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Abstract

We wish to compute the gradient of an expec-

tation over a finite or countably infinite sample

space having K ≤ ∞ categories. When K is in-

deed infinite, or finite but very large, the relevant

summation is intractable. Accordingly, various

stochastic gradient estimators have been proposed.

In this paper, we describe a technique that can

be applied to reduce the variance of any such

estimator, without changing its bias—in particu-

lar, unbiasedness is retained. We show that our

technique is an instance of Rao-Blackwellization,

and we demonstrate the improvement it yields on

a semi-supervised classification problem and a

pixel attention task.

1. Introduction

Let z be a discrete random variable over K ≤ ∞ categories,

with distribution qη(z) parameterized by a real vector η and

differentiable in η. We aim to minimize

L(η) := Ez∼qη(z) [fη(z)] =

K
∑

k=1

qη(k)fη(k), (1)

where the real-valued integrand fη also depends differen-

tiably on η. If K is finite and small enough, we can compute

the exact gradient as

∇ηEqη(z)[fη(z)]

=
K
∑

k=1

{

[∇ηqη(k)] fη(k) + qη(k)∇ηfη(k)
}

.
(2)

On the other hand, K may be infinite, or large relative to the

cost of evaluating qη · fη . In either of these cases, which are
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the focus of this paper, the exact gradient is computationally

intractable. Thus, in order to optimize L(η), we seek low-

variance stochastic approximations of the gradient.

The “reparametrization trick” (Spall, 2003; Kingma &

Welling, 2014) provides efficient stochastic gradients when

qη is a continuous distribution, but it does not apply when z
is discrete. Two well-known possibilities in the discrete case

are continuous relaxation (Maddison et al., 2017; Jang et al.,

2017) and REINFORCE (Williams, 1992) (also known as

the score function estimator). The former replaces the dis-

crete random variable with a continuous relaxation so that

the reparametrization trick can be applied. However, it re-

sults in biased gradient estimates. The latter is impractical

for most purposes due to its high variance.

Control variate methodology provides a general framework

for variance reduction. Specific examples include RE-

LAX (Grathwohl et al., 2018), REBAR (Tucker et al., 2017),

NVIL (Mnih & Gregor, 2014), and MuProp (Gu et al., 2016).

These methods provide a mechanism for reducing the vari-

ance of REINFORCE, but unfortunately they do not reduce

the variance enough for many applications.

In the current paper, we show how to achieve further vari-

ance reduction via a meta-procedure that can be applied to

any discrete-distribution stochastic-gradient procedure (e.g.,

REINFORCE or REINFORCE with control variate). Our

framework reduces variance without changing the bias. In

particular, an unbiased stochastic gradient remains unbiased

after application of our approach. Further, our approach is

“anytime” in the sense that it can reduce stochastic-gradient

variances given any computational budget—the larger the

budget, the greater the variance reduction. Hence it is well

suited to our chosen setting, where K is infinite or very

large, and/or qη · fη is expensive to evaluate.

Our method is particularly apt in the setting where the prob-

ability mass qη(z) is concentrated on only a few categories.

For example, in extreme classification, only a few labels out

of many are plausible. In reinforcement learning, only a

few actions in the possible action space are advantageous.

Neither control-variate methods nor continuous-relaxation

techniques take advantage of this “sparsity,” and we show

that the variance reduction of our method in this setting can

be dramatic.

We show that our variance-reduction meta-procedure



Rao-Blackwellized Stochastic Gradients for Discrete Distributions

is an instance of a general statistical method called

Rao-Blackwellization (Casella & Robert, 1996). Rao-

Blackwellization has been used in previous work to reduce

the variance of stochastic gradients (Ranganath et al., 2014;

Titsias K & Lázaro-Gredilla, 2015), but in a setting orthog-

onal to ours, one with multivariate discrete random vari-

ables. Our focus here is on a univariate discrete random

variable with many categories. Our method can be applied

in conjunction with the former work to extend to the case

of multivariate discrete random variables, each with a large

number of categories. This extension is not discussed in

the present work, and we leave it as an avenue of future

exploration.

The paper is organized as follows. We present our variance-

reduction procedure in Section 2 and make the connection to

Rao-Blackwellization in Section 3, demonstrating that our

technique necessarily reduces stochastic-gradient variances.

In Section 4 we discuss related work. In Section 5, we

exhibit the benefits of our procedure on synthetic data, a

semi-supervised classification problem, and a pixel attention

task. We conclude in Section 6.

2. Method

We consider the situation where the number of categories

K is infinite, or very large in the sense that computing the

exact gradient in Equation (2) is intractable. One possible

stochastic estimator for the gradient is the REINFORCE

estimator,

fη(z)∇η log qη(z) +∇ηfη(z) z ∼ qη(z), (3)

which one can check is unbiased for the true gradient in

Equation (2).

In practice, the REINFORCE estimator often has variance

too large to be useful. Control variates have been proposed

to decrease the variance of the REINFORCE estimator. The

key observation is that the score function ∇η log qη(z) has

zero expectation under qη(z), so

[fη(z)− C]∇η log qη(z) +∇ηfη(z) z ∼ qη(z) (4)

is still unbiased for the true gradient. Several proposals have

been put forth for choosing C to reduce the variance (Mnih

& Gregor, 2014; Gu et al., 2016; Tucker et al., 2017).

In this paper, we present a meta-procedure that can be ap-

plied to any stochastic estimator for the gradient of a dis-

crete expectation obtained by sampling from qη(z). Let

g(z) be any such estimator which is unbiased1, i.e., satis-

fies Eqη(z)[g(z)] = ∇ηEqη(z)[fη(z)]. An example is the

REINFORCE estimator. We decompose the expectation

1Our technique applies to biased estimators as well. For con-
creteness, we focus on the unbiased case.

Eqη(z)[g(z)] into two components: one containing the high-

probability atoms of qη, and one containing the remaining

atoms. We compute the exact contribution of the high-

probability component to the expectation, and we use a

stochastic estimator for the other component. The idea

comes from observing that in many applications, qη(z) only

puts significant mass on a few categories. If g(z) is rea-

sonably well behaved over z, then qη(z)g(z) is large when

qη(z) attains its largest values and smaller elsewhere. By

computing the high-probability component of the expecta-

tion exactly, we obtain a value already close to correct. A

stochastic estimator is then added to correct, on average, for

what error remains.

Formally, let Ck be the set of z such that qη(z) assumes one

of its k largest values. Ties may be broken arbitrarily. Let

C̄k denote the complement of Ck. Then

∇ηEqη(z)[fη(z)] = Eqη(z)[g(z)] (5)

= Eqη(z)[g(z)1{z ∈ Ck}+ g(z)1{z ∈ C̄k}] (6)

=
∑

z∈Ck

qη(z)g(z) + Eqη(z)[g(z)1{z ∈ C̄k}]. (7)

It remains to approximate the expectation in the second term.

We use an importance-sampling approximation based on a

single draw from an importance distribution. We choose a

simple importance distribution: the distribution of qη con-

ditional on the event C̄k. We denote this importance distri-

bution by qη|C̄k
. By construction, the importance weighting

function is identically equal to qη(C̄k), regardless of which

z ∼ qη|C̄k
we draw. (Note that the indicator inside the

second term of (7) always equals one, because we are only

sampling from z ∈ C̄k.)

Our estimator assumes that, given k, the set Ck can be

identified at little cost. This certainly holds in the case

of inference: using variational Bayes, q(z) is a variational

approximate posterior chosen from a set we designate.

In summary, we estimate the gradient as

ĝ(v) =
∑

z∈Ck

qη(z)g(z) + qη(C̄k)g(v) (8)

v ∼ qη|C̄k
,

which also satisfies Ev[ĝ(v)] = ∇ηEqη(z)[fη(z)].

We see that the first term of this estimator is deterministic

and the second term is random, but scaled by qη(C̄k), which

is small when qη is concentrated on a small number of

atoms. Therefore, we intuitively expect this estimator to

have smaller variance than the original estimator, g(z).

In the next section, we confirm this intuition by inter-

preting the construction of the estimator ĝ(v) as Rao-

Blackwellization (which always reduces variance). Hence,

we call ĝ(v) the Rao-Blackwellized gradient estimator.
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3. Theory

We begin by describing how a suitable representation of the

original discrete variable z ∼ qη(z) allows us to interpret

our estimator as an instance of Rao-Blackwellization. Let

qη|Ck
denote the distribution of qη conditional on the event

Ck. Consider the three independent random variables

u ∼ qη|Ck
, (9)

v ∼ qη|C̄k
, (10)

and b ∼ Bernoulli
(

qη(C̄k)
)

. (11)

The triplet (u, v, b) provides a distributionally equivalent

representation of z:

T (u, v, b)
d
= z, (12)

where

T (u, v, b) := u1−bvb. (13)

The estimator in Equation (8) can then be written as

ĝ(v) = E [g(T (u, v, b))|v] , (14)

where g(z) is the original unbiased gradient estimator. To

see this, break the right-hand side of (14) into two terms

according to the value of b, then simplify. Equation (14)

demonstrates directly that our estimator is an instance of

Rao-Blackwellization. As such, it has the same expec-

tation as the original estimator g(z), a fact about Rao-

Blackwellization that follows immediately from iterated

expectation. In particular, if g(z) is unbiased as we have

assumed, so too is our estimator.

An application of the conditional variance decomposition

gives

V [g(z)] =V [ĝ(v)] + E {V [g(T (u, v, b))|v]} , (15)

showing that ĝ has lower variance than g, by at least as much

as the last term in Equation (15). This too is a standard result

about Rao-Blackwellization.

Proposition 1 further quantifies this variance reduction,

showing the variance of ĝ(v) must be less then the vari-

ance of g(v) by the multiplicative factor qη(C̄k).

Proposition 1. Let g(z) be an unbiased gradient estimator

as in Equation (5) and ĝ(v) denote the Rao-Blackwellized

estimator defined in Equation (8). Then

V[ĝ(v)] ≤ qη(C̄k)V[g(z)]. (16)

Proof. We apply the conditional variance decomposition.

Let ǫ = qη(C̄k) and recall the Bernoulli random variable b
defined in Equation (11). First,

V[g(z)] = E[V[g(z)|b]] + V[E[g(z)|b]] (17)

≥ E[V[g(z)|b]] (18)

= ǫV[g(z)|z ∈ C̄k] + (1− ǫ)V[g(z)|z ∈ Ck]

≥ ǫV[g(z)|z ∈ C̄k].

But V[ĝ(v)] = ǫ2V[g(z)|z ∈ C̄k], which in combination

with the above yields the result.

The multiplicative factor of variance reduction guaranteed

by Rao-Blackwellization can be significant if the probability

mass of qη(z) is concentrated on just a few categories. But

while Rao-Blackwellization reduces the variance of g(z),
this comes at the cost of evaluating g(z) a total k + 1 times

(cf. Equation (8)). An initial stochastic gradient g(z) such

as REINFORCE will only require a single evaluation of g.

There is an alternative approach to reducing the variance

of an initial estimator g(z) via multiple evaluations of g(z):
minibatching, i.e., simple Monte-Carlo averaging over in-

dependent draws of z. Thus, the question arises: given a

budget of N < K evaluations of g(z), is it better to Rao-

Blackwellize or minibatch? Computationally, our method

is parallelizable in the same way that minibatching is par-

allelizable. The next proposition shows constructively that

there is a choice of k ≤ N for which Rao-Blackwellization

reduces variance at least as much as minibatching.

Proposition 2. Suppose we have a budget of N evaluations

of g. Consider the estimators

ĝN,k(v) :=
∑

u∈Ck

qη(u)g(u) +
qη(C̄k)

N − k

N−k
∑

j=1

g(vj), (19)

v1, ..., vN−k
iid
∼ qη|C̄k

and

gN (z) :=
1

N

N
∑

j=1

g(zj), z1, ..., zN
iid
∼ qη. (20)

If we choose

k̂ = argmin
k∈{0,...,N}

qη(C̄k)

N − k
(21)

then V[ĝ
N,k̂

(v)] ≤ V[gN (z)].

Proof. Let V1 = V[g1(z)]. Then V[gN (z)] = (1/N)V1,

while Proposition 1 shows that V[ĝN,k(v)] ≤ qη(C̄k)
N−k

V1.

Since
qη(C̄k)
N−k

= 1
N

when k = 0, the result follows.

Together, Propositions 1 and 2 imply the following:

• Rao-Blackwellization leads to a significant variance

reduction if the mass of qη(z) is concentrated.
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• Even when restricting minibatched versions of the ini-

tial and Rao-Blackwellized estimators to an equal num-

ber of evaluations of g, Rao-Blackwellization yields

equal or lower variance, for a computable choice of k.

4. Related Work

Methods to reduce the variance of stochastic gradients for

discrete distributions generally fall into two broad cate-

gories: continuous relaxation methods and control variate

methods.

In the first category, the Concrete distribution (Maddison

et al., 2017) approximates the discrete random variable with

a reparametrizable continuous random variable so that the

standard reparametrization trick can be applied. While this

continuous relaxation reduces the variance of the stochas-

tic gradient, the resulting estimators are biased. Thus the

Gumbel-softmax procedure (Jang et al., 2017) introduced an

annealing step into the optimization whereby the continuous

relaxation converges towards the discrete random variable

as the optimization path moves forward.

In the second category, control variate methods include

black-box variational inference (BBVI) (Ranganath et al.,

2014), NVIL (Mnih & Gregor, 2014), DARN (Gregor et al.,

2014), and MuProp (Gu et al., 2016). BBVI uses multiple

samples at each step to estimate the ‘optimal’ control variate.

NVIL introduces an observation dependent control variate

learned by a separate neural network. DARN uses a Taylor

expansion of fη(z) to compute a control variate, but this

results in a biased estimator; MuProp proposes an estimate

of this bias and corrects it.

Finally, RELAX (Grathwohl et al., 2018) and RE-

BAR (Tucker et al., 2017) are a combination of the two

broad methods and use a continuous relaxation to construct

a control variate.

Section 5 compares both continuous relaxation and control

variate methods to our Rao-Blackwellization.

A Rao-Blackwellization procedure for gradient estimation

was also applied in BBVI and “local expectation gradi-

ents” (Titsias K & Lázaro-Gredilla, 2015), but for a different

purpose. In their setting, the expectation is decomposed

over a multivariate (discrete or continuous) random variable

using iterated expectation. BBVI approximates each con-

ditional expectation by sampling (with a control variate),

while local expectation gradients compute each conditional

expectation analytically. This Rao-Blackwellization is or-

thogonal to our approach: while they consider multiple dis-

crete random variables, our approach focuses on a univariate

discrete with many categories.

The process of summing out a few terms and sampling the

remainder for gradient estimation has appeared in the con-

text of reinforcement learning (Titsias K, 2014; Liang et al.,

2018), though to our knowledge we are the first to make the

connection with Rao-Blackwellization. In MAPO (Liang

et al., 2018), a procedure to create a memory buffer of trajec-

tories for policy optimization, the terms with high rewards

(or small loss) are kept and summed. In contrast, we choose

to sum terms with high probability. In our setting, it is the

loss fη(z), not the probability, qη(z), that is expensive to

evaluate for all categories z.

Finally, the problem of having a large number of categories

also manifests in language models, and methods such as

noise contrastive estimation (Gutmann & Hyvärinen, 2012)

and hierarchical softmax (Morin & Bengio, 2005) have been

introduced. However, these methods are applied when the

normalizing constant for qη(z) is intractable. In our work,

we restrict ourselves to scenarios where qη(z) is normalized.

5. Experiments

In our experiments, we will consider applying the Rao-

Blackwellization procedure to either the REINFORCE esti-

mator,

g(z) = fη(z)∇η log qη(z) +∇ηfη(z),

z ∼ qη(z),
(22)

or REINFORCE with a control variate C,

g(z) = [fη(z)− C]∇η log qη(z) +∇ηfη(z),

z ∼ qη(z).
(23)

A simple choice of control variate that works well in practice

is to take C = fη(z
′) for an independent draw z′ ∼ qη . We

abbreviate this estimator as REINFORCE+.

Note that in both REINFORCE and REINFORCE+, g(z)
is unbiased for the true gradient. (In the second case, g(z)
is unbiased conditional on z′, and hence unconditionally

unbiased as well.)

5.1. Bernoulli latent variables

We fix a vector p = [0.6, 0.51, 0.48]⊤ and seek to minimize

the loss function

E
b1,b2,b3

iid
∼ Bern(σ(η))

{

3
∑

i=1

(bi − pi)
2
}

(24)

over η ∈ R, where σ(η) is the sigmoid function. Here, the

discrete random vector b = [b1, b2, b3]
⊤ is supported over

K = 23 = 8 categories. The optimal value of σ(η) is 1,

approached as η → ∞.

Figure 1 shows the performance of Rao-Blackwellizing RE-

INFORCE and REINFORCE+. We initialized η at η = −4,

so the sampling distribution has large mass at b = (0, 0, 0).
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Figure 1. The loss function at each iteration in the Bernoulli ex-

periments. Each line is an average over 20 trials from the same

initialization. Zero categories summed is the original estimator,

while eight categories summed returns the exact gradient.

The optimal distribution on the other hand should put all

mass at b = (1, 1, 1). In other words, we initialized the op-

timization procedure such that the mass is concentrated on

the wrong point. The Rao-Blackwellized gradient is there-

fore initially slightly slower than the original gradient, since

we are analytically summing the wrong category. However,

Rao-Blackwellization improves the performance of both

gradient estimators at the end of the path.

Figure 2 shows the variances of the gradient estimates at

η = 0 and η = −4, as a function of k, the categories an-

alytically summed. As expected, the variance decreases

as more categories are analytically summed. At η = 0,

the corresponding qη distribution is uniform, i.e., maxi-

mally anti-concentrated, so the variance reduction of Rao-

Blackwellization is not large. However, the gains are quite

substantial at η = −4, where qη is concentrated around the

point b = (0, 0, 0). In this case, analytically summing out

one category removes nearly all the variance.

5.2. Gaussian mixture model

For our next experiment, we draw N = 200 observations

(yn) from a d-dimensional Gaussian mixture model with

K = 10 components, taking d = 2.

zn
iid
∼ Categorical(π1:K), n = 1, . . . , N, (25)

µk
iid
∼ N (0, σ2

0Id×d), k = 1, . . . ,K, (26)

Figure 2. The distribution of gradient estimates from

REINFORCE+ in the Bernoulli experiments. We examine

the gradients at η = 0 and η = −4, as a function of k, the number

of categories summed. Summing out categories reduces variance.

The reduction is large at η = −4 where the variational distribution

is concentrated on just one category. (Note there is still some

random noise when we sum out all 8 categories here, because of

the random control variate.)

yn|zn, µ
iid
∼ N (µzn , σ

2
yId×d), n = 1, . . . , N. (27)

Here each µk is a Gaussian centroid and each zn is a cluster

membership indicator.

As exact inference of the posterior p(µ, z|y) is intractable,

we approximate it variationally (Blei et al., 2017) with the

mean-field family

q(µ,z) =
K
∏

k=1

q(µk)
N
∏

n=1

q(zn). (28)

Here

q(µk) = δ{µk = µ̂k}, (29)

q(zn) = Categorical (π̂n) , (30)

where δ{· = µ̂k} is the Dirac-delta function.

We then seek to minimize KL(q(µ, z)‖p(µ, z|y)) over the

variational parameters µ̂ and π̂. This is equivalent to maxi-
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mizing the ELBO

N
∑

n=1

Eq(zn;πn)

[

log
p(yn|µ̂, zn)p(zn)

q(zn)

]

+

K
∑

k=1

log p(µ̂k).

(31)

Note that the expectation over zn is a summation over

K = 10 categories. Figure 3 compares the performance of

unbiased stochastic gradients produced from REINFORCE+

to the Rao-Blackwellization of REINFORCE+ for optimiza-

tion of the ELBO in Equation (31).

Unlike the Bernoulli example, we are also optimizing pa-

rameters inside the expectation; specifically, in this case we

are jointly optimizing the variational mean parameters µ̂k

alongside the π̂n. We expect that more quickly learning the

latent categories zn aids the optimization process, since the

mean parameters depend on the cluster memberships.

We initialized the optimization with K-means. Figure 3

shows that Rao-Blackwellization improves the convergence

rate, with faster convergence when more categories are

summed. With summing just three categories, we nearly re-

cover the same ELBO trajectory of the exact gradient, which

sums all ten categories. We chose K = 10 as an example so

we can compare against the exact gradient; with larger K,

computing the exact gradient will become intractable and

stochastic methods such as ours will be required.

We also examine here the computational trade-off. Our

Rao-Blackwellized estimator with k categories summed

requires k + 1 evaluations of the original REINFORCE+

estimator. For a fairer comparison, we also consider the

benefits of variance reduction obtained from simple Monte-

Carlo sampling, where k + 1 samples of the REINFORCE+

estimator are averaged at each iteration. In this experi-

ment, Rao-Blackwellization yields better performance than

Monte-Carlo averaging. This is because for most observa-

tions, memberships are fairly unambiguous and so q(z) is

concentrated. This is the regime where our theory suggests

significant variance reduction using Rao-Blackwellization.

5.3. Generative semi-supervised classification

5.3.1. SEMI-SUPERVISED MODELS

The goal of a semi-supervised classification task is to pre-

dict labels y from x, but where the training set consists of

both labeled data (x, y) ∼ DL and unlabeled data x ∼ DU .

The approach proposed by Kingma et al. (2014) uses a vari-

ational autoencoder (VAE) whose latent space is joint over

a Gaussian variable z and the discrete label y. The training

objective is to learn a classifier qφ(y|x), an inference model

qφ(z|x, y), and a generative model pθ(x|y, z). On labeled

data, the variational lower bound is

log pθ(x, y) ≥ LL(x, y) (32)

Figure 3. Results for Gaussian mixture model experiment. (Top)

Simulated data. (Bottom) Solid lines display the negative ELBO

per iteration using REINFORCE+, for k categories summed. Zero

categories summed is the original REINFORCE+ estimator, while

10 categories summed returns the analytic gradient. Dashed lines

show performance when n ∈ {2, 4} draws of the REINFORCE+

estimator are averaged at each iteration to reduce variance. Each

line is an average over 20 trials from the same initialization.

:= Eqφ(z|x,y)[log pθ(x|y, z)+

log pθ(z) + log pθ(y)− log qφ(z|x, y)] (33)

On unlabeled data, the unknown label y is treated as a latent

variable and integrated out,

log pθ(x) ≥ LU (x) (34)

:= Eqφ(z|x,y)qφ(y|x)[log pθ(x|y, z)+

log pθ(z) + log pθ(y)−

log qφ(z|x, y)− log qφ(y|x)] (35)

= Eqφ(y|x)[L
L(x, y)− log qφ(y|x)] (36)

The full objective to be maximized is

J = Ex∼DU
[LU (x)] + E(x,y)∼DL

[LL(x, y)]

+ αE(x,y)∼DL
[log qφ(y|x)] (37)

where the third term is added for the classifier qφ(y|x) to

also train on labeled data. α is a hyperparameter which we

set to 1.0 in our experiments.

We take z to be a continuous random variable with a stan-

dard Gaussian prior. Hence, gradients can flow through

z using the reparametrization trick. However, y is a dis-

crete label. The original approach proposed by Kingma et

al. (2014) computed the expectation in Equation (36) by
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Figure 4. Results on the semisupervised MNIST task. Plotted is

test set negative ELBO evaluated at the MAP label. Paths are

averages over 10 runs from the same initialization. Vertical lines

are standard errors. Our method (red) is comparable with summing

out all ten categories (black).

exactly summing over the ten categories. However, most

images are unambiguous in their classification, so qφ(y|x)
is often concentrated on just one category. We will show

that applying our Rao-Blackwellization procedure with one

category summed gives results comparable to computing

the the full sum, more quickly.

5.3.2. EXPERIMENTAL RESULTS

We work with the MNIST dataset (Lecun et al., 1998). We

used 50 000 MNIST digits in the training set, 10 000 digits

in the validation set, and 10 000 digits in the test set. Among

the 50 000 MNIST digits in the training set, 5 000 were

randomly selected to be labeled, and the remaining 45 000
were unlabeled.

To optimize, we Rao-Blackwellized the REINFORCE es-

timator. We compared against REINFORCE without Rao-

Blackwellization; the exact gradient with all 10 categories

summed; REINFORCE+; Gumbel-softmax (Jang et al.,

2017); NVIL (Mnih & Rezende, 2016); and RELAX (Grath-

wohl et al., 2018).

For all methods, we used performance on the validation set

to choose step-sizes and other parameters. See Appendix

for details concerning parameters and model architecture.

Figure 4 shows the negative ELBO, −LL(x, y) from Equa-

tion (33), on the test set evaluated at the MAP label as a func-

tion of epoch. In this experiment, our Rao-Blackwellization

with one category summed (RB-REINFORCE) achieves

the same convergence rate as the original approach where

all ten categories are analytically summed. Moreover, our

method achieves comparable test accuracy, at 97%. Finally,

our method requires about 18 seconds per epoch, compared

to 31 seconds per epoch when using the full sum (Table 1).

In comparing with other approaches, we clearly improve

Table 1. Accuracies and timing results on semi-supervised MNIST

classification. Standard errors of test accuracies are over 10 runs

of each method. Standard deviations of timing are over the 100

epochs of 10 runs. Training was run on a p3.2xlarge instance on

Amazon Web Services.

Method test acc. (SE) secs/epoch (SD)

RB-REINFORCE 0.965 (0.001) 17.5 (1.8)

Exact sum 0.966 (0.001) 31.4 (3.2)

REINFORCE 0.940 (0.002) 15.7 (1.6)

REINFORCE+ 0.953 (0.001) 17.2 (1.7)

RELAX 0.966 (0.001) 29.8 (3.0)

NVIL 0.956 (0.002) 17.5 (1.8)

Gumbel-softmax 0.954 (0.001) 16.4 (1.7)

upon the convergence rate of REINFORCE. We slightly im-

prove on RELAX. On this example, REINFORCE+, NVIL,

and Gumbel-softmax also give results comparable to ours.

5.4. Moving MNIST

In this section, we use a hard-attention mechanism (Mnih

et al., 2014; Gregor et al., 2015) to model non-centered

MNIST digits. We choose this problem because, as will

be seen, the exact stochastic gradient is intractable due to

the large number of categories. However, only a few of the

categories will have significant probabilities.

Like the original VAE work (Kingma & Welling, 2014),

we learn an inference model qφ(z|x) and generative model

pθ(x|z), where z is a low-dimensional, continuous repre-

sentation of the MNIST digit x. Unlike the previous section,

we are no longer using the class label. However, we now

work with a non-centered MNIST digit, and in order to train

the inference and generative models, we must also infer the

pixel at which the MNIST digit is centered.

More precisely, our generative model is as follows. For each

image, we sample a two-vector representing the pixel at

which to center the original 28× 28 MNIST image:

ℓ ∼ Categorical(H ×W ). (38)

Here H and W are respectively the height and width, in

pixels, of the larger image frame on which the MNIST digit

will be placed. We take H = W = 68 in our experiments.

Next, we generate the non-centered MNIST digit as

z ∼ N (0, Id), (39)

xh,w|ℓ, z
ind
∼ Bernoulli(µ(z)[h− ℓ0, w − ℓ1]), . (40)

for h ∈ {0, ..., H − 1} and w ∈ {0, ...,W − 1}. Here µ
is a neural network that maps z ∈ R

d to a grid of mean

parameters µ(z) ∈ R
28×28. In Equation (40), we take

µ(z)[a, b] = 0 if (a, b) /∈ [0, 28]2.
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Figure 5. Examples of non-centered MNIST digits

In this way, x ∈ R
H×W is a random sample of an image

containing a single non-centered MNIST digit on a blank

background (Figure 5).

Hence, we need to learn not only the generative model

for an MNIST digit, but also the pixel at which the digit

is centered. Our two latent variables are zn and ℓn. We

find a variational approximation to the posterior using an

approximating family of the form

ℓn|xn ∼ Categorical(ζ(xn)), (41)

zn|xn, ℓn ∼ N (hµ(xn, ℓn), hΣ(xn, ℓn)), (42)

where ζ, hµ, and hΣ are neural networks. The appendix

details the architecture for the neural networks.

REINFORCE was too high variance to be practical

here, so we started with REINFORCE+ and its Rao-

Blackwellization. Here, we chose to sum the top five cat-

egories. We again compare with NVIL, Gumbel-softmax,

and RELAX. For all the methods, we use a validation set to

tune step-sizes and other parameters.

Figure 6 shows the negative ELBO on the test set evaluated

at the MAP pixel location as a function of epoch. RELAX

converged to a similar ELBO as our method, but did so

at a slower rate. While NVIL also converged quickly, it

converged to a worse negative ELBO than our method.

Gumbel-softmax did not appear to converge to a reason-

able ELBO. We believe that the bias of this procedure was

too high in this application. In particular, because we are

constrained to sampling discrete values for the pixel atten-

tion, we must use the straight-through version of Gumbel-

softmax (Bengio et al., 2013; Jang et al., 2017), which

suffers from even higher bias.

Our method is more computationally expensive per epoch

than the others (Table 2). However, the gains in convergence

are still substantive: for example, it takes about 44 seconds

for our method to reach a negative ELBO of 500, while it

takes RELAX about 110 seconds.

Our method performs best because it is the only one that

takes advantage of the fact that only a few digit positions

have high probabilities. Summing these positions analyti-

cally removes much of the variance.

6. Discussion

Efficient stochastic approximation of the gradient

∇ηEqη(z)[fη(z)], where z is discrete, is a basic problem

that arises in many probabilistic modelling tasks. We

Figure 6. Results on the moving MNIST task. Plotted is test set

negative ELBO evaluated at the MAP pixel location. Paths are

averages over 10 runs from the same initialization. Vertical lines

are standard errors. Our Rao-Blackwellization (red) with summing

out the top five categories exhibits the fastest convergence and

reaches a smaller negative ELBO than NVIL and REINFORCE+.

Table 2. Timing results on the moving MNIST task. Standard

deviations of timing are over the 50 epochs of 10 runs. Training

was run on a p3.2xlarge instance on Amazon Web Services.

Method secs/epoch (SD)

RB-REINFORCE+ 15.4 (2.3)

REINFORCE+ 8.9 (1.3)

RELAX 11.1 (1.6)

NVIL 9.5 (1.4)

Gumbel-softmax 8.7 (1.2)

have presented a general method to reduce the variance of

stochastic estimates of this gradient, without changing the

bias. Our method is grounded in the classical technique

of Rao-Blackwellization. Experiments on synthetic data

and two large-scale MNIST modeling problems show the

practical benefits of our variance-reduced estimators.

We have focused on the particular setting where z is a uni-

variate discrete random variable, which is relevant for many

applications. In other situations, multiple discrete variables

will naturally appear in the expectations being optimized.

Treating these as a single discrete variable over the Carte-

sian product of the sample spaces may make such problems

amenable to our Rao-Blackwellization approach.

In addition, many multivariate discrete distributions aris-

ing in modeling applications will be structured (e.g., the

discrete-space latent Markov chain of an HMM). Local

expectation gradients (Titsias K & Lázaro-Gredilla, 2015)

reduce high-dimensional expectations over these multivari-

ate discrete distributions to iterated univariate expectations

through appropriate conditioning on variable sets. Our tech-

nique can then be applied for variance reduction in comput-

ing the univariate expectations. This is an avenue of future

research.



Rao-Blackwellized Stochastic Gradients for Discrete Distributions

References

Bengio, Y., Leonard, N., and Courville, A. Estimating or

propagating gradients through stochastic neurons for con-

ditional computation. 2013. URL https://arxiv.

org/abs/1308.3432.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-

tional inference: A review for statisticians. Journal of

the American Statistical Association, 112(518):859–877,

2017.

Casella, G. and Robert, C. P. Rao-Blackwellisation of sam-

pling schemes. Biometrika, 83(1):81–94, 1996.

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., and Duve-

naud, D. Backpropagation through the void: Optimizing

control variates for black-box gradient estimation. In

International Conference on Learning Representations,

2018.

Gregor, K., Mnih, A., and Wierstra, D. Deep autoregres-

sive networks. In International Conference on Machine

Learning, 2014.

Gregor, K., Danihelka, I., Graves, A., Rezende, D., and

Wierstra, D. DRAW: a recurrent neural network for im-

age generation. In International Conference on Machine

Learning, 2015.

Gu, S., Levine, S., Sutskever, I., and Mnih, A. MuProp:

Unbiased backpropagation for stochastic neural networks.

In International Conference on Learning Representations,

2016.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-

mation: A new estimation principle for unnormalized

statistical models. In International Conference on Artifi-

cial Intelligence and Statistics, 2012.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-

tion with Gumbel-softmax. In International Conference

on Learning Representations, 2017.

Kingma, D. and Welling, M. Auto-encoding variational

Bayes. In International Conference on Learning Repre-

sentations, 2014.

Kingma, D. P. and Ba, J. Adam: a method for stochastic

optimization. In International Conference for Learning

Representations, 2015.

Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling,

M. Semi-supervised learning with deep generative

models. CoRR, abs/1406.5298, 2014. URL http:

//arxiv.org/abs/1406.5298.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, Nov 1998.

Liang, C., Norouzi, M., Berant, J., Le, Q., and Lao, N. Mem-

ory augmented policy optimization for program synthesis

with generalization. In Neural Information Processing

Systems, 2018.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete

distribution: A continuous relaxation of discrete random

variables. In International Conference on Learning Rep-

resentations, 2017.

Mnih, A. and Gregor, K. Neural variational inference and

learning in belief networks. In International Conference

on Machine Learning, 2014.

Mnih, A. and Rezende, D. J. Variational inference for Monte

Carlo objectives. In International Conference on Machine

Learning, 2016.

Mnih, V., Heess, N., Graves, A., et al. Recurrent models

of visual attention. In Advances in Neural Information

Processing Systems, 2014.

Morin, F. and Bengio, Y. Hierarchical probabilistic neural

network language model. In International Conference on

Artificial Intelligence and Statistics, 2005.

Ranganath, R., Gerrish, S., and Blei, D. M. Black box

variational inference. In International Conference on

Artificial Intelligence and Statistics, 2014.

Royle, J. A. N-mixture models for estimating population

size from spatially replicated counts. Biometrics, 60(1):

108–115, 2004.

Spall, J. C. Introduction to Stochastic Search and Optimiza-

tion. John Wiley & Sons, Inc., New York, NY, USA, 1st

edition, 2003.

Titsias K, M. Combine Monte Carlo with exhaustive search:

Effective variational inference and policy gradient rein-

forcement learning. In NIPS Workshop: Advances in

Approximate Inference, 2014.

Titsias K, M. and Lázaro-Gredilla, M. Local expectation

gradients for black box variational inference. In Neural

Information Processing Systems, 2015.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., and Sohl-

Dickstein, J. REBAR: Low-variance, unbiased gradient

estimates for discrete latent variable models. In Neural

Information Processing Systems, 2017.

Williams, R. J. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992.


