draw
a single sample from the same distribution, this costs O(logN), and since we then need
to repeat this N times the total complexity will be O(N logN) [Douc et al., 2010].

5.3 Rao-Blackwellised FFBSi

We will now return to the factorised models considered in Section 3.3 and derive an ana-
logue of the Rao-Blackwellised particle filter (RBPF), but with the smoothing problem in
mind. Hence, we seek a Rao-Blackwellised particle smoother (RBPS). The RBPS which we
shall consider here uses an FFBSi for sampling backward trajectories for the nonlinear state.
Consequently, this specific RBPS will be denoted RB-FFBSi. Furthermore, we will focus the
derivation on CLGSS models. In particular, we will study mixed linear/nonlinear Gaussian
state-space models, as in Section 3.3. An RB-FFBSi designed for hierarchical CLGSS models
(see Example 2.2) has previously been proposed by Fong et al. [2002]. However, this is
only applicable to the model (2.9) on page 16, in the special case Aξ ≡ Qξ ≡ 0, i.e. when
the nonlinear state dynamics are independent of the linear states. We will in the present
section present a novel RB-FFBSi, capable of handling mixed linear/nonlinear Gaussian
state-space models with full interconnection between the state variables. This smoother
is a reformulation of some of the material presented in [Lindsten and Schön, 2010] and
[Lindsten and Schön, 2011]. For a thorough discussion on how the proposed RB-FFBSi is
related to the one derived by Fong et al. [2002], we refer to [Lindsten and Schön, 2011].
It should also be mentioned that Briers et al. [2010] have proposed an RBPS, based on
the two-filter algorithm. However, this algorithm is also restricted to hierarchical CLGSS

models (i.e. Aξ ≡ Qξ ≡ 0).

Assume that the RBPF given in Algorithm 3.3 has been applied to a fix sequence of
measurements y1:T . Hence, we have generated a sequence of weighted particle sys-
tems {ξi1:t, ωi

t}Ni=1, targeting the state-marginal smoothing densities p(ξ1:t | y1:t), for
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t = 1, . . . , T . For each of these particle trajectories, we have also evaluated the sufficient
statistics {z̄t|t(ξi1:t), Pt|t(ξ

i
1:t)}Ni=1 for the conditional filtering distributions of the linear

states, with Gaussian densities,

p(zt | ξi1:t, y1:t) = N
(
zt; z̄t|t(ξ

i
1:t), Pt|t(ξ

i
1:t)
)
, i = 1, . . . , N. (5.17)

As indicated by (5.17), the mean and covariance of these Gaussians are functions of the
nonlinear state trajectory. This implies that if we take a different path, when traversing
through the nonlinear partition of the state-space, this will influence our belief about the
linear states. However, in the backward simulation, we will in general sample backward
trajectories which differ from the forward trajectories. Hence, we can not allow ourselves
to condition on the entire forward nonlinear state trajectory. Put in another way, and as
we shall see in what follows, the derivation of the RB-FFBSi will require the conditional
filtering densities p(zt | ξit, y1:t).

By marginalisation, the RBPF does indeed provide an approximation of the filtering distri-
bution,

Φt|t(dxt) =

∫
Φc

t|t(dzt | ξ1:t)Φm
1:t|t(dξ1:t)

≈
N∑

i=1

wi
tN
(
dzt; z̄t|t(ξ

i
1:t), Pt|t(ξ

i
1:t)
)
δξit(dξt), (5.18)

which suggests the following approximation.

Approximation 5.1. Let ξit belong to the set of RBPF particles at time t. Then, the condi-

tional of the filtering density is approximately Gaussian, according to

p(zt | ξit, y1:t) ≈ p̂(zt | ξit, y1:t) , N (zt; z̄t|t(ξ
i
1:t), Pt|t(ξ

i
1:t)). (5.19)

Note that both (5.18) and (5.19) are approximations, as opposed to (5.17) which is exact.

Remark 5.5. The above approximation corresponds to what was denoted the “ancestral dependence
approximation” in the presentation of the RBMPF in Section 3.4. As argued there, this approximation
is only good when the system under study is mixing sufficiently fast. In other words, the approxima-
tion is only good when the RBPF performs well, which is natural since it arises by marginalisation of
the RBPF. We could alternatively employ some other approximation, instead of Approximation 5.1,
e.g. based on mixing as suggested in Section 3.4.2. This would be preferable for slowly mixing
systems, but comes with the increased computational cost as discussed in Section 3.4.3. We will
not consider this alternative further in this section. See also the discussion in Section 5.3.3.

During the derivation of the RB-FFBSi, we will consider the 2-step fixed-interval smoothing
problem. The reason is, that this is exactly the problem that we will encounter in the RBPS

based identification method of Section 6.3. The derivation could straightforwardly be
extended to joint smoothing, and the reason why this is not done is simply for notational
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convenience. We thus seek to compute expectations of the form,

E [ϕ(Ξt:t+1, Zt:t+1) | Y1:T = y1:T ]

=

∫∫
ϕ(ξt:t+1, zt:t+1)p(ξt:t+1, zt:t+1 | y1:T ) dξt:t+1dzt:t+1

=

∫∫
ϕ(ξt:t+1, zt:t+1)p(zt:t+1 | ξt:T , y1:T )p(ξt:T | y1:T ) dξt:T dzt:t+1, (5.20)

for some test function ϕ. Clearly, we will also, at the same time, address the marginal
smoothing problem. It can be instructive to also consider the approximation of the marginal
smoothing densities explicitly (in addition to the 2-step fixed-interval smoothing densi-
ties). Hence, the task at hand can be formulated as,

1. Target p(ξt:T | y1:T ) with a backward simulator, generating a collection of back-
ward trajectories {ξ̃jt:T }Mj=1 for t = T : −1 : 12.

2. Sequentially (backward in time) evaluate the sufficient statistics for the densities,

i) p(zt | ξ̃jt:T , y1:T ) for t = T : −1 : 1,

ii) p(zt:t+1 | ξ̃jt:T , y1:T ) for t = (T − 1) : −1 : 1,

for j = 1, . . . , M .

At time t = T , this can be done by simply resampling the forward RBPF particles and
appeal to (5.19),

{I(j)}Mj=1 ∼ Cat
(
{wi

T }Ni=1

)
, (5.21a)

ξ̃jT := ξ
I(j)
T , j = 1, . . . , M, (5.21b)

z̃jT |T := z̄T |T

(
ξ
I(j)
1:T

)
, j = 1, . . . , M, (5.21c)

P̃ j
T |T := PT |T

(
ξ
I(j)
1:T

)
, j = 1, . . . , M. (5.21d)

Hence, assume that we have sampled backward trajectories {ξ̃jt+1:T }Nj=1 and that the
conditional filtering densities are approximately given by,

p̂(zt+1 | ξ̃jt+1:T , y1:T ) = N
(
zt+1; z̃

j
t+1|T , P̃

j
t+1|T

)
, (5.22)

for j = 1, . . . , M . We will now show how to complete the recursions at time t.

5.3.1 Backward simulation

As opposed to the (full) state process {Xt}t≥1, the nonlinear process {Ξt}t≥1 in a mixed
linear/nonlinear Gaussian state-space model is non-Markov. The same applies to the time-
reversed process. Thus, there exist no Markovian backward kernel for the time-reversed,
nonlinear process. However, it is still possible to perform backward simulation. We note

2Here, we have adopted the MATLAB like syntax for sequences {b : −1 : a} , {b, b− 1, . . . , a+ 1, a}.
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that the target density can be factorised as,

p(ξt:T | y1:T ) = p(ξt | ξt+1:T , y1:T ) p(ξt+1:T | y1:T )︸ ︷︷ ︸
previous target

. (5.23)

Hence, nonlinear backward trajectories can be sampled according to,

ξ̃jt ∼ p(ξt | ξ̃jt+1:T , y1:T ), (5.24a)

ξ̃jt:T := {ξ̃jt , ξ̃jt+1:T }. (5.24b)

However, it turns out that it is in fact easier to sample from the joint distribution with
density (see Appendix 5.A),

p(zt+1, ξ1:t | ξ̃jt+1:T , y1:T ) = p(ξ1:t | zt+1, ξ̃
j
t+1:T , y1:T )p(zt+1 | ξ̃jt+1:T , y1:T ). (5.25)

Using (5.22), the second factor in (5.25) is approximately Gaussian, and we can easily
sample,

Z̃j
t+1 ∼ N

(
zt+1; z̃

j
t+1|T , P̃

j
t+1|T

)
. (5.26)

For the first factor of (5.25), by using the conditional independence properties of the
model, we get

p(ξ1:t | zt+1, ξt+1:T , y1:T ) = p(ξ1:t | zt+1, ξt+1, y1:t). (5.27)

This result follows from the fact that, conditioned on the state at time t+1, {Ξt+1, Zt+1},
there is no extra information available in the states at time τ > t + 1 or in the measure-
ments at time τ > t. Furthermore, from Bayes’ rule we get,

p(ξ1:t | zt+1, ξt+1, y1:t) ∝ p(zt+1, ξt+1 | ξ1:t, y1:t)p(ξ1:t | y1:t). (5.28)

Hence, we arrive at a distribution that can be readily approximated by the forward filter.
The RBPF provides an approximation of the state-marginal smoothing distribution,

p(ξ1:t | y1:t) dξ1:t ≈ Φ̂m,N
1:t|t (dξ1:t) =

N∑

i=1

ωi
tδξi1:t(dξ1:t), (5.29)

which together with (5.27) and (5.28) yields,

p(ξ1:t | Z̃j
t+1, ξ̃

j
t+1:T , y1:T ) dξ1:t ≈

N∑

i=1

ω̃i,j
t|T δξi1:t(dξ1:t), (5.30a)

with

ω̃i,j
t|T ,

ωi
tp(Z̃

j
t+1, ξ̃

j
t+1 | ξi1:t, y1:t)∑

k ω
k
t p(Z̃

j
t+1, ξ̃

j
t+1 | ξk1:t, y1:t)

. (5.30b)

The density involved in the above weight expression is available in the RBPF and is, ac-
cording to (3.37) on page 46, given by

p(zt+1, ξt+1 | ξi1:t, y1:t) = N
(
xt+1; f

i
t +Ai

tz̄
i
t|t, Q

i
t +Ai

tP
i
t|t(A

i
t)

T

)
. (5.31)
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Algorithm 5.5 RB-FFBSi: Backward simulation

Input: • RBPF data: An augmented weighted particle system {ξi1:t, ωi
t, z̄

i
t|t, P

i
t|t}Ni=1 tar-

geting p(zt | ξ1:t, y1:t)p(ξ1:t | y1:t).
• RB-FFBSi data: Backward trajectories, augmented with the first and second mo-
ments of the linear state, {ξ̃jt+1:T , z̃

j
t+1|T , P̃

j
t+1|T }Mj=1, (approximately) targeting

p(zt+1 | ξt+1:T , y1:T )p(ξt+1:T | y1:T ).
Output: Indices {I(j)}Mj=1.
.

1: for j = 1 to N do

2: Sample Z̃j
t+1 ∼ N

(
zt+1; z̃

j
t+1|T , P̃

j
t+1|T

)
.

3: Using (5.31), set νjt =
∑N

k=1 ω
i
tp(Z̃

j
t+1, ξ̃

j
t+1 | ξi1:t, y1:t).

4: Using (5.31), compute the smoothing weights. For i = 1, . . . , N ,

ω̃i,j
t|T = ωi

t

p(Z̃j
t+1, ξ̃

j
t+1 | ξi1:t, y1:t)
νjt

.

5: Sample an index from the categorical distribution defined by the smoothing
weights,

I(j) ∼ Cat
(
{ω̃i,j

t|T }Ni=1

)
.

6: end for

Here we have employed the shorthand notation, f it = f(ξit) etc. For each backward
trajectory, i.e. for j = 1, . . . , M , we can now sample an index

I(j) ∼ Cat
(
{ω̃i,j

t|T }Ni=1

)
, (5.32)

corresponding to the forward filter particle that is to be appended to the j:th backward
trajectory. Since (5.30) defines a distribution over the RBPF particle trajectories, we will
in fact obtain a sample ξI(j)1:t from the space of trajectories X

t
ξ. However, by simply dis-

carding ξI(j)1:t−1 and also the auxiliary variable Z̃j
t+1, we end up with a sample ξ̃jt := ξ

I(j)
t ,

approximately distributed according to (5.24a), which can then be appended to the non-
linear backward trajectory as in (5.24b).

We summarise the sampling procedure described above in Algorithm 5.5. Just as the
original FFBSi formulation presented in Section 5.2, the backward simulator given by Al-
gorithm 5.5 has O(NMT ) complexity. However, we can straightforwardly adapt the fast
backward simulation technique by Douc et al. [2010], presented in Section 5.2.2, to the
RB-FFBSi. Here, the target distribution is categorical with probabilities {ω̃i,j

t|T }Ni=1. Again,

we use the forward filter weights {ωi
t}Ni=1 to define a proposal distribution. The target

and proposal weights are related according to (5.30b). Similarly to (5.15) we bound the
quotient between the two. However, since we are now dealing with a Gaussian density
according to (5.31), we can give explicit expressions for the bounds, according to,

ρt , (2π)−
nx
2 max

i=1, ..., N

[
det
(
Qi +AiP i

t|t(A
i)T
)− 1

2

]
. (5.33)
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Algorithm 5.6 RB-FFBSi: Fast backward simulation

Input: • RBPF data: An augmented weighted particle system {ξi1:t, ωi
t, z̄

i
t|t, P

i
t|t}Ni=1 tar-

geting p(zt | ξ1:t, y1:t)p(ξ1:t | y1:t).
• RB-FFBSi data: Backward trajectories, augmented with the first and second mo-
ments of the linear state, {ξ̃jt+1:T , z̃

j
t+1|T , P̃

j
t+1|T }Mj=1, (approximately) targeting

p(zt+1 | ξt+1:T , y1:T )p(ξt+1:T | y1:T ).
Output: Indices {I(j)}Mj=1.
.

1: for j = 1 to N do

2: Sample Z̃j
t+1 ∼ N

(
zt+1; z̃

j
t+1|T , P̃

j
t+1|T

)
.

3: end for
4: L← {1, . . . , M}
5: while L is not empty do
6: n← card(L).
7: δ ← ∅.
8: Sample independently {C(k)}nk=1 ∼ Cat({wi

t}Ni=1).
9: Sample independently {U(k)}nk=1 ∼ U([0, 1]).

10: for k = 1 to n do

11: if U(k) ≤ p
(
Z̃

L(k)
t+1 , ξ̃

L(k)
t+1 | ξ

C(k)
1:t , y1:t

)
/ρt then

12: I(L(k))← C(k).
13: δ ← δ ∪ {L(k)}.
14: end if
15: end for
16: L← L \ δ.
17: end while

A fast backward simulator, adapted to the RB-FFBSi, is given in Algorithm 5.6. We em-
phasise that, in terms of input and output, this algorithm is equivalent to Algorithm 5.5.
Also, note that the discussion in Section 5.2.2 applies also the fast backward simulator
given here. For instance, the proposed “timeout check” which (on heuristic grounds) was
suggested to obtain further speedup in practice, can be used also in Algorithm 5.6.

5.3.2 Smoothing the linear states

When traversing backward in time, we also need to update the sufficient statistics for the
linear states. Since, according to (5.26), the smoothing distribution for the linear states is
required during the backward simulation, we need to update it sequentially (backward in
time). In accordance with (5.22), we will approximate it with a Gaussian density,

p(zt | ξ̃jt:T , y1:T ) ≈ p̂(zt | ξ̃jt:T , y1:T ) = N
(
zt; z̃

j
t|T , P̃

j
t|T

)
; (5.34)

at time t = T , the approximation is given by (5.19). The mean and covariance of this
Gaussian density will be determined by fusing the information available in the forward
RBPF at time t, with the (existing) marginal smoothing distribution for the linear states at
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time t+ 1. We start by noting that, by the conditional independence properties of an SSM,

p(zt | zt+1, ξt:T , y1:T ) = p(zt | zt+1, ξt, ξt+1, y1:t). (5.35)

Furthermore, from Bayes’ rule we have,

p(zt | zt+1, ξt, ξt+1, y1:t) ∝ p(zt+1, ξt+1 | zt, ξt, y1:t)p(zt | ξt, y1:t). (5.36)

We recognise the first factor of (5.36) as the transition density, which for a mixed lin-
ear/nonlinear Gaussian state-space model is Gaussian and affine in zt (see (2.9) on page 16),

p(zt+1, ξt+1 | zt, ξt, y1:t) = p(zt+1, ξt+1 | zt, ξt)

= N
([

ξt+1

zt+1

]

︸ ︷︷ ︸
=xt+1

;

[
fξ(ξt)
fz(ξt)

]

︸ ︷︷ ︸
=f(ξt)

+

[
Aξ(ξt)
Az(ξt)

]

︸ ︷︷ ︸
=A(ξt)

zt,

[
Qξ(ξt) Qξz(ξt)

(Qξz(ξt))
T Qz(ξt)

]

︸ ︷︷ ︸
=Q(ξt)

)
. (5.37)

The second factor of (5.36) is the conditional of the filtering density. By replacing this
by its Gaussian approximation (5.19), we arrive at an affine transformation of a Gaussian
variable, which itself is Gaussian. Hence, let ξit belong to the set of RBPF particles at time
t. Then, by (5.19), (5.36), (5.37) and Corollary B.1 in Appendix B we get,

p(zt | zt+1, ξ
i
t, ξt+1, y1:t) ≈ p̂(zt | zt+1, ξ

i
t, ξt+1, y1:t) , N

(
zt;µ

i
t|t(xt+1),Π

i
t|t

)
,

(5.38)

where we have introduced,

µi
t|t(xt+1) , Πi

t|t

(
(Ai

t)
T(Qi

t)
−1
([
ξTt+1 zTt+1

]T − f it
)
+ (P i

t|t)
−1z̄it|t

)
, (5.39a)

Πi
t|t ,

(
(P i

t|t)
−1 + (Ai

t)
T(Qi

t)
−1Ai

t

)−1

= P i
t|t − P i

t|t(A
i
t)

T

(
Qi

t +Ai
tP

i
t|t(A

i
t)

T

)−1

Ai
tP

i
t|t. (5.39b)

To expand the expression (5.39a) we introduce,
[
W ξ(ξt) W z(ξt)

]
, A(ξt)

TQ(ξt)
−1. (5.40)

Explicit expressions for the functions W ξ and W z can be given in terms of the process
noise precision,

W ξ(ξt) = Aξ(ξt)
TΛξ(ξt) +Az(ξt)

TΛξz(ξt)
T, (5.41a)

W z(ξt) = Aξ(ξt)
TΛξz(ξt) +Az(ξt)

TΛz(ξt), (5.41b)

where
[

Λξ(ξt) Λξz(ξt)
(Λξz(ξt))

T Λz(ξt)

]
= Q(ξt)

−1. (5.41c)

By plugging (5.40) into (5.39a) we get,

µi
t|t(xt+1) = Πi

t|t

(
W ξ,i

t (ξt+1 − fξ,it ) +W z,i
t zt+1 −W z,i

t fz,it + (P i
t|t)

−1z̄it|t

)

= Πi
t|tW

z,i
t zt+1 + cit|t(ξt+1), (5.42a)



106 5 Particle smoothing

where we have defined

cit|t(ξt+1) , Πi
t|t

(
W ξ,i

t (ξt+1 − fξ,it )−W z,i
t fz,it + (P i

t|t)
−1z̄it|t

)
. (5.42b)

We seek to combine (5.38) with the smoothing distribution for the linear states at time
t+ 1 given by (5.22). To enable this, we need the following Gaussian approximation.

Approximation 5.2. Let ξ̃jt:T be any particle trajectory, sampled during the backward

simulation as described in Section 5.3.1. Let I(j) be the index of the FF particle that was

appended at time t, i.e. ξ̃jt:T = {ξI(j)t , ξ̃jt:T }. Then,

p(zt+1 | ξI(j)t , ξ̃jt+1:T , y1:T ) ≈ p̂(zt+1 | ξ̃jt+1:T , y1:T ) = N
(
zt+1; z̃

j
t+1|T , P̃

j
t+1|T

)
.

(5.43)

The implication of this approximation is that we assume that the smoothing estimate for
zt+1 is independent of which forward filter particle ξI(j)t that is appended to the backward
trajectory. This approximation can be motivated by the fact that a particle ξI(j)t is more
likely to be drawn if it has a good fit to the current smoothing trajectory. Hence, it should
not affect the smoothing estimate at time t + 1 to any significant extent. See also the
discussion in Section 5.3.3.

Now, from (5.35) and (5.38), we have that the density p(zt | zt+1, ξ
I(j)
t , ξ̃jt+1:T , y1:T ) is

approximately Gaussian. Furthermore, from (5.42a) we see that it has an affine depen-
dence on zt+1. By Theorem B.3 this yields, together with (5.43), a Gaussian approxima-
tion of p(zt:t+1 | ξI(j)t , ξ̃jt+1:T , y1:T ) as,

p̂(zt:t+1 | ξI(j)t , ξ̃jt+1:T , y1:T ) = N
([

zt
zt+1

]
;

[
z̃jt|T
z̃jt+1|T

]
,

[
P̃ j
t|T M j

t|T

(M j
t|T )

T P̃t+1|T

])
,

(5.44)with

z̃jt|T = Π
I(j)
t|t W

z,I(j)
t z̃jt+1|T + c

I(j)
t|t (ξ̃jt+1), (5.45a)

P̃ j
t|T = Π

I(j)
t|t +M j

t|T (W
z,I(j)
t )TΠ

I(j)
t|t , (5.45b)

M j
t|T = Π

I(j)
t|t W

z,I(j)
t P̃ j

t+1|T . (5.45c)

Finally, by marginalisation of the above density (Theorem B.1) we get an approximation
of the marginal, conditional smoothing density,

p̂(zt | ξI(j)t , ξ̃jt+1:T , y1:T ) = N
(
zt; z̃

j
t|T , P̃

j
t|T

)
. (5.46)

The resulting RB-FFBSi is summarised in Algorithm 5.7. In conclusion, we note that the
algorithm results in an approximation of the 2-step, fixed-interval smoothing distribution,

Φt:t+1|T (dxt:t+1) ≈ Φ̃RB,M
t:t+1|T (dxt:t+1)

,

M∑

j=1

N
(
d

[
zt
zt+1

]
;

[
z̃jt|T
z̃jt+1|T

]
,

[
P̃ j
t|T M j

t|T

(M j
t|T )

T P̃t+1|T

])
δξ̃jt:t+1

(dξt:t+1). (5.47)



5.3 Rao-Blackwellised FFBSi 107

Algorithm 5.7 RB-FFBSi for mixed linear/nonlinear Gaussian state-space models

Input: A sequence of augmented weighted particle systems {ξi1:t, ωi
t, z̄

i
t|t, P

i
t|t}Ni=1 tar-

geting p(zt | ξ1:t, y1:t)p(ξ1:t | y1:t), for t = 1, . . . , T .
Output: Smoothed nonlinear state trajectories {ξ̃j1:T }Mj=1, with the corresponding suffi-

cient statistics for the linear states, {z̃jt|T , P̃
j
t|T ,M

j
t|T }Mj=1 for t = 1, . . . , T

(M j
t|T only for t < T ).

1: Initialise the smoother by resampling the RBPF at time T , i.e. generate
{ξ̃jT , z̃jT |T , P̃

j
T |T }Mj=1 according to (5.21).

2: for t = T − 1 to 1 do
3: Sample indices {I(j)}Mj=1 according to Algorithm 5.6 (or Algorithm 5.5).
4: Augment the backward trajectories. For j = 1, . . . , M ,

ξ̃jt:T = {ξ̃jt , ξ̃jt+1:T }.
5: Update the sufficient statistics for the linear states. For j = 1, . . . , M ,

z̃jt|T = Π
I(j)
t|t W

z,I(j)
t z̃jt+1|T + c

I(j),j
t|t ,

P̃ j
t|T = Π

I(j)
t|t +M j

t|T (W
z,I(j)
t )TΠ

I(j)
t|t ,

M j
t|T = Π

I(j)
t|t W

z,I(j)
t P̃ j

t+1|T ,

where

c
I(j),j
t|t = Π

I(j)
t|t

(
W

ξ,I(j)
t (ξ̃jt+1 − f

ξ,I(j)
t )−W z,I(j)

t f
z,I(j)
t + (P

I(j)
t|t )−1z

I(j)
t|t

)
,

Π
I(j)
t|t = P

I(j)
t|t − P

I(j)
t|t (A

I(j)
t )T

(
Q

I(j)
t +A

I(j)
t P

I(j)
t|t (A

I(j)
t )T

)−1

A
I(j)
t P

I(j)
t|t ,

and [
W ξ,I(j)t W

z,I(j)
t

]
= (A

I(j)
t )T(Q

I(j)
t )−1.

6: end for

5.3.3 Discussion

During the derivation of the RB-FFBSi in the previous section, we were forced to make
several Gaussian approximations. However, these can all be traced back to Approxima-
tion 5.1 and Approximation 5.2. To understand why we need to use these approximations,
consider the conditional distribution appearing in (5.17). This is the basis for both the
RBPF and the RBPS, stating that as long as we traverse along (and condition on) a non-
linear state trajectory ξi1:t, the conditional distribution is Gaussian. Clearly, the purpose
of smoothing through backward simulation is to “update” the trajectories generated by
the forward filter (if we do not allow for any change of the trajectories, we will not gain
anything from smoothing). When we no longer have fixed nonlinear state trajectories, the
Gaussianity implied by (5.17) is lost. To circumvent this, we make use of Approxima-
tion 5.1 and Approximation 5.2. Informally, the meaning of both these approximations is
that, conditioned on the present, we do not care about the past. Hence, the justification of
the involved approximations is closely related to the mixing properties of the system. For
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slowly mixing (or non-mixing) systems, the proposed smoother should be used with care.
However, if the underlying system is mixing sufficiently fast, good performance has been
experienced in empirical studies, as we shall see in Section 5.3.5 and also in Section 6.3.2.

5.3.4 A special case

As previously mentioned, the RBPS derived by Fong et al. [2002], and also the one given
by Briers et al. [2010], are restricted to hierarchical CLGSS models. Similarly, the RBPS

presented above is derived explicitly for mixed linear/nonlinear Gaussian state-space mod-
els, defined by (2.9) on page 16. However, for the special case Aξ ≡ Qξz ≡ 0, the model
(2.9) on page 16 coincides with a hierarchical CLGSS model, as defined by (2.7), with a
Gaussian kernel Qξ. We will now take a closer look at this special case, and see that
we recover a smoothing recursion which shows great similarities with the one derived by
Fong et al. [2002].

Since the process noise covariance Q(ξt) is now block diagonal we get the precision
matrices Λξ(ξt) = Qξ(ξt)

−1, Λz(ξt) = Qz(ξt)
−1 and Λξz(ξt) ≡ 0. Furthermore, since

Aξ(ξt) ≡ 0, we get from (5.41),

W ξ(ξt) ≡ 0, (5.48a)

W z(ξt) = Az(ξt)
TQz(ξt)

−1, (5.48b)

which in (5.42b) and (5.39b) gives

cit|t(ξt+1) = −Πi
t|tW

z,i
t fz,it +Πi

t|t(P
i
t|t)

−1z̄it|t, (5.49a)

and

Πi
t|t = P i

t|t − P i
t|t(A

z,i
t )T

(
Qz,i

t +Az,i
t P i

t|t(A
z,i
t )T

)−1

Az,i
t P i

t|t = P i
t|t − T i

tA
z,i
t P i

t|t,

(5.49b)

where we have defined

T i
t , P i

t|t(A
z,i
t )T

(
Qz,i

t +Az,i
t P i

t|t(A
z,i
t )T

)−1

= P i
t|t(A

z,i
t )T(P i

t+1|t)
−1. (5.49c)

The last equality follows from (3.37) and (3.39c) on page 46.

Now, consider the product,

Πi
t|tW

z,i
t = P i

t|t(A
z,i
t )T(Qz,i

t )−1 − T i
tA

z,i
t P i

t|t(A
z,i
t )T(Qz,i

t )−1

= P i
t|t(A

z,i
t )T

(
Inz×nz

− (P i
t+1|t)

−1Az,i
t P i

t|t(A
z,i
t )T

)
(Qz,i

t )−1

= P i
t|t(A

z,i
t )T(P i

t+1|t)
−1
(
P i
t+1|t −Az,i

t P i
t|t(A

z,i
t )T

)

︸ ︷︷ ︸
=Qz,i

t

(Qz,i
t )−1

= P i
t|t(A

z,i
t )T(P i

t+1|t)
−1 = T i

t . (5.50)
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We can now rewrite the updating formulas (5.45) as,

z̃jt|T = T
I(j)
t z̃jt+1|T − T

I(j)
t f

z,I(j)
t +Π

I(j)
t|t (P

I(j)
t|t )−1z̄

I(j)
t|t

= z̄
I(j)
t|t + T

I(j)
t

(
z̃jt+1|T − f

z,I(j)
t −Az,I(j)

t z̄
I(j)
t|t

)

= z̄
I(j)
t|t + T

I(j)
t

(
z̃jt+1|T − z̄

I(j)
t+1|t

)
, (5.51a)

where the last equality follows from (3.37) and (3.39b). Furthermore,

M j
t|T = T

I(j)
t P̃ j

t+1|T , (5.51b)

and finally

P̃ j
t|T = P

I(j)
t|t − T

I(j)
t A

z,I(j)
t P

I(j)
t|t + T

I(j)
t P̃ j

t+1|T (T
I(j)
t )T

=
/
Az,i

t P i
t|t = P i

t+1|t(T
i
t )

T

/

= P
I(j)
t|t − T

I(j)
t

(
P

I(j)
t+1|t − P̃

j
t+1|T

)
(T

I(j)
t )T. (5.51c)

The above expressions for z̃t|T and P̃t|T can be recognised as the Rauch-Tung-Striebel
(RTS) recursions for the smoothing estimate in LGSS models [Rauch et al., 1965]. That
is, for hierarchical CLGSS models, the RB-FFBSi can be seen as an FFBSi working on the
nonlinear state process, equipped with an RTS smoother for smoothing of the linear states.
This is expected since, for hierarchical CLGSS models, the nonlinear state process evolves
independently of the linear state process. We can thus decouple the problem into one
nonlinear smoothing problem (addressed with an FFBSi) and one linear smoothing prob-
lem (addressed with an RTS smoother). This is not the case for mixed linear/nonlinear
Gaussian state-space models. For such models, there is a interconnection between the
dynamics of the linear and the nonlinear states. This leads to the more “complicated” up-
dating formulas (5.45), which are not straightforward modifications of the RTS formulas.

The RB-FFBSi for this special case is very similar to the one derived by Fong et al. [2002].
The difference is that Fong et al. [2002] applies backward simulation jointly for the non-
linear, as well as the linear states. That is, the output from their smoother is a collection
of smoothing trajectories {x̃j1:t} = {ξ̃j1:t, z̃j1:t}. To perform this joint backward simula-
tion, they apply a one-step RTS smoothing of the linear state, in each step of the backward
recursion. On the contrary, the output from the RB-FFBSi proposed here, is a collection of
nonlinear backward trajectories, together with means and covariances for the linear states,
as indicated by Algorithm 5.7. We discuss the differences and similarities between the
two approaches further in [Lindsten and Schön, 2011].

5.3.5 Numerical illustrations

In this section we will illustrate the RB-FFBSi given in Algorithm 5.7 in numerical exam-
ples. Since the smoother is based on a forward/backward recursion, we will also provide
some results for the forward RBPF, given in Algorithm 3.3. A bootstrap RBPF is used for
forward filtering; see Definition 3.4.

Two different examples will be presented, first we consider a linear Gaussian system and
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thereafter a mixed linear/nonlinear system. The purpose of including a linear Gaussian
example is to gain confidence in the presented smoother. This is possible since, for this
case, there are closed form solutions available for the filtering and smoothing densities
via the Kalman filter (KF) and the RTS smoother, respectively.

For both the linear and the mixed linear/nonlinear examples, we can also address the
inference problems using standard particle methods. To solve the filtering problem, we
then use the bootstrap PF by Gordon et al. [1993]. The smoothing problem is thereafter
addressed using the fast FFBSi by Douc et al. [2010], discussed in Section 5.2.2.

As a measure of evaluation, we use the time-averaged root mean squared error (RMSE).
For a sequence of estimates {x̂kt }Tt=1 of the estimands {xkt }Tt=1, over k = 1, . . . , K
experiments, this is defined as,

RMSE ,
1

T

T∑

t=1

√√√√ 1

K

K∑

k=1

(x̂kt − xkt )2. (5.52)

Example 5.2: RB-FFBSi: 2nd order LGSS system
We start the evaluation of the RB-FFBSi on a linear, second order system, according to

(
Ξt+1

Zt+1

)
=

(
0.8 0.1
0 1

)(
Ξt

Zt

)
+ Vt, Vt ∼ N (0, Q), (5.53a)

Yt = Ξt + Et, Et ∼ N (0, R), (5.53b)

with Q = 0.01I2×2 and R = 0.1. The initial state of the system is Gaussian according to
(
Ξ1

Z1

)
∼ N

((
0
5

)
,

(
10−6 0
0 10−6

))
. (5.54)

In the RBPF and the RB-FFBSi, the first state Ξt is treated as if it is nonlinear, whereas the
second state Zt is treated as linear.

The comparison was made by a Monte Carlo study over 100 realisations of data y1:T from
the system (5.53), each consisting of T = 200 samples (measurements). The three filters,
KF, PF and RBPF, and thereafter the three smoothers, RTS, (fast) FFBSi and (fast) RB-FFBSi,
were run in parallel. The PF and RBPF both employed N = 50 particles and the FFBSi and
RB-FFBSi used M = 50 backward trajectories.

Table 5.1 and Table 5.2 gives the RMSEs for the three filters and smoothers, respectively.

Table 5.1: RMSEs for filters

Filter ξt zt

PF 0.16 0.41
RBPF 0.15 0.36
KF 0.15 0.36

Table 5.2: RMSEs for smoothers

Smoother ξt zt

FFBSi 0.14 0.32
RB-FFBSi 0.13 0.25
RTS 0.12 0.24

The results are as expected. First, smoothing clearly decreases the RMSEs when compared
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to filtering. Second, Rao-Blackwellisation has the desired effect of decreasing the RMSE

when compared to standard particle methods. The RBPF and the RB-FFBSi perform close
to the optimal KF and RTS, respectively. When looking at the “linear” state zt, the PF and
the FFBSi result in significantly larger errors in this example.

The key difference between the PF/FFBSi and the RBPF/RB-FFBSi is that in the former,
the particles have to cover the distribution in two dimensions. In the RBPF/RB-FFBSi we
marginalise out one of the dimensions and thus only need to deal with, what appears as, a
one-dimensional problem using particles.

We continue with an example with a mixed linear/nonlinear Gaussian system. Since the
system is nonlinear, the optimal filter and smoother are not available. We thus make the
comparison only between the PF/FFBSi and the RBPF/RB-FFBSi.

Example 5.3: RB-FFBSi: 4th order mixed linear/nonlinear Gaussian system
Consider the fourth order mixed linear/nonlinear Gaussian system, where three of the
states are conditionally linear Gaussian, given by,

Ξt+1 = arctanΞt +
(
1 0 0

)
Zt + V ξ

t , (5.55a)

Zt+1 =



1 0.3 0
0 0.92 −0.3
0 0.3 0.92


Zt + V z

t , (5.55b)

Yt =

(
0.1Ξ2

t sign(Ξt)
0

)
+

(
0 0 0
1 −1 1

)
Zt + Et, (5.55c)

with Vt =
[
V ξ
t (V z

t )
T
]T ∼ N (0, Q), Q = 0.01I4×4 and Et ∼ N(0, R), R = 0.1I2×2.

The initial distribution for the system is X1 ∼ δ0(dx1). The Z-system is oscillatory and
marginally stable, with poles in 1 and 0.92 ± 0.3i. The linear Z-variables are connected
to the nonlinear Ξ-system through Z1,t.

Again, 100 realisations of data y1:T were generated, each consisting of T = 200 samples.
Table 5.3 and Table 5.4 present the RMSE values for the PF and RBPF, and for the FFBSi and
RB-FFBSi, respectively. The PF and RBPF both employed N = 50 particles and the FFBSi
and RB-FFBSi used M = 50 backward trajectories.

Table 5.3: RMSEs for filters

Filter ξt z1,t z2,t z3,t

PF 1.12 0.66 0.28 0.21
RBPF 0.45 0.29 0.21 0.18

Table 5.4: RMSEs for smoothers

Smoother ξt z1,t z2,t z3,t

FFBSi 1.08 0.60 0.21 0.20
RB-FFBSi 0.33 0.16 0.11 0.14

The benefits of using Rao-Blackwellisation becomes even more evident in this, more
challenging, problem. Since we can marginalise over three out of the four “dimensions”,
Rao-Blackwellisation allows us to handle this four-dimensional system using only 50
particles. To see how the results are affected by the number of particles, we run the same
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experiment again, using N = M = 200 particles/backward trajectories. The results are
summarised in Table 5.5 and in Table 5.6.

Table 5.5: RMSEs for filters

Filter ξt z1,t z2,t z3,t

PF 0.43 0.29 0.21 0.18
RBPF 0.40 0.27 0.20 0.17

Table 5.6: RMSEs for smoothers

Smoother ξt z1,t z2,t z3,t

FFBSi 0.32 0.16 0.13 0.15
RB-FFBSi 0.28 0.14 0.12 0.13

When we increase the number of particles, the difference between the PF/FFBSi and the
RBPF/RB-FFBSi naturally becomes less pronounced. However, we note that the perfor-
mance of the RBPF/RB-FFBSi using N = M = 50 is similar to that of the PF/FFBSi using
N =M = 200.



Appendix

5.A Sampling in the RB-FFBSi

The sampling step in the RB-FFBSi at time t appends a new sample ξ̃jt to a backward
trajectory ξ̃jt+1:T . Hence, from (5.24a) we see that we wish to draw samples from the

distribution p(ξt | ξ̃jt+1:T , y1:T ). In this appendix we shall see why it is easier to instead

sample from the join distribution with density p(ξ1:t, zt+1 | ξ̃jt+1:T , y1:T ) and thereafter

discard everything but ξ̃jt .

First of all we note that the backward simulation makes use of the forward filter particles,
i.e. we only sample among the particles generated by the forward filter. This means that
our target distribution can be written as a weighted point-mass distribution according to

p(ξt | ξ̃jt+1:T , y1:T ) dξt ≈
N∑

i=1

θi,jt δξit(dξt), (5.56)

with some, yet unspecified, weights θi,jt . Clearly, the tricky part is to compute these
weights, once we have them the sampling is trivial.

To see why it is indeed hard to compute the weights, we consider the joint distribution with
density p(ξ1:t, zt+1 | ξ̃jt+1:T , y1:T ). Following the steps in (5.25)–(5.30), this distribution
is approximately

p(ξ1:t,zt+1 | ξ̃jt+1:T , y1:T ) dξ1:tdzt+1

≈ p(zt+1 | ξ̃jt+1:T , y1:T )

∑N
i=1 ω

i
tp(zt+1, ξ̃

j
t+1 | ξi1:t, y1:t)∑N

k=1 ω
k
t p(zt+1, ξ̃

j
t+1 | ξk1:t, y1:t)

δξi1:t(dξ1:t)dzt+1

=
N∑

i=1

p(zt+1 | ξ̃jt+1:T , y1:T )ω̃
i,j
t|T (zt+1)δξi1:t(dξ1:t)dzt+1, (5.57)
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where we have introduced the zt+1-dependent weights,

ω̃i,j
t|T (zt+1) ,

ωi
tp(zt+1, ξ̃

j
t+1 | ξi1:t, y1:t)∑

k ω
k
t p(zt+1, ξ̃

j
t+1 | ξk1:t, y1:t)

. (5.58)

To obtain (5.56) we can marginalise (5.57) over ξ1:t−1 and zt+1, which results in

p(ξt | ξ̃jt+1:T , y1:T ) dξt ≈
N∑

i=1

∫
p(zt+1 | ξ̃jt+1:T , y1:T )ω̃

i,j
t|T (zt+1) dzt+1

︸ ︷︷ ︸
=θi,j

t

δξit(dξt).

(5.59)

Hence, if we want to sample “directly” from p(ξt | ξ̃jt+1:T , y1:T ) we need to evaluate
the (likely to be intractable) integrals involved in (5.59). If we instead sample from the
joint density p(ξ1:t, zt+1 | ξ̃jt+1:T , y1:T ) we can use the fact that the marginal density

p(zt+1 | ξ̃jt+1:T , y1:T ) is (approximately) Gaussian, and hence easy to sample from. We

then only need to evaluate ω̃i,j
t|T (zt+1) at a single point, which is clearly much simpler

than evaluating the integrals in (5.59).



6
Nonlinear system identification

So far, we have only considered the state inference problem, i.e. how to estimate the state
of a dynamical system given a sequence of measurements. This chapter addresses the
related problem of system identification, i.e. how to infer knowledge about the system
itself based on the measurements.

6.1 Introduction

System identification is in itself a very broad concept. It is the art of finding, or identify-
ing, models that can describe dynamical systems. This includes a wide variety of tasks,
ranging from how to choose appropriate model structures, to how to design input signals
enabling an accurate identification. For a thorough treatment of the field, we refer to the
standard textbooks by Ljung [1999] and Söderström and Stoica [1989].

Here, we will use the word identification in a more narrow sense, referring to the problem
of parameter estimation. Hence, we assume that a model structure is given, but that it is
parameterised by some unknown parameters. The task at hand, is then to estimate these
parameters based on measurements from the system.

Furthermore, as the title of this chapter indicates, the focus will be on nonlinear (and/or
non-Gaussian) systems. Identification of nonlinear systems is probably one of the cur-
rently most active areas within the system identification community [Ljung and Vicino,
2005, Ljung, 2008]. This is basically due to its relevance and challenging nature. The
presence of nonlinearities suggests that Monte Carlo (MC) integration techniques, as dis-
cussed in the previous chapters, can be applied. In fact, during the last decade or so,
identification methods based on sequential Monte Carlo (SMC) and related techniques,
have appeared at an increasing rate and with increasingly better performance. The two
overview papers by Andrieu et al. [2004] and by Kantas et al. [2009], and the recent re-
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sults by Schön et al. [2011], Olsson et al. [2008], Gopaluni [2008] and Poyiadjis et al.
[2009] provide a good introduction to these ideas. In the present chapter, we will con-
tinue this line of work and apply the Rao-Blackwellised marginal particle filter (RBMPF)
of Section 3.4 and the Rao-Blackwellised particle smoother (RBPS) of Section 5.3 to the
problem of nonlinear system identification.

Let us return to the SSM (2.2) on page 13. To perform state inference in this model, we
have throughout the previous chapters assumed that the model is fully known. That is, in
the filtering and smoothing recursions of Section 2.3, we allowed ourselves to evaluate
model quantities such as the distribution ν and the kernel Q. Now, assume that the model
is not fully known, but parameterised by some unknown θ ∈ Xθ

1,

X1 ∼ νθ(dx1), (6.1a)

Xt+1 | {Xt = xt} ∼ Qθ(dxt+1 | xt), (6.1b)

Yt | {Xt = xt} ∼ Gθ(dyt | xt). (6.1c)

Based on a sequence of observations Y1:T = y1:T , we wish to find an appropriate value
for θ. The meaning of the word appropriate in this context, will be clarified in the coming
sections. In particular, we will start by introducing the maximum likelihood (ML) criterion,
and thereafter the expectation maximisation (EM) algorithm which can be used to solve
the ML problem. We then introduce an alternative Bayesian criterion. Based on these
two criteria, we propose two nonlinear identification methods. First, in Section 6.2 we
discuss Bayesian identification using the RBMPF developed in Section 3.4. Second, in
Section 6.3 we consider ML identification using the EM algorithm combined with the RBPS

of Section 5.3. In Section 6.3.3 we discuss how this latter approach potentially can be used
for identification of Wiener systems. Finally, in Section 6.4 we discuss some properties
of the two methods, and of particle based identification methods in general.

6.1.1 Maximum likelihood

Recall the definition of the likelihood function, as the probability density function (PDF)
of the measurement sequence. In a parameterised model, the likelihood function will also
depend on θ. In fact, since the measurement sequence y1:T is assumed to be fixed, the
word function now takes a different meaning. That is, we view the likelihood function as
a mapping from the parameter space to the real line,

pθ(y1:T ) : Xθ → R. (6.2)

A sensible approach to parameter identification, is to find a value of θ which maximises
the likelihood function. That is, we seek a parameter value for which the observed mea-
surement sequence is “as likely as possible”; this idea is known as maximum likelihood.
Hence, we define the ML estimator as,

θ̂ML = argmax
θ∈Xθ

pθ(y1:T ). (6.3)

The ML criterion was proposed, analysed and popularised by Sir Ronald Aylmer Fisher
(1890–1962) in the early 20th century [Fisher, 1912, 1921, 1922]. However, the idea can
be traced back even further to, among others, Gauss, Hagen and Edgeworth [Hald, 1999].

1Here, Xθ is the set of possible parameter values.
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Aldrich [1997] provides a historical discussion on Fisher and the making of ML. Due to its
appealing theoretical properties, it has a long tradition in many fields of science, including
that of system identification.

When it comes to solving the ML problem using MC integration, a common choice is to
apply the EM algorithm, see e.g. the work by Andrieu et al. [2004], Olsson et al. [2008],
Schön et al. [2011] and Gopaluni [2008] and the textbooks by McLachlan and Krishnan
[2008] and Cappé et al. [2005]. The EM algorithm will be the topic of the next section, and
will also be the “method of choice” for addressing the ML problem in Section 6.3. How-
ever, an often overlooked alternative is to perform direct maximisation of the likelihood
function. In fact, for any model in which the EM algorithm is applicable, Fisher’s and
Louis’ identities (see e.g. [Cappé et al., 2005, page 353]), state that the gradient and the
Hessian of the log-likelihood function are also available. This opens up for maximisation
of the likelihood function by e.g. MC based steepest ascent or Newton methods. See also
the work by Andrieu et al. [2004], Poyiadjis et al. [2005] and Poyiadjis et al. [2009].

6.1.2 Expectation maximisation

The EM algorithm by Dempster et al. [1977] is one of the statistician’s standard tools for
addressing the ML problem. McLachlan and Krishnan [2008] provides a thorough treat-
ment of the method an discuss its properties and a variety of extensions. We will in this
section present the EM algorithm in a similar fashion as it was derived by Dempster et al.
[1977]. Hence, the presentation is not exclusive for SSMs, but applies to a wider class
of models. In Section 6.3 we will then combine the EM algorithm with the RBPS of Sec-
tion 5.3, resulting in a method for identification of mixed linear/nonlinear Gaussian SSMs.
The application to general SSMs is thoroughly described by e.g. Cappé et al. [2005] and
Schön et al. [2011]. Gibson and Ninness [2005] apply the EM algorithm to the special
case of linear Gaussian state-space (LGSS) models, and provide details on how to make a
robust implementation of the method. Smith and Robinson [2000] discuss the similarities
and differences between the EM algorithm and the subspace identification algorithm (see
e.g. [Van Overschee and De Moor, 1996]) for identification of LGSS models.

The EM algorithm is a method for ML estimation in incomplete data models. The word
incomplete refers to the underlying dependence of the observed variable on some hidden
or latent variable. In other words, assume that Y is a random variable, for which we
observe the value Y = y. We then postulate that there exist some latent variable Z
which can not be observed (compare with an SSM, in which the measurement process is
observed, but the state process is not). The pair {Z, Y } is known as the complete data,
whereas the observed variable Y is the incomplete data. The latent variable Z is really
a design variable, and how to choose it is connected to how the variable Y is modeled.
In general, the latent variable should be chosen such that “if it would be known, then
the identification problem would be simpler”. Now, assume that the joint distribution of
{Z, Y }, for a given parameter θ, admits a density fθ(z, y) w.r.t. some product measure
λ×µ. The likelihood function, i.e. the marginal density function for the observed variable,
is then given by,

gθ(y) =

∫
fθ(z, y)λ(dz). (6.4)
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The ML problem is, in analogy with (6.3), given by

θ̂ML = argmax
θ∈Xθ

gθ(y). (6.5)

To maximise the above expression we can, by monotonicity, equally well maximise the
log-likelihood function given by,

log gθ(y) = log fθ(z, y)− log pθ(z | y), (6.6)

where we have introduced the conditional density of Z given Y ,

pθ(z | y) =
fθ(z, y)

gθ(y)
. (6.7)

Now, for each value of θ ∈ Xθ, this conditional density is a PDF w.r.t. λ. Hence, by
multiplying (6.6) with pθ′(z | y) and integrating w.r.t. λ, we get,

log gθ(y) =

∫
log fθ(z, y)pθ′(z | y)λ(dz)−

∫
log pθ(z | y)pθ′(z | y)λ(dz)

= Eθ′ [log fθ(Z, y) | Y = y]︸ ︷︷ ︸
,Q(θ,θ′)

−Eθ′ [log pθ(Z | y) | Y = y]︸ ︷︷ ︸
,V(θ,θ′)

. (6.8)

Before we go on, we note that we need to impose some extra conditions for the above
expressions to be well defined. Hence, we make the following assumption.

Assumption A1. The family of densities {fθ}θ∈Xθ
is such that,

i) for any θ ∈ Xθ the likelihood function gθ(y) is positive and finite.

ii) for any (θ, θ′) ∈ Xθ × Xθ the conditional densities pθ(z | y) and pθ′(z | y) have
the same support.

Assumption A1(i) is needed for (6.6) and (6.7) to make sense. Assumption A1(ii) ensures
that the integrals in (6.8) are well defined. In fact, we should interpret the integration to
be only over the support of pθ′(z | y), a set on which both pθ(z | y) and fθ(z, y) are
ensured to be strictly positive under Assumption A1(ii).

Remark 6.1. The above assumptions may at first seem like technicalities which are not important
from a practitioner’s point of view. However, especially Assumption A1(ii) can indeed affect the
implementation aspects of the EM algorithm. What the assumption states is that the support of the
conditional density of the latent variable Z, given the observed variable Y , may not be parameter
dependent. For certain problems, this may restrict the freedom that one has in choosing the latent
variable. As an example, Wills et al. [2011] consider identification of SSMs on innovation form. For
the EM algorithm to be applicable for this specific problem, a “clever choice” of the latent variables
is required.

The main ingredient of the EM algorithm is theQ-function, defined in (6.8). The algorithm
is based on the following proposition, which states that an increase in the Q-function
implies an increase in the log-likelihood function.
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Proposition 6.1 (The fundamental EM inequality). Under Assumption A1 and for any

(θ, θ′) ∈ Xθ × Xθ,

log gθ(y)− log gθ′(y) ≥ Q(θ, θ′)−Q(θ′, θ′), (6.9a)

where the inequality is strict unless pθ( · | y) and pθ′( · | y) are equal λ-a.e. This further

implies,

Q(θ, θ′) ≥ Q(θ′, θ′)⇒ log gθ(y) ≥ log gθ′(y). (6.9b)

The proposition is a direct consequence of Jensen’s inequality

Lemma 6.1 (Jensen’s inequality). If ϕ is a convex function defined over an open inter-

val I and X is a random variable with P(X ∈ I) = 1 and finite expectation, then

ϕ(E[X]) ≤ E[ϕ(X)]. (6.10)

If ϕ is strictly convex, the inequality is strict unless X is constant a.s.

Proof: See e.g. [Lehmann, 1983], page 50.

Proof of Proposition 6.1: Consider the difference between the log-likelihood function
values evaluated at two different parameters θ and θ′,

log gθ(y)− log gθ′(y) = (Q(θ, θ′)−Q(θ′, θ′)) + (V(θ′, θ′)− V(θ, θ′)) , (6.11)

where

V(θ′, θ′)− V(θ, θ′) =
∫

log
pθ′(z | y)
pθ(z | y)

pθ′(z | y)λ(dz). (6.12)

The above expression is recognised as the Kullback-Leibler divergence between pθ′(z | y)
and pθ(z | y) [Kullback and Leibler, 1951]. By Jensen’s inequality,

∫
log

pθ′(z | y)
pθ(z | y)

pθ′(z | y)λ(dz) = Eθ′

[
− log

pθ(Z | y)
pθ′(Z | y)

∣∣∣∣ Y = y

]

≥ − log Eθ′

[
pθ(Z | y)
pθ′(Z | y)

∣∣∣∣ Y = y

]
= − log

∫
pθ(z | y)λ(dz) = 0, (6.13)

which completes the proof.

The property (6.9a) suggests that the Q-function can be used as a surrogate for the log-
likelihood function in the ML problem. This is exploited in the EM algorithm, given in
Algorithm 6.1. A sequence of parameter estimates {θk}k≥1 is constructed in such a way
that Q(θk+1, θk) ≥ Q(θk, θk). Thus, (6.9b) implies that the sequence of log-likelihood
function values {log gθk(y)}k≥1 is non-decreasing, meaning that the EM algorithm is a
monotone optimisation algorithm. Furthermore, it can be shown that if the sequence of
parameter estimates converge to some point θ̂EM, this is a stationary point also for the log-
likelihood function. However, to ensure that the sequence of parameter estimates indeed
converges, further conditions need to be imposed. We refer the reader to the paper by Wu
[1983] and Chapter 3 of the book by McLachlan and Krishnan [2008] for convergence
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Algorithm 6.1 EM algorithm [Dempster et al., 1977]

Input: An initial parameter estimate θ1 ∈ Xθ.
Output: A parameter estimate θ̂EM which is (close to) a local maximiser of the likelihood

function.

1: k ← 1.
2: while not converged do
3: E-step (expectation): Compute the Q-function,

Q(θ, θk) = Eθk [log fθ(Z, y) | Y = y] =

∫
log fθ(z, y)pθk(z | y)λ(dz).

4: M-step (maximisation): θk+1 = argmaxθ∈Xθ
Q(θ, θk).

5: k ← k + 1.
6: end while
7: θ̂EM = θk.

results regarding the EM algorithm. In practice, the algorithm is often run until either the
increase in the log-likelihood function value, or the difference between two consecutive
parameter estimates, is below some threshold. Also, it is common to specify a maximum
number of iterations beforehand.

Remark 6.2. We will in general express the M-step of the EM algorithm as a maximisation of the
Q-function. However, from (6.9b) we note that it is in fact enough to increase the value of the
Q-function to guarantee an increase in the likelihood function. Hence, the M-step can be replaced
by an approximate maximisation, and it is not that crucial that the next parameter iterate is close
to any true maximiser. However, it is clear that the accuracy of the maximisation can effect the
convergence of the algorithm. An EM algorithm with an approximate M-step is sometimes called
generalised EM.

6.1.3 Bayesian identification

An alternative view on probability bears the name of the British statistician and reverend
Thomas Bayes (1702–1761). The Bayesian probabilist uses the term probability to mea-
sure the degree of belief in some hypothesis, which is then said to be true with a certain
probability. Before we obtain any “measurements” regarding the validity of the hypoth-
esis, we believe that it is true with some a priori probability. After receiving new infor-
mation, we reevaluate our belief in the hypothesis, which gives rise to an a posteriori
probability that it is true. This is in contrast with the frequentistic view on probability, to
which e.g. Fisher’s concept of ML belongs, in which the probability of an event is seen as
the frequency of observing the event in a long-run experiment.

Bayes [1764]2 treated the problem of Bayesian inference, but only considered uniform
priors [Stiegler, 1982]. The ideas that we today refer to as Bayesian, were to a large extent
pioneered and popularised by the French mathematician Pierre-Simon Laplace (1749–

2Bayes’ essay was published after his death. The essay was found by Richard Price who edited and presented
the work. Interestingly enough, Price writes in his introductory remarks to the essay, that he believes that Bayes’
theorem helps to prove the existence of a deity [Bayes, 1764].
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1827). In a memoir, produced at the age of 25 and supposedly unaware of Bayes’ work,
Laplace [1774] discovered the more general form of “Bayes’ theorem”. Stiegler [1986]
writes the following about Laplace’s memoir:

“The influence of this memoir was immense. It was from here that ’Bayesian’

ideas first spread through the mathematical world, as Bayes’s own article

was ignored until 1780 and played no important role in scientific debate

until the 20th century. It was also this article of Laplace’s that introduced

the mathematical techniques for the asymptotic analysis of posterior distribu-

tions that are still employed today. And it was here that the earliest example

of optimum estimation can be found, the derivation and characterization of

an estimator that minimized a particular measure of posterior expected loss.

After more than two centuries, we mathematicians, statisticians cannot only

recognize our roots in this masterpiece of our science, we can still learn from

it.”

Today, the Bayesian ideas form a popular approach to statistical inference. See for in-
stance the book by Denison et al. [2002] for an overview of Bayesian methods in re-
gression and classification problems. The Bayesian approach to system identification is,
among others, discussed by Peterka [1981] and Ninness and Henriksen [2010]. Basically,
the main difference between a frequentistic and a Bayesian approach to inference, is that
in the latter all unknown quantities of the model are seen as random variables. Hence, for
the system identification problem, we assume that the parameter θ is a random variable,
distributed according to some known prior distribution πθ|0. This distribution summarises
our a priori knowledge about the parameter, i.e. what we know before we make any mea-
surements on the system. Such prior information is sometimes naturally available, e.g.
due to physical constraints or insight into the system dynamics based on experience. In
other cases, the prior can be completely artificial and introduced simply to enable the ap-
plication of Bayesian methods. In such cases, it is common to choose a prior which is
as uninformative as possible. After observing a measurement sequence Y1:T = y1:T , we
wish to find the posterior distribution of the parameters, defined by,

πθ|T (A) = P(θ ∈ A | Y1:T = y1:T ), (6.14)

and Bayes’ rule states that

πθ|T (dθ) ∝ pθ(y1:T )πθ|0(dθ). (6.15)

In contrast to the ML approach, in which we sought the point estimate (6.3) under which
the observations were as likely as possible, the objective in the Bayesian setting is thus
to find a complete probability distribution for the parameter. The posterior distribution
summarises everything we know about the parameter, based on the a priori knowledge and
the information available in the measurements. Once we have this distribution, we can ask
questions like; what is the probability that the parameter lies in a given interval? Hence, it
could be claimed that a Bayesian method provides a richer source of information, than for
instance ML. However, it should then be remembered that this “additional information” is
highly dependent on the prior distribution that we choose. Hence, if we choose the prior
poorly, the posterior distribution can be very misleading.
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6.2 RBMPF for identification

We shall now see that the RBMPF introduced in Section 3.4 can be a useful tool in solving
nonlinear identification problems in a Bayesian setting. We start by introducing a general
augmented state-space approach to recursive Bayesian identification. We then evaluate
the RBMPF on numerical data in a simulation study.

6.2.1 Augmented state-space approach to identification

As pointed out in the previous section, we can view the parameter θ as a random variable
with some prior distribution πθ|0. Equivalently, by letting Θ1 = θ and Θt+1 = Θt for
t ≥ 1, we can view it as a non-varying stochastic process. We can then rewrite the model
(6.1) under study as,

Xt+1 | {Xt = xt,Θt = θt} ∼ Qθt(dxt+1 | xt), (6.16a)

Θt+1 | {Θt = θt} ∼ δθt(dθt+1), (6.16b)

Yt | {Xt = xt,Θt = θt} ∼ Gθt(dyt | xt), (6.16c)

with initial distribution,

Θ1 ∼ πθ|0(dθ), (6.16d)

X1 | {Θ1 = θ1} ∼ νθ1(dx1). (6.16e)

Hence, we have reduced the parameterised model (6.1), to a non-parameterised SSM by
augmenting the state to include also the parameters. That is, the state process is taken
as {Xt,Θt}t≥1 on the augmented state-space X × Xθ. Clearly, Θt = θ for any t ≥ 1.
Consequently, this Bayesian parameter identification problem can be solved analogously
to the state inference problem. More precisely, the posterior parameter distribution is
available as a marginal of the filtering distribution,

πθ|T (dθ) =

∫

X

ΦT |T (dxT , dθ). (6.17)

Since the filtering problem is often solved sequentially, the above expression tells us that
the posterior parameter distribution can be computed sequentially as well. That is, to
obtain the posterior distribution (6.17) we do not need to process a batch of data y1:T
“all at once”. Instead, we can compute a sequence of posterior parameter distributions
πθ|t for t ≥ 1. This enables on-line parameter identification, in which the parameter
estimate is updated sequentially as more and more data becomes available. This is known
as recursive identification; see for instance [Ljung and Söderström, 1983].

Now, if the “original” SSM (6.1) is nonlinear, the same hold for (6.16) and we thus need
a nonlinear filter to address the identification problem. Here, the focus will be on SMC

methods. One option is then to use the particle filter (PF), discussed in Section 3.2. Un-
fortunately, due to the static evolution of the Θ-state, a direct application of the PF to
this specific problem is bound to fail. The reason is that the exploration of the parameter
space is restricted to the first time instant. Once the particles (in the parameter space) are
sampled at time t = 1, their positions are fixed. At consecutive time instants, the particles
will be reweighted and resampled, but not moved to new positions (see Remark 6.3 be-
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low). Another approach would be to marginalise out the Θ-state (assuming that this can
be done), by employing a Rao-Blackwellised particle filter (RBPF). However, as discussed
in Section 3.4, the RBPF will still suffer from degeneracy due to the static Θ-process. In
Section 3.4 we proposed the novel RBMPF, equipped with a mixing procedure for updating
the linear states, as a way to circumvent these problems with the RBPF. This will be our
approach also to the Bayesian identification problem considered in this section. In fact,
the RBMPF of Section 3.4 has been developed with SSMs such as (6.16) in mind.

Remark 6.3. An alternative approach to enable the application of the PF and RBPF to a static param-
eter SSM is to add some artificial dynamic evolution to the Θ-state, and hope that this has negligible
effect on the estimates. The artificial dynamics are often of random walk type, with a small and pos-
sibly decaying (over time) variance. This technique is sometimes called roughening or jittering. It
is employed by for instance Gordon et al. [1993], Kitagawa [1998] and Liu and West [2001], using
the PF. Similarly, Schön and Gustafsson [2003] use jittering noise in an RBPF setting. A related idea,
investigated by e.g. Stavropoulos and Titterington [2001] and Musso et al. [2001], is to use kernel
smoothing of the point-mass distributions arising in the PF.

For the RBMPF to be applicable, the SSM must be conditionally linear Gaussian (recall
Definition 2.3 on page 15). We will in particular consider the special case where the
kernelsQθ andGθ in (6.16), are Gaussian and have an affine dependence on the parameter
θ. This special case can thus be expressed as,

Xt+1 = f(Xt) +A(Xt)Θt + Vt, (6.18a)

Θt+1 = Θt, (6.18b)

Yt = h(Xt) + C(Xt)Θt + Et, (6.18c)

with

Vt ∼ N (0, Q(Xt)) , (6.18d)

Et ∼ N (0, R(Xt)) . (6.18e)

Furthermore, we assume that the prior parameter distribution (6.16d) is Gaussian and that
the initial distribution for the X-process (6.16e) is independent of θ. This model is mixed
linear/nonlinear Gaussian (and thus a CLGSS model) and we can apply the RBMPF of Algo-
rithm 3.4 to do simultaneous state and parameter inference (i.e. recursive identification)
in the model. This identification method will be evaluated in the coming section.

Remark 6.4. The model (6.18) is not the most general CLGSS model in the family of models defined
by (6.16). We could for instance allow either Q or G to be non-Gaussian, if they at the same time
are independent of θ. More generally, we could allow for a partitioning of the state Xt or the
measurement Yt into two parts, one Gaussian and parameter dependent and one non-Gaussian and
parameter independent. The reason for why we choose to work with the model (6.18) is, again, for
notational convenience.

6.2.2 Numerical results

In this section we evaluate the RBMPF method for recursive identification on simulated
data. We will consider two examples. First a simple LGSS system, included to gain con-
fidence in the proposed method. We then turn to a nonlinear, challenging identification
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problem.

The RBMPF will be compared with the RBPF, where the latter uses jittering noise as dis-
cussed in Remark 6.3. As suggested by Schön and Gustafsson [2003] and Gustafsson
and Hriljac [2003], we apply Gaussian jittering noise with decaying variance on both
states and parameters. That is, in the RBPF we modify the model (6.18) by adding jitter-
ing noises Jx

t and Jθ
t to the right hand sides of (6.18a) and (6.18b), respectively. These

artificial noise sources have variances that decay linearly over time, i.e.

Jx
t ∼ N

(
0, (σ2

x/t)Inx×nx

)
, (6.19a)

Jθ
t ∼ N

(
0, (σ2

θ/t)Inθ×nθ

)
. (6.19b)

Of course, the jittering noises are internal to the RBPF and are not used when simulating
data from the systems.

Example 6.1: RBMPF: 1st order LGSS system
Consider the following first order LGSS system with one unknown parameter,

Xt+1 = θXt + 0.3Ut + Vt, (6.20a)

Yt = Xt + Et. (6.20b)

Here, we have assumed that there exists a known input Ut to the system, which is a re-
alisation of a zero-mean, unit variance Gaussian white noise process. The input is added
to excite the system dynamics, making the parameter θ more easily identifiable. The
process noise Vt and the measurement noise Et are zero-mean Gaussian white noise pro-
cesses, with variances 0.1 and 1, respectively. The initial state of the system is zero-mean
Gaussian with variance 0.1.

The comparison was made by a Monte Carlo study over 100 realisations of input and
output data {u1:T , y1:T } from the system (6.20), each consisting of T = 1000 samples
(measurements). The true value of the parameter was set to θ⋆ = −0.8. Since the iden-
tification methods considered here are Bayesian, we model the parameter as a random
variable, Θ ∼ N (1, 3).

The bootstrap RBMPF and two versions of the bootstrap RBPF were run i parallel, all using
N = 200 particles. The first RBPF did not use any jittering noise and the second RBPF used
jittering noise according to (6.19) with σ2

x = σ2
θ = 0.1. Figure 6.1 illustrates the param-

eter estimates from the two RBPFs, over the 100 realisations of data. The corresponding
plot for the RBMPF is given in Figure 6.2. As expected, the RBPF without any jittering noise
is sensitive to particle degeneracy and several estimates converge to “erroneous” values.
This is circumvented by adding jittering noise, but as can be seen in Figure 6.1 this in-
troduces extra variance to the estimates. It is possible that the RBPF will perform better
if the jittering noise variance is tuned more carefully. However, to rely on an “optimal”
tuning of this parameter is not particularly satisfactory, since such tuning is hard to do in a
practical application. In this specific example, the RBMPF performs much better, as can be
seen in Figure 6.2. This is also confirmed by Table 6.1, where the Monte Carlo means and
standard deviations of the parameter estimates at time t = T = 1000 are summarised.
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Figure 6.1: Parameter estimates for the RBPFs without jittering noise (top) and with
jittering noise (bottom). The grey lines illustrate the estimates over the 100 realisa-
tions of data. The true parameter value is −0.8, indicated with a solid black line.
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Figure 6.2: Parameter estimates for the RBMPF. The grey lines illustrate the estimates
over the 100 realisations of data. The true parameter value is −0.8, indicated with a
solid black line.
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Table 6.1: Monte Carlo means and standard deviations

Method Mean Std. dev.

True value (θ⋆) −0.8 –
RBPF w/o jittering −0.749 0.148
RBPF w. jittering (variance 0.1/t) −0.746 0.089
RBMPF −0.792 0.026

We continue with a more challenging, nonlinear identification problem.

Example 6.2: RBMPF: 1st order nonlinear system
Consider the first order nonlinear system,

Xt+1 = aXt + b
Xt

1 +X2
t

+ c cos(1.2t) + Vt, (6.21a)

Yt = dX2
t + Et, (6.21b)

where the process noise is given by Vt ∼ N (0, 0.01), the measurement noise is given by
Et ∼ N (0, 0.1) and the initial state of the system is X1 ∼ δ0(dx1). The true parameters

are given by θ⋆ =
(
a b c d

)T
=
(
0.5 25 8 0.05

)T
. This system has been

studied e.g. by Andrade Netto et al. [1979] and Gordon et al. [1993] and has become
something of a benchmark example for nonlinear filtering. Schön et al. [2011] considers
the same system for nonlinear identification, but based on the ML approach using the EM

algorithm. They use the same parameter values as we do here, with the exception that
they let the process noise be identically zero. Another difference is that they parameterise
and estimate also the process and measurement noise variances3.

The evaluation was made by a Monte Carlo study over 100 realisations of data y1:T from
the system (6.21), each consisting of T = 200 samples (measurements). The parameters
were modeled as Gaussian random variables,

Θ1 ∼ N
(
θ̄1|0, diag

((
0.5 25 8 0.05

)T))
. (6.22)

Here, θ̄1|0 =
(
ā1|0 b̄1|0 c̄1|0 d̄1|0

)T
corresponds to the initial parameter estimate.

This vector was chosen randomly for each Monte Carlo simulation, so that each parameter
was uniformly distributed over the interval ±50 % from its true value.

The RBMPF and four versions of the RBPF were run i parallel, all using N = 500 particles.
The first RBPF did not use any jittering noise, whereas the remaining three versions used
jittering noise according to (6.19) with (σ2

x = σ2
θ = σ2), σ2 = 0.01, σ2 = 0.1 and

σ2 = 1, respectively. In all filters we use local linearisation of the measurement equation
for proposal construction (see Section 3.3.4).

Table 6.2 summarises the results from the different filters, in terms of the Monte Carlo
means and standard deviations for the parameter estimates extracted at the final time point

3The reason for this difference in parameterisation is that the RBMPF is applicable only if the model is
conditionally linear Gaussian in the parameters.
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t = T = 200. Based on these values, we conclude that jittering noise with σ2 = 0.1
provides the best tuning for the RBPF, among the values considered here. The results from
this filter over the 100 realisations of data, are given in Figure 6.3. A similar plot for the
RBMPF is provided in Figure 6.4. It should be noted that the plots are deliberately zoomed
in on the true parameter values, so that the estimates at the later time points are clearly
visible. At the beginning of the experiments (t ≤ 20 or so) there are a lot of fluctuations
in the estimates, not visible in these figures. It is clear that the jittering noise in the RBPF

introduces extra variance to the estimates and also that it slows down the convergence,
when compared to the RBMPF.

Table 6.2: Monte Carlo means and standard deviations

Method a (×10−1) b c d (×10−2)

True value (θ⋆) 5 25 8 5
RBPF (σ2 = 0) 4.98± 0.110 24.8± 3.27 7.96± 0.551 5.19± 0.918
RBPF (σ2 = 0.01) 4.95± 0.105 25.0± 2.29 7.99± 0.322 5.14± 0.476
RBPF (σ2 = 0.1) 4.86± 0.171 22.8± 1.32 7.62± 0.230 5.89± 0.393
RBPF (σ2 = 1) 4.68± 0.286 18.8± 1.11 6.28± 1.062 8.68± 0.791
RBMPF 5.00± 0.030 25.1± 0.80 8.03± 0.128 4.97± 0.220

However, what we have not mentioned so far is that filter divergence was experienced
during several identification experiments. By filter divergence, we mean that at some
time point, all unnormalised particle weights turned out to be numerically zero. This can
occur if the particle support does not provide a good representation of the true support
of the filtering distribution. That is, for some reason, the particles are located in the
“wrong” part of the state-space. If this occurs, the filter can not proceed. Instead, it was
terminated and discarded from the experiment. Hence, the results given in Table 6.2 and
in Figure 6.3 and 6.4 are based only on the non-diverged experiments. In Table 6.3 we
give the number of filter divergences that occurred during the 100 Monte Carlo runs4.

Table 6.3: Number of divergences over 100 experiments

Method Divergences

RBPF (σ2 = 0) 16
RBPF (σ2 = 0.01) 1
RBPF (σ2 = 0.1) 0
RBPF (σ2 = 1) 0
RBMPF 16

As can be seen, the RBMPF (and also the RBPF without jittering noise) got a lot of diver-
gences, whereas the RBPFs with jittering noise appear to be more robust. It is not that
surprising that jittering provides some robustification of the filter. By adding jittering

4Note that no divergences occurred during the experiments in Example 6.1



128 6 Nonlinear system identification

0.3

0.4

0.5

0.6

0.7

15

20

25

30

35

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200
0.01

0.03

0.05

0.07

0.09

Time (t)

Figure 6.3: Estimates of the parameters a, b, c and d (from top to bottom) for the
RBPF using jittering noise with σ2

x = σ2
θ = 0.1. The grey lines illustrate the estimates

over the different realisations of data. The true parameter values are shown as thick
black lines.
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Figure 6.4: Estimates of the parameters a, b, c and d (from top to bottom) for the
RBMPF. The grey lines illustrate the estimates over the different realisations of data.
The true parameter values are shown as thick black lines.
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noise, we basically say that we are not really confident in the estimates provided by the
filter. The effect of this is to make the variations in the weight function less pronounced,
and in particular to make the weight function decay more slowly toward zero. The RBMPF

lacks this type of robustification, which is likely to be one reason for the figures reported
in Table 6.3.

Clearly, the high number of divergences for the RBMPF is an unacceptable property of the
method, which is not yet fully understood. However, as we will discuss in Section 6.4.3,
the lack of robustness is potentially a general problem, common to many particle based
identification methods. Hence, the problems experienced here might not be related di-
rectly to the RBMPF approach, but rather to the fact that the RBMPF is a particle based
identification method. We continue this discussion in Section 6.4.3, where we also sug-
gest some possible approaches to robustify the method.

6.3 RBPS-EM

We will now turn our attention to identification of mixed linear/nonlinear Gaussian state-
space models using the EM algorithm. A central component in computing approximations
of the Q-function is the RBPS derived in Section 5.3. Hence, the resulting identification
algorithm will be referred to as RBPS-EM. The material presented in this section is based
on work by Lindsten and Schön [2010].

6.3.1 The RBPS-EM identification method

We assume that we are given a (fully dominated) mixed linear/nonlinear Gaussian state-
space model according to (2.9) on page 16, parameterised by θ ∈ Xθ. All components of
the model (i.e. the transition and measurement functions, the noise covariances and the
initial distributions) may depend on the parameter. In the compact notation introduced in
(2.12), we can thus express the model as,

Xt+1 = fθ(Ξt) +Aθ(Ξt)Zt + Vt, (6.23a)

Yt = hθ(Ξt) + Cθ(Ξt)Zt + Et, (6.23b)

where Xt =
[
ΞT
t ZT

t

]T
. The process noise and the measurement noise are given by,

Vt ∼ N (0, Qθ(Ξt)) , (6.23c)

Et ∼ N (0, Rθ(Ξt)) , (6.23d)

respectively. The initial distribution of the process is defined by Ξ1 ∼ pθ(ξ1) and

Z1 | {Ξ1 = ξ1} ∼ N
(
z̄θ,1|0(ξ1), Pθ,1|0(ξ1)

)
. (6.23e)

We take the ML approach, as discussed in Section 6.1.1, and employ the EM algorithm (see
Section 6.1.2). The first design choice that we need to make is to define the latent variables.
As pointed out in Section 6.1.2, these should consist of the missing, or unobserved, data
of the model. For an SSM, a natural choice is thus to let the latent variables be given by
the (unobserved) state process X1:T .
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Recall from (6.8) that the Q-function is defined as the conditional expectation of the
complete data, log-likelihood,

Q(θ, θ′) = Eθ′ [log pθ(X1:T , y1:T ) | Y1:T = y1:T ]

=

∫
log pθ(x1:T , y1:T )pθ′(x1:T | y1:T ) dx1:T . (6.24)

Hence, the Q-function is given by an expectation under the joint smoothing distribution.
However, due to the special structure of an SSM, the complete data log-likelihood can be
expanded according to,

log pθ(x1:T , y1:T ) = log pθ(x1:T ) + log pθ(y1:T | x1:T )

= log pθ(x1) +
T−1∑

t=1

log pθ(xt+1 | xt) +
T∑

t=1

log pθ(yt | xt). (6.25)

This suggests that we can decompose the Q-function as,

Q(θ, θ′) = I1(θ, θ
′) + I2(θ, θ

′) + I3(θ, θ
′), (6.26)

where we have defined,

I1(θ, θ
′) , Eθ′ [log pθ(X1) | Y1:T = y1:T ] , (6.27a)

I2(θ, θ
′) ,

T−1∑

t=1

Eθ′ [log pθ(Xt+1 | Xt) | Y1:T = y1:T ] , (6.27b)

I3(θ, θ
′) ,

T∑

t=1

Eθ′ [log pθ(yt | Xt) | Y1:T = y1:T ] . (6.27c)

Hence, we only need to compute expectations under the marginal smoothing distribution
(for I1 and I3) and the 2-step, fixed-interval smoothing distribution (for I2).

However, before we turn to the actual computation of these expectations, we note that the
expressions (6.27) can be expanded even further. This is enabled by the fact that both
the transition and the measurement density functions are Gaussian. To avoid a repeated
and notationally cumbersome presentation, we shall restrict ourselves to one of the terms
above, namely I2 defined in (6.27b). The terms I1 and I3 follow analogously.

Using the relationship xTMx = tr(MxxT), the transition density function can be ex-
pressed as,

−2 log pθ(xt+1|xt) = −2 log pV,θ (xt+1 − f(ξt)−A(ξt)zt)
∼= log detQ(ξt) + tr

(
Q(ξt)

−1ℓ2(ξt:t+1, zt:t+1)
)
, (6.28a)

where

ℓ2(ξt:t+1, zt:t+1) , (xt+1 − f(ξt)−A(ξt)zt) (xt+1 − f(ξt)−A(ξt)zt)T , (6.28b)

and ∼= means equality up to an additive constant, independent of the parameters θ. For
notational convenience we have dropped the dependence on θ from the right hand side,
but remember that f , A, Q, h, C, R, z̄1|0, P1|0 and p(ξ1) may in fact be θ-dependent.
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Inserting this into (6.27b) results in,

I2(θ, θ
′) ∼= −1

2

T−1∑

t=1

Eθ′

[
log detQ(Ξt) + tr

(
Q(Ξt)

−1ℓ2(Xt:t+1)
)
| Y1:T = y1:T

]
.

(6.29)

The expectations under the 2-step fixed-interval smoothing distribution, involved in the
expression above, are in general intractable. Hence, to proceed from here, we make use
of the RBPS approximation (5.47) on page 106. This provides an approximation of (6.29)
according to,

Î2(θ, θ
′) = − 1

2M

T−1∑

t=1

M∑

j=1

(
log detQ(ξ̃jt ) + tr

(
Q(ξ̃jt )

−1ℓ̂j2,t

))
, (6.30)

where

ℓ̂j2,t , Eθ′

[
ℓ2(ξ̃

j
t:t+1, Zt:t+1)

∣∣∣ Ξ1:T = ξ̃j1:T , Y1:T = y1:T

]
. (6.31)

Observe that the expectation here is taken only over the (approximately) Gaussian Z-
variables, conditioned on the nonlinear Ξ-variables. The nontrivial parts of the conditional
expectation above are the terms,

Eθ′ [ZtZ
T

t | Ξ1:T = ξ̃j1:T , Y1:T = y1:T ] = z̃jt|T z̃
j T
t|T + P̃ j

t|T , (6.32a)

Eθ′ [ZtZ
T

t+1 | Ξ1:T = ξ̃j1:T , Y1:T = y1:T ] = z̃jt|T z̃
j T
t+1|T +M j

t|T , (6.32b)

where z̃jt|T , P̃ j
t|T and M j

t|T are given in (5.45) on page 106. Analogously, we obtain
approximations of I1 and I3, according to,

Î1(θ, θ
′) = − 1

2M

M∑

j=1

(
log detP1|0(ξ̃

j
1) + tr

(
P1|0(ξ̃

j
1)

−1ℓ̂j1

)
− 2 log p(ξ̃j1)

)
, (6.33a)

Î3(θ, θ
′) = − 1

2M

T∑

t=1

M∑

j=1

(
log detR(ξ̃jt ) + tr

(
R(ξ̃jt )

−1ℓ̂j3,t

))
, (6.33b)

where,

ℓ̂j1 , Eθ′

[
ℓ1(ξ̃

j
1, Z1)

∣∣∣ Ξ1:T = ξ̃j1:T , Y1:T = y1:T

]
, (6.34a)

ℓ̂j3,t , Eθ′

[
ℓ3(ξ̃

j
t , Zt)

∣∣∣ Ξ1:T = ξ̃j1:T , Y1:T = y1:T

]
, (6.34b)

ℓ1(ξ1, z1) ,
(
z1 − z̄1|0(ξ1)

) (
z1 − z̄1|0(ξ1)

)T
, (6.34c)

ℓ3(ξt, zt) , (yt − h(ξt)− C(ξt)zt) (yt − h(ξt)− C(ξt)zt)T . (6.34d)

Putting the pieces together we obtain an RBPS based approximation of the Q-function,
given by,

Q̂(θ, θ′) = Î1(θ, θ
′) + Î2(θ, θ

′) + Î3(θ, θ
′) ≈ Q(θ, θ′) + const. (6.35)

By replacing theQ-function in the EM algorithm with this approximation, we end up with
the RBPS-EM identification method, summarised in Algorithm 6.2.
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Algorithm 6.2 RBPS-EM [Lindsten and Schön, 2010]

Input: A measurement sequence y1:T , a parameterised model in the form (6.23), an
initial parameter estimate θ1 ∈ Xθ and some termination criterion.

Output: A parameter estimate θ̂RBPS-EM.

1: k ← 1.
2: while not converged do
3: Parameterise the model (6.23) using the current parameter estimate θk.
4: Smoothing: Run the RB-FFBSi (Algorithm 5.7) and store the backward trajec-

tories {ξ̃j1:T }Mj=1 and the corresponding sufficient statistics for the linear states

{z̃jt|T , P̃
j
t|T ,M

j
t|T }Mj=1 for t = 1, . . . , T (M j

t|T only for t < T ).
5: Approximate the Q-function: Let,

Q̂(θ, θk) = Î1(θ, θk) + Î2(θ, θk) + Î3(θ, θk),

where Î1, Î2 and Î3 are given by (6.33a), (6.30) and (6.33b), respectively.
6: Maximisation: Set,

θk+1 = argmax
θ∈Xθ

Q̂(θ, θk)
7: k ← k + 1.
8: end while
9: θ̂RBPS-EM = θk.

6.3.2 Numerical results

In this section we will evaluate the RBPS-EM identification method on simulated data. Two
different examples will be presented, first with a linear Gaussian system and thereafter
with a mixed linear/nonlinear Gaussian system. The example systems can be recognised
from the evaluation of the RB-FFBSi presented in Section 5.3.5. However, here we have
parameterised the systems with supposedly unknown parameters.

As before, the purpose of including a linear Gaussian example is to gain confidence in
the proposed method. For this case, there are closed form solutions available for all the
involved calculations (see [Gibson and Ninness, 2005] for all the details in a very similar
setting). The smoothing densities can for this case be explicitly calculated using the RTS

recursions [Rauch et al., 1965]. The resulting identification method, combining the RTS

smoother with the EM algorithm, will be denoted RTS-EM.

For both the linear and nonlinear examples, we can clearly also address the estimation
problem using standard PS based methods, as is done by Schön et al. [2011]. More pre-
cisely, we use the Fast FFBSi by Douc et al. [2010] (see Section 5.2) for computing the
expectations in the EM algorithm. This approach will be denoted PS-EM. Finally, we have
the option to employ the proposed RBPS-EM method presented in Algorithm 6.2.

For all methods, the maximisation of the Q̂-function (i.e. the M-step of the algorithm) is
performed using a BFGS quasi-Newton method, see e.g. [Nocedal and Wright, 2000, Chap-
ter 6]. The gradients of the cost function are approximated using finite differences. Note
that we do not need to solve the optimisation problem in the M-step, just find a parameter
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value which increases the value of the Q̂-function (see Remark 6.2 on page 120)5.

Example 6.3: RBPS-EM: 2nd order LGSS system
Consider the linear, second order system with a single unknown parameter θ given by,

(
Ξt+1

Zt+1

)
=

(
0.8 θ
0 1

)(
Ξt

Zt

)
+ Vt, Vt ∼ N (0, Q), (6.36a)

Yt = Ξt + Et, Et ∼ N (0, R), (6.36b)

with Q = 0.01I2×2 and R = 0.1. The initial state of the system is Gaussian according to
(
Ξ1

Z1

)
∼ N

((
0
5

)
,

(
10−6 0
0 10−6

))
. (6.37)

In RBPS-EM, the first state Ξt is treated as if it is nonlinear, whereas the second state Zt is
treated as linear.

The comparison was made by a Monte Carlo study over 100 realisations of data y1:T from
the system (6.36), each consisting of T = 200 samples (measurements). The true value
of the parameter was set to θ⋆ = 0.1. The three identification methods, RTS-EM, PS-EM

and RBPS-EM were run in parallel for 200 iterations of the EM algorithm. The smoothers
used the same settings as in Example 5.2. In particular, the particle methods all used
N = M = 50 particles/backward trajectories. The initial parameter estimate θ1 was set
to 0.2 in all experiments.

Table 6.4 gives the Monte Carlo means and standard deviations for the parameter esti-
mates.

Table 6.4: Monte Carlo means and standard deviations

Method Mean (×10−2) Std. dev. (×10−2)

RTS-EM [Gibson and Ninness, 2005] 10.01 0.61
PS-EM [Schön et al., 2011] 10.04 1.59
RBPS-EM [Lindsten and Schön, 2011] 10.03 0.63

On average, all methods converge to values very close to the true parameter value 0.1.
The major difference is in the standard deviations of the estimated parameter. For RTS-EM

and RBPS-EM, the standard deviations are basically identical, whereas for PS-EM it is more
than twice as high. This is in agreement with the results in Example 5.2. There we saw
that for this specific example, the RB-FFBSi and the RTS smoother had similar performance,
both superior to the FFBSi.

We continue with an example with a mixed linear/nonlinear Gaussian system, similar to
the one considered in Example 5.3. Since the system is nonlinear, RTS-EM is not applicable.
We thus make the comparison only between PS-EM and RBPS-EM.

5For the linear model in Example 6.3 we could have solved the optimisation problem in the M-step analyti-
cally, but for simplicity we employed a numerical optimisation routine for this example as well. The effects of
this on the results should be negligible.



134 6 Nonlinear system identification

Example 6.4: RBPS-EM: 4th order mixed linear/nonlinear Gaussian system
Consider the fourth order mixed linear/nonlinear Gaussian system, where three of the
states are conditionally linear Gaussian, given by,

Ξt+1 = arctanΞt +
(
a 0 0

)
Zt + V ξ

t , (6.38a)

Zt+1 =



1 0.3 0
0 b cos(c) −b sin(c)
0 b sin(c) b cos(c)


Zt + V z

t , (6.38b)

Yt =

(
0.1Ξ2

t sign(Ξt)
0

)
+

(
0 0 0
1 −1 1

)
Zt + Et, (6.38c)

with Vt =
[
V ξ
t (V z

t )
T
]T ∼ N (0, Q), Q = 0.01I4×4 and Et ∼ N(0, R), R = 0.1I2×2.

The initial distribution for the system is X1 ∼ δ0(dx1). The system is parameterised

by θ =
(
a b c

)T
and the true parameter vector is θ⋆ =

(
1 0.968 0.315

)T
. The

Z-system is oscillatory and marginally stable, with poles in 1 and 0.92± 0.3i. The linear
Z-variables are connected to the nonlinear Ξ-system through Z1,t.

First, we assume that the Z-system is known, i.e. we are only concerned with finding
the parameter a connecting the two systems. Again, we consider a Monte Carlo study
with 100 realisations of data y1:T , each consisting of T = 200 samples. The parameter
a was thereafter identified by running RBPS-EM and PS-EM in parallel for 500 iterations.
Both methods used N = M = 50 particles/backward trajectories. The initial parameter
estimate was chosen randomly from a uniform distribution over the interval [0, 2] for each
simulation.

As for the RBMPF experiments (see Section 6.2.2) we again encountered divergences of the
identification procedures. By a divergence we mean that one of the particle methods used
in the identification, at some stage ran into numerical problems caused by the particle
weights being all numerically zero. If this occurred, the method was terminated and
the result discarded from the experiment. Hence, only the results from the non-diverged
experiments are reported below. For the 100 realisations of data, PS-EM got 19 divergences
and RBPS-EM got 3 divergences. We discuss this issue further in Section 6.4.3.

Figure 6.5 illustrates the convergence of the parameter estimates for the two methods.
For RBPS-EM, the Monte Carlo mean and the standard deviation of the final parameter
estimate was âRBPS-EM

500 = 0.996±0.066. For PS-EM the corresponding figures were âPS-EM
500 =

1.05± 0.145. Also in this example, the parameter variance is much higher for PS-EM than
for RBPS-EM, which is obvious from Figure 6.5 as well.

Now, let us assume that all the parameters θ =
(
a b c

)T
are unknown. Once again,

PS-EM and RBPS-EM were run in parallel on 100 realisations of data y1:T with T = 200. To
ensure that the algorithms had time to converge, we increased the number of iterations in
the EM algorithm to 1000. Also, since we expect the problem to be more challenging, we
increased the number of particles and simulated backward trajectories to N = M = 200
for both methods. Apart from this, all the settings were as before. The parameters were
initialised randomly from uniform distributions, a in the interval [0, 2], b in the interval
[0, 1] and c in the interval [0, π/2] (i.e. the poles of the Z-system were initiated randomly
in the first and the fourth quadrants of the unit circle in the complex plane).
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Figure 6.5: Estimates of the parameter a as functions of iteration number k for PS-

EM (left) and RBPS-EM (right). Each grey line corresponds to one realisation of data.
The true parameter value is a⋆ = 1, indicated with a thick black line.

As before, we encountered divergences due to numerical problems in the particle methods.
For the 100 realisations of data, PS-EM had 33 divergences and RBPS-EM had 6 divergences.
In the results reported below, only the non-diverged experiments are used.

Figure 6.6 and Figure 6.7 illustrate the convergence of the parameter estimates for PS-

EM and for RBPS-EM, respectively. We notice a couple of interesting facts about these
results. First, if we consider the results from RBPS-EM in Figure 6.7, the method seems
to be very slow to converge for some data realisations. The estimates (in particular for
parameter c) lingers for hundreds of iterations of the EM algorithm, before rapidly moving
into the “correct” area. This property is not experienced for PS-EM, illustrated in Figure 6.6.
However, to further investigate this peculiarity we have used two different line styles
when plotting the estimates for RBPS-EM in Figure 6.7. The solid lines correspond to data
realisations for which both RBPS-EM and PS-EM did not diverge. The dashed lines, on
the other hand, correspond to data realisations for which PS-EM (but clearly not RBPS-EM)
diverged. Hence, for these experiments we did not get any estimates at all for PS-EM. As
can be seen in the figure, the experiments that are slow to converge all correspond to data
realisations for which PS-EM encountered numerical problems leading to a divergence.
Hence, it seems as if the convergence speed for any fixed data realisation, is related to the
tendency of running into numerical problems. This property requires further investigation
and is left as future work.

A second interesting fact which can be seen in the figures is related to the variances of
the parameter estimates. For any single experiment, it is clear that the MC variance for
RBPS-EM is lower than for PS-EM, i.e. there are less “fluctuations” in the parameter esti-
mates for any single data realisation (corresponding to a single grey line in the figures).
However, when considering the “total” variance of the parameter estimates over the 100
experiments, they are pretty much the same. This is confirmed by the results given in
Table 6.5, where the Monte Carlo means and standard deviations of the final parameter
estimates (at k = 1000) over the different data realisations are given. This result can be
understood by noting that there are different sources of variance for the randomised esti-
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Figure 6.6: Estimates of the parameters a, b and c (from top to bottom) for PS-EM,
plotted versus the iteration number k. The grey lines illustrate the estimates over the
different realisations of data. The true parameter values are shown as thick black
lines.
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Figure 6.7: Estimates of the parameters a, b and c (from top to bottom) for RBPS-EM,
plotted versus the iteration number k. The grey lines illustrate the estimates over the
different realisations of data (see the text for details). The true parameter values are
shown as thick black lines.
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Figure 6.8: Block diagram of a fairly general class of Wiener systems.

mators generated by PS-EM and RBPS-EM. The particle methods that are used will introduce
some MC variance, but there is also variance originating from the randomness in the data.
Only the first of these variances can be reduced by using RBPS-EM instead of PS-EM. In the
experiments leading up to the results reported in Figure 6.5, we used very few particles
(N = M = 50). Consequently, the MC variance was quite high and we gained a lot from
using RBPS-EM in place of PS-EM. For the results given in Table 6.5 we used more particles
(N = M = 200), which reduced the MC variance and made the difference between the
two methods less pronounced. We discuss this further in Section 6.4.1.

Table 6.5: Monte Carlo means and standard deviations

Method a b c

True value (θ⋆) 1 0.968 0.315
PS-EM 0.995± 0.0702 0.960± 0.0168 0.315± 0.0170
RBPS-EM 0.991± 0.0578 0.963± 0.0153 0.315± 0.0165

6.3.3 Wiener system identification

We will now discuss one potential application of the RBPS-EM identification method given
in the previous section, namely identification of Wiener systems6. The material of the
present section can be put in the category of “future work”. Hence, we will throughout
this section pose a set of questions, rather than trying to provide any answers to them.

A Wiener system is a linear dynamical system with a static, nonlinear transformation of
the output. A fairly general class of Wiener systems is given by the block diagram shown
in Figure 6.8. Here, ut is an input signal to the linear system G, Vt is a process noise
which is colored by the linear systemH, fθ is a static nonlinearity and Yt is the measured
output. The process noise Vt and the measurement noise Et are assumed to be mutually
independent Gaussian white noise processes.

Wiener models are used in a range of different practical applications, such as process
industry [Norquay et al., 1999] and biology [Hunter and Korenberg, 1986]. Consequently,

6The idea presented in this section can straightforwardly be applied also for Hammerstein-Wiener system,
i.e. with static nonlinearities on both input and output.
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Figure 6.9: Block diagram of a class of Wiener systems with no deterministic input.

there is an extensive literature on identification of Wiener systems, see e.g. the work by
Wigren [1993], Westwick and Verhaegen [1996], Hagenblad et al. [2008] and Wills and
Ljung [2010].

To simplify the presentation, we will again assume that no deterministic input is present,
and consider a reduced class of Wiener systems illustrated in Figure 6.9. Based on obser-
vations Y1:T = y1:T we now seek to estimate the linear system H and also the nonlinear
mapping fθ, which we assume is parameterised by θ ∈ Xθ. This problem is sometimes
referred to as the blind identification problem (see e.g. [Abed-Meraim et al., 1997]), since
we only measure the output from the system.

Wills et al. [2011] considers this problem, using a fully parameterised SSM for the linear
block H and a PS-EM identification method. However, due to the structure that is present
in the problem, it is also possible to employ the RBPS-EM method. This can be seen by
writing the linear block H on observer canonical form, which is always possible if the
system is observable. Hence, the Wiener system can be modelled as,

Xt+1 =




−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−anx−1 0 0 · · · 1
−anx

0 0 · · · 0



Xt +




b1
b2
...

bnx−1

bnx



Vt, (6.39a)

St =
(
1 0 · · · 0

)
Xt, (6.39b)

Yt = fθ(St) + Et, (6.39c)

where {Xt}t≥1 is the state process for the linear system H. Now, due to the structure of
(6.39b) we see that only the first state X1,t enters the static nonlinearity. Hence, if we
define,

Ξt = X1,t, (6.40a)

Zt =
(
X2,t · · · Xnx,t

)T
, (6.40b)

the model (6.39) can be recognised as being mixed linear/nonlinear Gaussian.

Guided by (6.39) we may also consider an alternative parameterisation of the Wiener



6.3 RBPS-EM 139

model according to,

Xt+1 = AXt + V ′
t , (6.41a)

St =
(
1 0 · · · 0

)
Xt, (6.41b)

Yt = fθ(St) + Et, (6.41c)

with

V ′
t ∼ N (0, Q′), (6.41d)

Et ∼ N (0, R). (6.41e)

Hence, we consider a fully parameterised dynamic equation (the matrices A ∈ R
nx×nx

and Q′ ∈ S+(nx) are fully parameterised), but we keep the structure given by (6.41b).
That is, the “C-matrix” of the linear block is fixed to keep the mixed linear/nonlinear
structure. Clearly, (6.41) contains (6.39) as a special case, and is thus general enough to
contain any observable system of order nx.

One reason for why the parameterisation (6.41) might be preferable over (6.39) is to ob-
tain a faster convergence of the identification procedure. In empirical studies, it has been
experienced that the EM algorithm converges more slowly if more structure is introduced
in the parameterisation of the model. Hence, if the same data is used to identify two
different models using the parameterisations (6.39) and (6.41), respectively, the method
using (6.41) tends to converge faster. This difference in convergence speed has been ex-
perienced even though the two methods converge basically to the same linear model, only
with different state realisations. The reason for why the convergence speed is influenced
by the parameterisation in this way is not fully understood, and it is a topic which requires
further attention.

Furthermore, there is another major difference between the parameterisations (6.39) and
(6.41). In the latter, we parameterise the process noise covariance Q′ as an arbitrary
nonnegative definite matrix. If we further assume that this matrix is full rank, then the
model (6.41) is fully dominated. This is not the case for the model given by (6.39). More
precisely, let the (scalar) process noise Vt in (6.39a) be given by Vt ∼ N (0, q). Then,
with

B =
(
b1 · · · bnx

)T
, (6.42)

if follows that the additive noise term in (6.39a) is given by BVt ∼ N (0, qBBT), where
the covariance matrix Q = qBBT is clearly of rank one. Due to this, the model is not
fully dominated and we will therefore encounter problems when applying an FFBSm or an
FFBSi particle smoother (see Chapter 5).

To get some intuition for why this will be problematic, assume that a PF has been applied
to a linear system with a singular process noise covariance. Assume further that we apply
an FFBSi smoother to simulate “smoothing trajectories” backward in time. At time t + 1
we have obtained a backward trajectory x̃t+1:T and wish to append a sample from time t.
In the FFBSi we would then draw a sample from the set of forward filter particles {xit}Ni=1

with probabilities given by the smoothing weights {w̃i
t|T }Ni=1; see (5.10) and (5.11) on

page 92. However, if the process noise covariance is singular, it can be realised that all
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but one of these probabilities almost surely will be zero. The reason for this is that for
a given xit, the transition kernel Q(dxt+1 | xit) will put all “probability mass” on a (low-
dimensional) subspace. The probability that x̃t+1 lies in this subspace is zero, unless x̃t+1

in fact was generated conditioned on xit in the forward filtering pass. The effect of this
is that any smoothing trajectory that is sampled in the backward simulation will almost
surely be identical to one of the particle trajectories generated by the forward filter. Hence,
we do not gain anything by applying an FFBSi (or an FFBSm). This too, i.e. how particle
methods can be used to address the smoothing problem in this type of degenerated models,
is a problem which requires further attention.

Finally, we mention another peculiarity which arises when working with particle methods
in models with singular process noise. Assume that we apply an RBPF to the model (6.39),
using a state partitioning according to (6.40). Assume further that the initial linear state
Z1 is known, meaning that the covariance function P1|0 in (2.11) on page 17 is identically
zero. It is then easy to verify that the covariance function for the linear state Pt|t−1 will
remain zero for any t ≥ 1, given that the process noise covarianceQ is of rank one. Hence,
for such models, the RBPF reduces to a standard PF, and the two methods will result in
identical estimates regardless of the dimension of the system. What implications this has
for the possible benefits from using Rao-Blackwellisation in Wiener system identification,
is also a topic for future work.

6.4 Discussion

We conclude this chapter on particle based, nonlinear system identification by comment-
ing on some of the encountered properties and peculiarities of the identification methods.

6.4.1 RBPS-EM variance reduction

The basic motivation for using the RBPS-EM identification method instead of PS-EM, is
to reduce the variance of the parameter estimates. The intuition behind the method is as
follows. The particle based smoothers give rise to some MC variance in the state estimates.
This variance is, in some way, propagated through the EM algorithm, introducing an MC

variance to the (randomised) estimators defined by the algorithm. Assume that, by using
the RBPS instead of the PS, we manage to reduce the MC variance of the state estimates (cf.
the variance reduction of the RBPF discussed in Chapter 4). Then, this should have the
effect of reducing the MC variance of the parameter estimates as well.

However, we must remember that if we do not fix the measurement sequence, the ML es-
timator (6.3) is in it self a random variable (which in most cases has a nonzero variance).
Hence, the variance of the parameter estimates generated by the EM algorithm will typ-
ically be nonzero, even if we solve the smoothing problem exactly (cf. Example 6.3 in
which the RTS smoother is exact). Informally, we can thus divide the variance of an esti-
mator generated by a particle based EM algorithm into two parts, one originating from the
variations in the data and one coming from the MC nature of the particle method. It is only
the latter part, i.e. the MC variance, that we can hope to reduce by using RBPS-EM instead
of PS-EM. How large the MC variance is compared to the variance of the ML estimator, is
likely to be strongly problem dependent. Consequently, this should be the case also for
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the potential benefits of using RBPS-EM instead of PS-EM.

6.4.2 RBMPF vs. RBPS-EM

In this chapter we have discussed two different methods for nonlinear system identifica-
tion. We have chosen not to compare the methods with each other, and the reason for this
is that they have quite different properties. In this section we make a short summary of
these properties, to serve as a guideline for how and when the two methods are applicable.

Type of identification

The two methods use different identification criteria. RBMPF is a Bayesian method in
which the parameters are modelled as Gaussian random variables. Consequently, we
also need to specify some prior (Gaussian) distribution for the parameters. The RBPS-EM

method, on the other hand, is based on an ML criterion. Furthermore, the RBMPF is a
recursive identification procedure, whereas RBPS-EM is a batch method.

Type of models

The RBMPF is designed for identification of (typically) nonlinear systems with an affine
parameter dependence. The state process or the measurement process is allowed to be non-
Gaussian, if it at the same time is parameter independent (see Remark 6.4 on page 123).
The RBPS-EM method is developed for identification of mixed linear/nonlinear Gaussian
state-space models (or more generally CLGSS models), and the parameter dependence can
be quite arbitrary. However, if there is a “complicated” nonlinear parameter dependence
in the model, the M-step of the algorithm will become more challenging.

Computational complexity

One of the main drawbacks with the RBMPF is that its computational complexity is quadratic
in the number of particles, i.e. the complexity is of order O(N2T ). In Section 3.4.3 we
discussed some potential ways in which this complexity can be reduced. When it comes
to RBPS-EM, by using the fast backward simulation technique in the RB-FFBSi (see Algo-
rithm 5.6), the complexity of a single smoothing pass is (roughly) O(NT ). However,
since RBPS-EM is an iterative method, the total computational complexity of an identi-
fication experiment is O(KNT ), where K is the total number of iterations in the EM

algorithm. Consequently, RBPS-EM is also a rather slow method. It would be interesting
to investigate possible speedups of the method, to increase its practical applicability.

6.4.3 Robustness of particle based identification methods

In Section 6.2.2 and Section 6.3.2 we saw that both the RBMPF and the RBPS-EM method
were non-robust to variations in the simulated data. The effect of this was that the particle
weights, at some stage of the algorithm, all turned out to be numerically zero. When this
occurred the method could not proceed and we got a “divergence”.

This “robustness issue” is potentially a general problem, common to many particle based
identification methods. In this section we will discuss the issue further, hopefully pro-
viding some insight into the problem. We will also propose some possible directions for
future work, with the incentive of developing robust, particle based identification meth-
ods.
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We start with an example regarding ML parameter estimation in a nonlinear system.

Example 6.5: Non-robust likelihood computation
Let us consider the nonlinear system (6.21) once again. Assume that the parameters a, b
and c are known, i.e. the only unknown parameter of the system which we wish to estimate
is d. We take a ML approach and use a grid based optimisation method to maximise the
log-likelihood function. That is, we grid the parameter space over the interval [0.01, 0.1]
using 19 equally spaced grid points (recall that the true parameter value is 0.05). We then
compute an estimate of the log-likelihood function value at each grid point. To enable
this we observe that the log-likelihood function can be written as,

log pθ(y1:T ) =

T∑

t=1

log pθ(yt | y1:t−1), (6.43a)

where

pθ(yt | y1:t−1) =

∫
pθ(yt | xt)pθ(xt | y1:t−1) dxt. (6.43b)

To estimate the quantities (6.43b) we employ a bootstrap PF. Hence, for each t = 1, . . . , T
we generate an equally weighted particle system {xit, 1/N}Ni=1 targeting the 1-step pre-
dictive density pθ(xt | y1:t−1) (this particle system is obtained after resampling and mu-
tation, but before the samples are weighted using the measurement density function). By
plugging the empirical distribution defined by this particle system into (6.43b), we get an
approximation according to,

pθ(yt | y1:t−1) ≈
1

N

N∑

i=1

pθ(yt | xit) =
1

N

N∑

i=1

w′ i
t . (6.44)

Hence, the quantity pθ(yt | y1:t−1) can be approximated by the sum of the unnormalised
particle weights at time t.

Now, if the likelihood function in some part of the parameter space is close to zero, we
thus expect that this is the case also for the unnormalised importance weight. When
computing these weights in the PF we may, due to the randomness of the method and the
insufficiency of the numerical precision, find that they turn out to be all equal to zero. If
this occurs, it is not possible to proceed and the filter is terminated.

In Figure 6.10 we plot the estimated log-likelihood function value over the grid in the pa-
rameter space. UsingN = 100 particles, we were only able to estimate the log-likelihood
function over the interval 0.015 ≤ d ≤ 0.06. Outside of this interval (the grey area in
the figure), the PF was terminated prematurely since the unnormalised weight sum turned
out to be numerically zero. No estimate of the log-likelihood function value was thus
obtained for the grid points in the grey area. If we increase the number of particles to
N = 1000, we are able to estimate the log-likelihood function over a larger interval in the
parameter space without running into numerical problems, but still not for all grid points.

Many identification methods, e.g. the RBMPF and the RBPS-EM presented in this thesis,
use some initialisation of the parameters, from which the estimates are updated iteratively.
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Figure 6.10: Estimated log-likelihood function over a grid of parameter values using
two PFs with N = 100 particles (solid-dotted line) and N = 1000 particles (dashed
line), respectively. The grey area shows the region in which the PF using N = 100
particles encountered numerical problems in the weight evaluation.

Now, assume that the parameters are initialised to values for which the log-likelihood func-
tion is small. Based on the above example, we are then likely to experience a “divergence”
of the identification method. In the example we considered ML estimation. However, the
effect of “being located” in a part of the parameter space where the likelihood function
is close to zero, should reasonably be the same for other approaches as well, such as the
Bayesian RBMPF. Furthermore, we note that these robustness issues should be even worse
if the likelihood function is “peaky” around a certain value. This property is otherwise
something that is desirable, since it generally implies that the variance of the parameter
estimates will be low.

Informally, to get around these robustness issues, we would like to find a way of moving
from the “bad” areas of the parameter space into a “good” area, without encountering
numerical problems on the way. Let us consider the identification problem of Example 6.5
again. In this example, the measurement noise was zero-mean Gaussian with variance
0.1. Hence, when computing the unnormalised weights in (6.44), we evaluate a Gaussian
density at N points. Now, due to the exponential decay of the Gaussian density, if all
these points are far from the mean, the unnormalised weights are likely to turn out to be
numerically zero. One idea to circumvent this problem, is to replace the Gaussian density
in the weight evaluation with some other, similar function which decays more slowly.
This will in effect mean that we model the measurement noise using some non-Gaussian
distribution. This approach is illustrated in the example below.

Example 6.6: Robust likelihood computation
Consider the identification experiment in Example 6.5 again. The measurement noise is
known to be zero-mean Gaussian with variance 0.1. However, to circumvent the numer-
ical problems encountered in Example 6.5, we model the measurement noise as being
zero-mean Student’s t-distributed with (the same) variance 0.1 and 3 degrees of freedom.
Student’s t-distribution (also referred to as simply the t-distribution) resembles the Gaus-
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Figure 6.11: Estimated log-likelihood function over a grid of parameter values using
a PF with N = 100 particles. The Gaussian measurement density function has been
replaced by Student’s t-density in the weight evaluation in the PF.

sian distribution, but is more heavy tailed. It is sometimes described as a generalisation
of the Gaussian distribution, which is robust to outliers.

Student’s t-distribution is used in place of the Gaussian distribution when computing the
weights in the PF. Otherwise, the experiment setup is just as in Example 6.5 and we use
the same data (i.e. the data is generated using a Gaussian measurement noise). Figure 6.11
shows the estimated log-likelihood function for parameter values in the interval [0.01, 0.1]
(evaluated at the grid points). The function value can be evaluated at all grid points,
without encountering any numerical problems. The maximum value is attained (just as in
Example 6.5) for d = 0.05. It should be noted that there is a big difference in the scaling
of the vertical axis, between Figure 6.10 and Figure 6.11. The estimated log-likelihood
function using Student’s t-distribution, is in fact much flatter than when the Gaussian
distribution is used. The maximum function value (attained at d = 0.05) is roughly −200
for both approaches.

In the example above, we saw that we got a numerically more robust evaluation of the log-
likelihood function, by modelling the measurement noise as Student’s t-distributed. In
this example, the maximum of the likelihood was attained for the same parameter value
as when the original model was used. Still, an obvious criticism against this approach is
that we deliberately use an erroneous model for the process, which naturally should affect
the parameter estimates “negatively”. One possible way to get around this, is to introduce
an auxiliary parameter ν, corresponding to the degrees of freedom of the t-distribution.
The motivation for this is that Student’s t-distribution can be seen as a generalisation of
the Gaussian distribution. As ν goes to infinity, the t-distribution tends to a Gaussian.
Hence, by initialising ν to some small value (say 2–3), we get a heavy tailed distribution
which should be more robust to numerical problems. However, since the system in fact
is Gaussian, we expect ν to increase as we get closer to a maximum of the likelihood
function, making the modified model more similar to the original model.
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In “purely” particle based identification methods (e.g. PS-EM), this approach can straight-
forwardly be applied, since they in general do not require Gaussian measurement noise.
However, for the identification methods considered in this thesis, we do require a certain
structure, which may not be compatible with a non-Gaussian measurement noise. Take
for instance the RBPS-EM method presented in Section 6.3. This method is designed for
identification of mixed linear/nonlinear Gaussian state-space models as in (6.23). For
such models, the measurement noise is in general assumed to be Gaussian.

Remark 6.5. A mixed linear/nonlinear Gaussian state-space model remains in the class of CLGSS

models even for non-Gaussian measurement noise, if we at the same time require that the measure-
ment equation is independent of Zt. See also Remark 6.4 on page 123.

However, there are some ways to incorporate a t-distributed noise also in this model class.
A first, simple approach is to use the t-distribution only when evaluating the particle
weights. When e.g. updating the linear states in the RBPF, we keep a Gaussian representa-
tion as before. The effects of this approach on the estimates obtained from the RBPF and
RBPS, need further investigation. A second idea is based on an alternative interpretation
of the t-distribution. Let τ be a Gamma distributed random variable with shape parameter
ν/2 and scale parameter 2λ/ν, for some ν, λ > 0. Let the random variable E, condi-
tioned on τ , be zero-mean Gaussian with variance τ−1. Then, the marginal distribution
of E is zero-mean Student’s t, with ν degrees of freedom and precision parameter λ. This
fact can be used to model the measurement noise in the model (6.23) as t-distributed, with-
out violating the mixed linear/nonlinear Gaussian structure of the model. This is achieved
by writing the model as,

Xt+1 = fθ(Ξt) +Aθ(Ξt)Zt + Vt, (6.45a)

τt+1 ∼ Gam

(
ν

2
,
2λθ(Ξt)

ν

)
, (6.45b)

Yt = hθ(Ξt) + Cθ(Ξt)Zt + Et, (6.45c)

where Xt =
[
ΞT
t ZT

t

]T
and the process noise and measurement noise are given by,

Vt ∼ N (0, Qθ(Ξt)) , (6.45d)

Et ∼ N
(
0, τ−1

t

)
, (6.45e)

respectively. Here we have assumed that the measurement Yt is scalar, but the approach
can be straightforwardly extended to vector valued measurements. By including τt in the
nonlinear part of the state, the model above is mixed linear/nonlinear Gaussian7. The
precision parameter (function) λθ( · ) is related to the variance of the t-distributed mea-
surement noise Et, i.e. if this variance is assumed to be known (or of known structure),
λθ( · ) can be chosen accordingly. The degrees of freedom ν can, as mentioned above,
be seen as an auxiliary parameter which is estimated alongside θ. Alternatively, we can
let the degrees of freedom be a deterministic, increasing (in the iteration number of the
algorithm) sequence, to exploit the fact that the “true” noise is known to be Gaussian.
One drawback with this method is that the nonlinear state dimension is increased by the

7Strictly speaking, (6.45) is not mixed linear/nonlinear Gaussian as defined by (6.23), due to the non-
Gaussianity of (6.45b). However, since this state equation is independent of Zt the model is still a CLGSS.
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dimension of τt, which in the general case would equal the measurement dimension. It
remains to investigate the potential benefits from this approach, in terms of robustification
of e.g. RBPS-EM.

As a final remark of this section, a possible generalisation of (6.45) is to include a dynamic
evolution of the τ -state in (6.45b). It would be interesting to analyse the effect of this on
the descriptive properties of the model.



7
Concluding remarks

In this chapter, we summarise the conclusions drawn from the results and analyses pre-
sented in the previous chapters. We also lay out some directions for future work.

7.1 Conclusions

We have considered Rao-Blackwellisation of particle methods for the two related prob-
lems of state inference and parameter estimation in nonlinear dynamical systems. The
basic idea underlying the methods presented and analysed in this thesis, is to exploit a
certain type of tractable substructure in the model under study. More precisely, we consid-
ered a class of models for which the joint smoothing density can be factorised according
to,

p(ξ1:t, z1:t | y1:t) = p(z1:t | ξ1:t, y1:t)p(ξ1:t | y1:t), (7.1)

and where the conditional density p(z1:t | ξ1:t, y1:t) is analytically tractable. Here, xt =
{ξt, zt} is the state of the system, ξt is the “nonlinear state” and zt is the “linear state”.
The primary method built on this idea is the Rao-Blackwellised particle filter (RBPF) by
Doucet et al. [2000a] and Schön et al. [2005]. In Section 3.3 we gave a self-contained
derivation of the RBPF. The key enabler of the RBPF is that a sequential Monte Carlo
method can be used to sequentially generate “nonlinear” weighted sample trajectories
{ξi1:t, ωi

t}Ni=1, targeting the state-marginal smoothing density p(ξ1:t | y1:t). This means
that the conditional filtering densities p(zt | ξi1:t, y1:t) (for each particle trajectory i =
1, . . . , N ) can be computed sequentially as well. For a conditionally linear Gaussian
state-space (CLGSS) model, this is done by equipping each particle (i.e. each nonlinear
state trajectory) with a Kalman filter.

Besides filtering, we have in this thesis also been concerned with the smoothing problem.
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For this problem, it is not as straightforward to make use of the Rao-Blackwellisation idea.
The reason is that in a smoothing pass, we typically wish to change or update the nonlin-
ear state trajectories generated by the filter. This means that we break the conditions under
which the filtering density for the linear states is analytically tractable. In Section 5.3 we
derived a Rao-Blackwellised particle smoother (RBPS) based on the forward filtering/back-
ward simulation idea. To circumvent the above mentioned problems we were forced to
make certain approximations (see Section 5.3.3). As mentioned above, the RBPS of Sec-
tion 5.3 is based on the forward/backward recursions. However, it is likely that we would
encounter similar challenges for other types of smoothing as well. Take for instance the
two-filter formula. If we were to design a Rao-Blackwellised two-filter particle smoother,
we need to construct a Rao-Blackwellised backward filter. However, just because the
model contains a tractable substructure in the forward direction, this need not necessarily
be the case for the time-reversed model. In conclusion, as opposed to the RBPF, there is
no single “natural” way to construct an RBPS and how to apply the Rao-Blackwellisation
idea for particle smoothing is still to a large extent an open research question. This is
discussed further in [Lindsten and Schön, 2011].

The main motivation behind the RBPF or any RBPS, is to obtain better estimates than what
is provided by a particle filter (PF) or a particle smoother (PS). In particular, we wish to
reduce the variances of the estimates. In Section 4.2 we analysed the asymptotic variance
for the RBPF, compared it with that of the standard PF and computed an explicit expression
for the variance reduction. For the case of a bootstrap PF and a bootstrap RBPF, we could
directly conclude that the asymptotic variance of the RBPF never is larger than that of the
PF. Still, as argued in Section 4.2 it is not always beneficial to use Rao-Blackwellisation.
The reason is that the RBPF in general is computationally more expensive per particle
than the PF. Hence, for a fixed computational capacity, we can either employ the RBPF,
or use a PF with more particles. Unfortunately, we were not able to draw any stronger
conclusions or to supply any simple rules-of-thumb regarding this issue, based on the
variance reduction expression. The reason is that, even though we obtained an explicit
expression, it is not straightforward to compute the variance reduction for a given model.
As mentioned in Section 4.2.5, one possibility is to estimate the variance reduction, e.g.
by using an RBPF.

The main focus in this thesis has been on nonlinear system identification, using Rao-
Blackwellised particle methods. In particular, we presented two different identification
methods, the Rao-Blackwellised marginal particle filter (RBMPF) and RBPS expectation
maximisation (RBPS-EM). In Chapter 6 we made a numerical evaluation of the methods.
The RBMPF was compared with the RBPF using jittering noise, which has previously been
suggested for recursive parameter estimation [Schön and Gustafsson, 2003]. One of the
main advantages of the RBMPF over the RBPF is that it does not require any tuning of a
jittering noise. We also noted that the variances of the RBMPF estimates were lower than
those of the RBPF estimates, supposedly because the RBMPF avoids an additional variance
in the parameter estimates introduced by the jittering. One of the main drawbacks of the
RBMPF is that it seems to be non-robust, in the sense that we got several divergences of the
method due to numerical problems. This robustness issue was discussed in more detail in
Section 6.4.3, where we argued that it in fact can be a general problem for particle based
identification methods.
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The RBPS-EM method has been designed as an alternative to PS-EM for identification of
models with a tractable substructure. The motivation is to reduce the variance of the
parameter estimates. Consequently, the RBPS-EM method was primarily compared with
PS-EM. From the numerical results (see Section 6.3.2) we conclude that the parameter
variance indeed can be reduced by using Rao-Blackwellisation of the underlying particle
smoother. However, we also note that how large this variance reduction is, relative to the
total variance of the estimates, seems to be highly problem dependent. As for the RBMPF,
we encountered numerical problems in the RBPS-EM and the PS-EM methods. However, the
number of divergences was generally lower for RBPS-EM than for PS-EM, even in the cases
where the variances of the parameter estimates did not differ much between the methods.

To summarise, Rao-Blackwellisation can be a very useful technique when addressing state
inference and identification problems using particle methods. However, how large the pos-
sible benefits are, seems to be highly problem dependent. To understand the applicability
and the potential of this technique, much work remains to be done, which leads us into
the next section.

7.2 Future work

Throughout this thesis, we have encountered a range of different problems which require
further attention. Perhaps most notably is the robustness issue with particle based identifi-
cation methods discussed in Section 6.4.3. Future work on this topic can hopefully result
in generally applicable procedures to robustify the identification methods.

The different state inference and identification methods discussed in the thesis, can most
likely be improved in various ways. In Section 3.4.3 we mentioned possible modifica-
tions of the RBMPF, e.g. with the incentive to reduce the computational complexity of the
method. To sort out the details of these modifications, and also to analyse their impli-
cations, is a topic for future work. Furthermore, it would be interesting to address the
“RBMPF problem” using a different approximation procedure than what we used in Sec-
tion 3.4. One possible approach is to employ a forward-smoother for additive functionals
(see e.g. [Cappé et al., 2005, Del Moral et al., 2010]) to estimate the sufficient statistics
for the conditional filtering distribution (see also [Smidl, 2011]).

The RB-FFBSi presented in Section 5.3 is, as pointed out in the previous section, only one
possible approach to Rao-Blackwellised particle smoothing. A very interesting topic for
future work is to sort out in which way the tractable substructures used in the RBPF, can be
exploited also in an RBPS. Furthermore, during the derivation of the RB-FFBSi in Section 5.3
we were forced to make certain approximations. To what extent such approximations are
needed is not fully understood and requires further investigation.

Regarding the RBPS-EM identification method, there are several possible directions for
future work. Besides a robustification of the method, as mentioned above, it would be
interesting to analyse and compare the different sources of variance of the parameter esti-
mates. By doing so, we can hopefully determine whether or not there is a large potential
gain in using RBPS-EM instead of PS-EM, for a given problem. Furthermore, as discussed
in Section 6.3.3, the RBPS-EM method can possibly be used for identification of Wiener
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systems. However, to sort out the details of this approach is another topic for future work.
Here, we also encountered models with singular process noise. For such models, the ap-
plication of FFBSm and FFBSi type of particle smoothers will be problematic. This is in
itself an interesting issue which requires further attention.

Finally, there are many possible directions for future work, which we have not mentioned
in the previous chapters. One such direction is to analyse the class of models for which
the RBPF is applicable. Given a nonlinear model, we may ask if it is possible to find some
change of variables, which will transform this model into e.g. a CLGSS model. To have
a systematic way of finding such transformations, if they exist, would be of great value.
Another idea is to use the RBPF and the RB-FFBSi together with the particle MCMC method
by Andrieu et al. [2010] and Olsson and Rydén [2010]. If this is feasible, it will result in a
Bayesian identification method as an alternative to the RBPS-EM method for identification
of mixed linear/nonlinear Gaussian state-space models.



A
Measure, integration and probability

This appendix provides a very brief introduction to measure, integration and probability.
The purpose is to make the thesis more self-contained and accessible for readers without
any measure theoretic background. Hopefully, this short introduction will provide suffi-
cient insight for a comfortable understanding of the material of the thesis. For further
reference on measure theory and probability, see any of the standard textbooks on the sub-
ject, e.g. by Billingsley [1995], Chung [2001] or Loève [1977, 1978]. See also the book
by Royden and Fitzpatrick [2010] for a treatment of measure theory in a non-probabilistic
setting.

A.1 Measure

The fundamental concept in measure theory is that of measuring the sizes of sets. The
most natural example is how to assign length, area or volume to a set in one-, two- or
three-dimensional Euclidian space. As a generalisation of these concepts, a measure µ is
a set-function, assigning real numbers to sets in some space Ω. The value assigned to the
set A ⊆ Ω, denoted µ(A), is in some sense the “size” of A under µ.

However, before we go on with the definition of a measure, let us reflect over the domain
of a set-function µ. Let Ω be an arbitrary space of points ω. Then, the domain of µ is
naturally some class of subsets of Ω. The most extensive class is of course that of all
subsets of Ω, and at first it may be tempting to let this class be the domain of µ. However,
it is in general not possible to construct a satisfactory theory for such extensive classes
of sets. Consequently, we need to restrict the domain of µ to some suitable class F of
subsets of Ω. It is natural to require that this restriction is made in such a way that Ω itself
belongs to F , and also that F is closed under countable set-theoretic operations. More
generally, we will consider classes of subsets with the following properties,
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i) Ω ∈ F .

ii) A ∈ F ⇒ Ac ∈ F .

iii) A1, A2, . . . ∈ F ⇒ A1 ∪A2 ∪ . . . ∈ F .

Equivalently, we could have replaced condition (iii) with

iii′) A1, A2, . . . ∈ F ⇒ A1 ∩A2 ∩ . . . ∈ F .

A class F of subsets of Ω with these properties is known as a σ-algebra and the pair
(Ω,F) is called a measurable space. Generally, we will assume that the domain of any
set function is a σ-algebra.

Let us now return to the concept of a measure. As mentioned above, a set-function µ on
F assigns a real number to any set A ∈ F . However, all such set-functions do not coin-
cide with what we intuitively mean by a measure. Hence, it is natural to impose further
constraint on µ for it to be called a measure. We thus make the following definition.

Definition A.1 (Measure). A set-function µ on a σ-algebra F is a measure if:

i) µ(∅) = 0.

ii) µ(A) ∈ R+ ∪ {∞} for A ∈ F .

iii) If A1, A2, . . . is a disjoint sequence of F-sets, then

µ

(
∞⋃

k=1

Ak

)
=

∞∑

k=1

µ(Ak).

The first two conditions in the definition are rather natural; the empty set has measure zero
and an arbitrary set has a nonnegative measure. Usually, we also allow for sets of infinite
measure, as indicated by the definition. The third condition is countable additivity. What
the condition says is that, for any disjoint sequence of F-sets, measuring the union of all
sets is the same thing as measuring them individually and summing up the results. This
is a generalisation of the natural additivity property of e.g. length and area. However, it
should be noted that countable additivity, as in the definition above, is a stronger property
than finite additivity.

If µ(Ω) <∞, µ is said to be finite, and naturally, if µ(Ω) =∞ it is said to be infinite. If
Ω can be partitioned into some finite or countable collection of F-sets A1, A2, . . . , such
that µ(Ak) <∞ for all k, then µ is said to be σ-finite.

If the following two examples, we introduce two important special cases of measures.

Example A.1: Counting measure
Let Ω be a countable set and let F be the class of all subsets of Ω. For A ∈ F , let µ(A)
be the number of elements in A, or µ(A) = ∞ if A is not finite. This measure is (one
example of) counting measure.
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Example A.2: Lebesgue measure
Let Ω be d-dimensional Euclidian space R

d. A bounded d-dimensional rectangle is a set
given by,

A = {
(
x1 · · · xd

)T
: ai < xi ≤ bi, i = 1, . . . , d}, (A.1)

for some −∞ < ai < bi < ∞, i = 1, . . . , d. Let F be the smallest1 σ-algebra,
containing all bounded rectangles. We say that F is generated by the bounded rectangles.
This σ-algebra is known as the Borel σ-algebra on R

d, and will generally be written
B(Rd). A set A ∈ B(Rd) is known as a Borel set. This class of sets is very general. For
instance, it contains all open and all closed subsets of Rd.

It can be shown that there exists a unique measure λ on B(Rd) which assigns to (A.1) the
volume,

λ(A) =
d∏

i=1

(bi − ai). (A.2)

This measure is the d-dimensional Lebesgue measure.

A.2 Integration

Tightly coupled to measure theory is integration. The aim of the present section is to
introduce the integral of a function f : Ω→ R w.r.t. a measure µ, written,

µ(f) =

∫
f dµ =

∫
f(ω)µ(dω). (A.3)

Let us first assume that the function f is nonnegative and simple2. Let {x1, . . . , xN} be
the range of f and let Ak be the set on which it takes on the value xk, i.e.

Ak = {ω : f(ω) = xk}, k = 1, . . . , N. (A.4)

If we define the indicator function of a set A according to,

IA(ω) =

{
1 if ω ∈ A,
0 otherwise,

(A.5)

we can write f as,

f(ω) =
N∑

k=1

xkIAk
(ω). (A.6)

Now, assume further that {Ak}Nk=1 is a partitioning of Ω into F-sets where (Ω,F) is a
measurable space and µ is a measure on F . Then, we define the integral of f w.r.t. µ

1That is, F is the intersection of all σ-algebras containing the bounded rectangles.
2A function is called simple if it has a finite range.
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according to,
∫
f dµ =

N∑

k=1

xkµ(Ak), (A.7)

where, if necessary, the convention “0 ·∞ = 0” is used. If f is a step function on R and
µ is Lebesgue measure, then the expression above is a Riemann sum.

Clearly, it is not satisfactory to have a definition valid only for simple functions. The
basic idea, used to extend the definition to a non-simple function f , is to find a sequence
of simple functions fn converging to f . Then, the integral of f can be defined as the
limit of

∫
fn dµ. We thus need to find an appropriate class of functions, for which such

converging sequences exist. For this cause, we make the following definition.

Definition A.2 (Measurable function). Let (Ω,F) be a measurable space and let f be
a function from Ω to R. Then, f is called measurable F (or simply measurable) if, for
every H ∈ B(R), f−1(H) = {ω : f(ω) ∈ H} ∈ F , that is if the inverse image of H lies
in F .

For instance, all continuous functions f : Rd → R are measurable. As another special
case, a function f taking on a countable number of distinct values x1, x2, . . . on the sets
A1, A2, . . . , is measurable if and only if Ak ∈ F for all k.

Now, if f is a nonnegative, measurable function, then there exists (see [Billingsley, 1995],
Theorem 13.5) a non-decreasing sequence of nonnegative, simple, measurable functions
fn, such that

f(ω) = lim
n→∞

fn(ω). (A.8)

We can then define the integral of f w.r.t. µ according to,
∫
f dµ = lim

n→∞

∫
fn dµ. (A.9)

If we allow for infinite values, the limit on the right hand side will always exist since
the sequence {fn} is non-decreasing. Furthermore, it can be shown that given any two
sequences (with the properties mentioned above) converging to f , their integrals will
have the same limits. Hence, to define the integral according to (A.9) makes sense, since
the value of right hand side is independent of the exact sequence of functions fn used.
The way of constructing the integral as the limit of the integrals of a sequence of simple
functions, resembles the construction of the Riemann integral as the limit of a sequence
of Riemann sums.

Finally, if f is an arbitrary (not necessarily nonnegative), measurable function, we can
divide it into its positive and negative parts,

f = f+ − f−, (A.10)

where both f+ and f− are nonnegative. Then, the integral of f is taken as
∫
f dµ =

∫
f+ dµ−

∫
f− dµ, (A.11)
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unless both terms on the right hand side are infinite. If this is the case, the integral of f
w.r.t. µ is not defined. If both terms on the right hand side in the expression above are
finite, or equivalently if

∫
|f | dµ is finite, the function f is said to be integrable w.r.t. µ.

Note, however, that the integral of f may exist even if it is not integrable, since we allow
for the values ±∞.

Remark A.1. Integration with respect to Lebesgue measure λ is often written using dω rather than
λ(dω). That is, if (Ω,F) is Euclidian, f is a function on Ω and λ is Lebesgue measure, we write∫
f(ω) dω ,

∫
f(ω)λ(dω) =

∫
f dλ.

We can also define integration over a set A using the natural construction,
∫

A

f dµ ,

∫
IAf dµ. (A.12)

Assume that p is a nonnegative, measurable function. We can then define a measure ν on
F according to,

ν(A) =

∫

A

p dµ. (A.13)

If the measures ν and µ are related as above, the function p is said to be a density of
ν w.r.t. µ. Integration w.r.t. ν can be done by substituting dν with p dµ. That is, for f
integrable w.r.t. ν, or nonnegative, it holds that,

∫
f dν =

∫
fp dµ. (A.14)

If ν is defined according to (A.13), then µ(A) = 0 clearly implies ν(A) = 0. This
property is known as absolute continuity and is written ν ≪ µ. An interesting fact,
known as the Radon-Nikodym theorem, is that absolute continuity is in fact a sufficient
condition for ν to have a density w.r.t. µ.

Theorem A.1 (Radon-Nikodym). Let µ and ν be σ-finite measures on F and assume

that ν ≪ µ. Then there exists a nonnegative, measurable function p (a density) s.t.

ν(A) =
∫
A
p dµ for all A ∈ F . This density is unique, except on a set of µ-measure

zero, that is for any two such densities p and p′, µ({ω : p(ω) 6= p′(ω)}) = 0.

Proof: See [Billingsley, 1995], Theorem 32.2.

The density p is called the Radon-Nikodym derivative and is often written,

p(ω) =
dν

dµ
(ω). (A.15)

A.3 Probability

In this section we consider the specialisation of measure and integration theory to proba-
bility. We will now view the space Ω as a “sample space”, meaning that its elements ω
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are possible outcomes of some random experiment. For instance, Ω = {1, 2, 3, 4, 5, 6}
can represent the possible outcomes from a roll of a die. A subset A of Ω is then called an
event and we seek to answer the question; what is the probability of the event A, i.e. the
probability that ω falls into A once the experiment is performed? Intuitively, this should
be related to the “size” or measure of A.

More formally, let (Ω,F) be a measurable space and let P be a measure on F . Then, P
is called a probability measure or a probability distribution if P(Ω) = 1. For A ∈ F , P
assigns the probability P(A) to the event A. The triple (Ω,F ,P) is called a probability
space. If S ∈ F and P(S) = 1, then S is a support of P.

Example A.3: Dirac distribution
Consider the probability measure on (Ω,F) defined by,

δω′(A) =

{
1 if ω′ ∈ A,
0 otherwise.

(A.16)

This is known as a point-mass distribution or a Dirac distribution, and it assigns all “prob-
ability mass” to the singleton ω′. Note the similarity between the point-mass distribution
and the indicator function (A.5), the difference being whether we view the set A or the
point ω′ as the argument. Integration w.r.t. Dirac measure follows the well known rule

∫
f(ω)δω′(dω) = f(ω′). (A.17)

In a probability context, a measurable functionX : Ω→ R is known as a random variable.
If a random experiment is carried out and results in ω, then X(ω) is the value taken on
by the random variable. The distribution or law of a random variable is a probability
measure µ on B(R) defined by,

µ(A) = P({ω : X(ω) ∈ A}), A ∈ B(R). (A.18)

Hence, µ(A) is the probability that X falls in the set A. When dealing with probabilities
as above, it is often convenient to introduce the simplified notation,

P(X ∈ A) , P({ω : X(ω) ∈ A}). (A.19)

Example A.4: Continuous random variable
Let µ be the distribution of a random variable X on some probability space (Ω,F ,P).
Assume that µ is absolutely continuous w.r.t. Lebesgue measure. Then, by the Radon-
Nikodym theorem we can write, for A ∈ B(R),

P(X ∈ A) = µ(A) =

∫

A

p(x) dx, (A.20)

for some function p, known as a probability density function (PDF).
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Example A.5: Dirac distribution (continued)
If the random variableX is the constant functionX(ω) ≡ x′, then the distribution ofX is
δx′ , i.e. the random variable X (naturally) assigns all “probability mass” to the singleton
x′.

Remark A.2. Here we have, for the sake of illustration, defined random variables as taking values
in R. In the main part of this thesis, the term random variable is used more generally for F/X -
measurable mappings from Ω to some arbitrary space X, with (X,X ) being a measurable space.
However, we then often consider functions of these random variables f : X → R, meaning that the
composition f ◦X : ω 7→ f(X(ω)) is a random variable as defined in this section.

As a final concept of this appendix, we introduce the expected value of a random variable.
If the random variable X on the probability space (Ω,F ,P) is integrable or nonnegative,
we define its expectation as,

E[X] ,

∫
X(ω)P (dω). (A.21)

Also, if f is a real function of a real variable, we can compute the expectation of f(X) as,

E[f(X)] = µ(f) =

∫
f(X(ω))P (dω) =

∫
f(x)µ(dx), (A.22a)

where the last equality follows from a change of variables. If, as in Example A.4, µ has a
density p w.r.t. Lebesgue measure, then the expectation above can further be expressed as

E[f(X)] =

∫
f(x)p(x) dx. (A.22b)





B
The multivariate Gaussian

distribution

In this appendix we shall give a few results on how the multivariate Gaussian distribution
can be manipulated. The following theorems and corollary gives us all the tools needed
to derive the expressions for the so called linear states zt in this work. The statements
are given without proofs, since the proofs are easily found in standard textbooks on the
subject.

B.1 Partitioned Gaussian variables

We start by giving two results on partitioned Gaussian variables. Let us, without loss
of generality, assume that the random vector X , its mean µ and its covariance Σ can be
partitioned according to,

X =

[
Xa

Xb

]
, µ =

[
µa

µb

]
, Σ =

[
Σaa Σab

Σba Σbb

]
(B.1)

where for reasons of symmetry Σba = ΣT

ab. It is also useful to write down the partitioned
information matrix,

Λ = Σ−1 =

[
Λaa Λab

Λba Λbb

]
, (B.2)

since this form will provide simpler expressions below. Note that, since the inverse of a
symmetric matrix is also symmetric, we have Λab = ΛT

ba.

We now provide two important and very useful theorems for partitioned Gaussian vari-
ables. These theorems concern the two operations marginalisation and conditioning.
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Theorem B.1 (Marginalisation). Let the random vector X be Gaussian distributed and

partitioned according to (B.1), then the marginal density p(xa) is given by,

p(xa) = N (xa ; µa,Σaa) . (B.3)

Theorem B.2 (Conditioning). Let the random vector X be Gaussian distributed and

partitioned according to (B.1), then the conditional density p(xa | xb) is given by,

p(xa | xb) = N
(
xa ; µa|b,Σa|b

)
, (B.4a)

where

µa|b = µa +ΣabΣ
−1
bb (xb − µb), (B.4b)

Σa|b = Σaa − ΣabΣ
−1
bb Σba, (B.4c)

which using the information matrix can be written,

µa|b = µa − Λ−1
aaΛab(xb − µb), (B.4d)

Σa|b = Λ−1
aa . (B.4e)

B.2 Affine transformations

In the previous section we dealt with partitioned Gaussian densities, and derived the ex-
pressions for the marginal and conditional densities expressed in terms of the parameters
of the joint density. We shall now take a different starting point, namely that we are given
the marginal density p(xa) and the conditional density p(xb | xa) (affine in xa) and derive
expressions for the joint density p(xa, xb), the marginal density p(xb) and the conditional
density p(xa | xb).

Theorem B.3 (Affine transformation). Assume that Xa, as well as Xb conditioned on

Xa, are Gaussian distributed with densities,

p(xa) = N (xa ; µa,Σa) , (B.5a)

p(xb | xa) = N
(
xb ; Mxa + b,Σb|a

)
, (B.5b)

where M is a matrix and b is a constant vector (of appropriate dimensions). The joint

density of Xa and Xb is then given by,

p(xa, xb) = N
([
xa
xb

]
;

[
µa

Mµa + b

]
, R

)
, (B.5c)

with

R =

[
MTΣ−1

b|aM +Σ−1
a −MTΣ−1

b|a

−Σ−1
b|aM Σ−1

b|a

]−1

=

[
Σa ΣaM

T

MΣa Σb|a +MΣaM
T

]
. (B.5d)

Combining the results in Theorem B.1, B.2 and B.3 we also get the following corollary.
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Corollary B.1 (Affine transformation – marginal and conditional). Assume that Xa,

as well as Xb conditioned on Xa, are Gaussian distributed with densities,

p(xa) = N (xa ; µa,Σa) , (B.6a)

p(xb | xa) = N
(
xb ; Mxa + b,Σb|a

)
, (B.6b)

whereM is a matrix and b is a constant vector (of appropriate dimensions). The marginal

density of Xb is then given by,

p(xb) = N (xb ; µb,Σb) , (B.6c)

with

µb =Mµa + b, (B.6d)

Σb = Σb|a +MΣaM
T. (B.6e)

The conditional density of Xa given Xb is

p(xa | xb) = N
(
xa ; µa|b,Σa|b

)
, (B.6f)

with

µa|b = Σa|b

(
MTΣ−1

b|a(xb − b) + Σ−1
a µa

)
= µa +ΣaM

TΣ−1
b (xb − b−Mµa),

(B.6g)

Σa|b =
(
Σ−1

a +MTΣ−1
b|aM

)−1

= Σa − ΣaM
TΣ−1

b MΣa. (B.6h)
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