
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 5 2005, pages 582–588
doi:10.1093/bioinformatics/bti039

Sequence analysis

RAP: a new computer program for de novo identification
of repeated sequences in whole genomes
Davide Campagna, Chiara Romualdi, Nicola Vitulo,
Micky Del Favero, Matej Lexa, Nicola Cannata and Giorgio Valle∗
CRIBI, Università degli Studi di Padova, via Ugo Bassi 58b, I-35121 Padova, Italy

Received on May 4, 2004; revised on August 2, 2004; accepted on August 23, 2004

Advance Access publication September 16, 2004

ABSTRACT
Motivation: DNA repeats are a common feature of most genomic
sequences. Their de novo identification is still difficult despite being
a crucial step in genomic analysis and oligonucleotides design. Sev-
eral efficient algorithms based on word counting are available, but too
short words decrease specificity while long words decrease sensitivity,
particularly in degenerated repeats.
Results: The Repeat Analysis Program (RAP) is based on a new
word-counting algorithm optimized for high resolution repeat iden-
tification using gapped words. Many different overlapping gapped
words can be counted at the same genomic position, thus producing
a better signal than the single ungapped word. This results in bet-
ter specificity both in terms of low-frequency detection, being able to
identify sequences repeated only once, and highly divergent detection,
producing a generally high score in most intron sequences.
Availability: The program is freely available for non-profit organiza-
tions, upon request to the authors.
Contact: giorgio.valle@unipd.it
Supplementary information: The program has been tested on the
Caenorhabditis elegans genome using word lengths of 12, 14 and 16
bases. The full analysis has been implemented in the UCSC Genome
Browser and is accessible at http://genome.cribi.unipd.it.

INTRODUCTION
Repeated sequences are a common feature of most prokaryotic and
eukaryotic genomes and their identification is an essential step for
genome analysis and annotation.

The analysis of repeats can be essentially divided into three main
tasks: (1) de novo identification; (2) clustering similar or associ-
ated repeats; and (3) annotation and database management. The first
major advance in this field came with Repbase (Jurka et al., 1992), a
database of repeats that led to the development of computer programs
such as RepeatMasker (A.F.A.Smit and P.Green, unpublished data,
http://repeatmasker.genome.washington.edu), Censor (Jurka et al.,
1996) and MaskerAid (Bedell et al., 2000) that are still widely used
to identify and mask repeats in genomic sequences, by using the data
available from Repbase.

Many repeats tend to be little conserved during evolution,
thus making the identification of homologous sequences difficult,
both within the same genome and between genomes of different

∗To whom correspondence should be addressed.

organisms. Therefore, as more and more genomic sequences are
identified, the necessity for new tools that are able to detect repeats
is becoming crucial. This paper will focus specifically on de novo
identification, while the problem of clustering and classification of
repeats has recently been addressed by others (Volfovsky et al., 2001;
Bao and Eddy, 2002).

So far, two main strategies have been used to address the
problem of de novo repeat identification: similarity search and
word counting. The program RECON (Bao and Eddy, 2002) uses
WU-BLAST (Altschul et al., 1990, W.Gish, unpublished data,
http://blast.wustl.edu) for the initial detection of repeats. However,
this and other similarity search programs were designed to perform
pairwise alignment and are not very practical for de novo repeat
identification, in particular for an all-against-all comparison of large
multimegabase genomes.

Word counting is an alternative way to approach the problem. The
rationale is that a genomic region containing a high number of fre-
quent words is most likely a repeat. Since short words are not very
significant, these approaches tend to consider long words. But dir-
ect word indexing is impracticable for word lengths above 15–16
bases; therefore, more sophisticated algorithms and data structures
are used. Suffix arrays and optimized suffix trees (McCreight, 1976;
Manber and Myers, 1993; Kurtz, 1999) are particularly useful for
this purpose and have been recently implemented in programs for
repeat analysis, such as REPuter (Kurts et al., 2001) and FORRe-
peats (Lefebvre, 2002). One of the main drawback of these methods is
the high memory requirement; however, this has been partially over-
come by the application of an elegant compression strategy based on
the Burrows–Wheeler transform (Burrows and Wheeler, 1994) that
allows the analysis of the entire human genome (>3 Gb) by counting
its constituent words (Healy et al., 2003).

The word length is a very critical parameter in these studies: short
words are found too frequently and are not indicative per se of a sig-
nificant repeat. On the other hand, long words (for instance 30 bases
words in a 1 Gb genome) are quite significant, but they are unsuit-
able to detect degenerated repeats. It has been noted that ‘several
regions annotated as repeats by the UCSC browser have very low
word counts, even with 15mer. This is not unexpected as these meth-
ods are based on exact matches and some repeats are very ancient
and highly diverged’ (Healy et al., 2003).

Therefore, the main issue is to find the best compromise between
long words (resulting in high specificity and low sensitivity) and short
words (resulting in low specificity and high sensitivity). This is a very

582 © The Author 2004. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022

http://genome.cribi.unipd.it
http://repeatmasker.genome.washington.edu
http://blast.wustl.edu


De novo identification of repeats with RAP

difficult task because we would like to guarantee both specificity
and sensitivity, but methods based on exact word counting cannot
improve one aspect without deteriorating the other.

The Repeat Analysis Program (RAP) that we describe in this paper
is based on a new algorithm optimized for high resolution repeat
analysis. The program works on direct indexing of gapped words,
thus allowing the identification of exact as well as inexact patterns.
Since many different overlapping gapped words can be produced
and counted at any genomic position, the specificity of the signal
is considerably improved. Furthermore, the indexing algorithm has
been designed to count double-stranded DNA words, using the same
index for a word and for its inverse complementary sequence.

SYSTEM AND METHODS
The general strategy that we explored in this work is based on counting the
occurrences of all the words of a given length in a genomic sequence; the final
aim being the de novo identification of repeated sequences, with a sensitivity
that permits to find regions duplicated as little as one time. Since there are four
possible bases, the number of different words of a given length w will be 4w .
If we set a counter for each possible word we can count all the occurrences
very rapidly, in a time proportional to the length of the genome, using 4w

counters. Even if we use single-byte counters, relatively short words of 16
bases would require 4 GB of addressable memory (RAM), that is, the upper
limit for 32 bits computers; while a word length of 20 bases would require
a terabyte of RAM, which is seldom available even in the most powerful
computers.

Given the above problems together with the objective of developing a
strategy that can be applied to gigabase-long genomes, this may seem a
worthless approach. In fact, we should expect that many words of 16 bases
will be found by chance in multiple copies within the genome.

For instance, in a random DNA sequence with equal base composition,
3 billion bases long (i.e. the typical length of one strand of the mammalian
genome), each different 16 base word will be found on average 0.7 times;
this is because there are 416 (i.e. ∼4.3 billion) different words of 16 bases.
Therefore, according to the Poisson distribution we should expect that each
word has a probability of 1 − e−0.7 (i.e. ∼50%) to be present at least once.

Similarly, according to the Poisson distribution, it can be calculated that
more than 2000 different 16 base words are expected to be present at a mul-
tiplicity of 8 or above. Therefore, considering such a high background, if a
word should occur once more because there is a repeat, this would not pro-
duce a distinguishable signal. The statistical methods described in this paper
are based on a new strategy that allows estimation of the repetitiveness of any
genomic region, overcoming the above problem.

The basic strategy of RAP
Figure 1 illustrates the basis of the strategy described in this paper, which
allows the identification of repeats in a genomic sequence n bases long, using
words where w ≈ log4(n). That would be 15–16 bases for mammalian gen-
omes. If w = log4(n) then each word is found on average a single time and
the probability that a specific word is found at least once is ∼63%, independ-
ently of the length of the genome, according to the Poisson distribution. After
the genomic sequence is read and the word counters updated, an image of the
genome is created where at each position the value of the counter of the word
is reported that occurs at that point in the sequence (Fig. 1A and C).

As expected, no appreciable increase in counts can be detected in corres-
pondence to the repeated region (Fig. 1A and C, around position 2000); in
fact, the repeated region contains words repeated up to six times, while other
regions have words repeated even seven or eight times. The signal improves if
we consider a window of 50 bases (Fig. 1B and D), but still remains quite low.

It should be noticed that panel A in Figure 1 is very similar to panel C (and
so are the related panels B and D), despite the fact that in the first case there is
a 100 base repeat in a 64 kb (48 bases) sequence, while in the second case the

100 base repeat is in a 1 Mb (410 bases) sequence. In both cases w = log 4(n)

and therefore the chance to find a repeated word is the same, thus producing
a very similar figure.

It can be seen from Figure 1B and D that the signal is quite low when
w ≈ log4(n), even if we use a 50 base wide window. A possible solution to
improve the signal could be the increase in the window size, but this would
compromise the resolution that for many purposes (for instance oligo design)
should be as sharp as possible. To overcome this problem we also considered
gapped words that allow multiple independent reading on the same position,
thus increasing the signal over the background without further extending the
window size.

Differently from ungapped words that are made up by a stretch of contigu-
ous bases, gapped words are assembled from the bases found at the positions
defined by a given pattern. For instance, the binary pattern 1011001101 will
consider the position 1, 3, 4, 7, 8 and 10, producing a different word from those
found at the same position using other patterns (Valle, 1993). If a sequence
is an exact repeat, then all the gapped words produced by the different pat-
terns will be over-represented and contribute to improve the signal over the
background.

Figure 1E and F shows the analysis of the same random sequence of
Figure 1A and B, considering 120 different patterns generated with 8 defined
bases and 3 undefined bases; it can be seen that the signal becomes clearly
visible, particularly in Figure 1F, with a 50 base window. The RAP index is
calculated from the sum of occurrences of gapped and ungapped patterns, as
further described in the Algorithm section.

Given the above conjecture, the approach based on counting log4(n) long
words has several interesting potentials: (1) it is sensitive enough to detect
single repeats; (2) the combination of short word statistics and gapped patterns
allows us to also see inexact repeats; (3) the signal will increase with the
number of occurrences, with the level of similarity and by optimizing the
window size in function of the length of the repeat; and (4) both execution
time and memory requirement are roughly proportional to the genome length.

Computer system and availability
For the development of the algorithm and the implementation of RAP we
used a 2 GHz Athlon bi-processor computer with 4 GB RAM, running
under the Linux operating system. On such a system we could perform all
the Caenorhabditis elegans analysis described in this paper and, using the
same system, we are currently extending our analysis to mammalian gen-
omes. More recently, we have successfully optimized and implemented our
algorithm on a 64 bits Appro 110H-A1 1U Dual Opteron 146 workstation,
equipped with 8 GB RAM. The speed of elaboration on the 64 bits machine
is about 150 Mb/min for each considered pattern (see Algorithm section). All
the computer programs were written in the C language and are available upon
request to academic users. The results of the analysis can be accessed at our
UCSC Genome Browser mirror site (http://genome.cribi.unipd.it).

ALGORITHM

A data structure for counting dsDNA words
Genomic DNA is double-stranded (dsDNA). For any subsequence
on one strand there is an inverse-complementary sequence (hereafter
referred to as inv/comp) on the other strand. For the purpose of the
RAP program, it would not make sense to count a word and its
inv/comp as two separate items, being actually the same dsDNA
word. In fact, it would be detrimental for both memory requirement
and execution time.

RAP organizes the word counters as a multi-array data structure
(dsDNA data structure) optimized for pointing to dsDNA words.
The current version of RAP only works with word containing an
even number of bases. The number of required word counters is
(4w + 2w)/2, because each pair of inv/comp words uses a single
counter, with the exception of double strand palindromes, where

583

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022

http://genome.cribi.unipd.it


D.Campagna et al.

Fig. 1. Basic strategy used by RAP. (A) Analysis of a random DNA sequence of 65 536 bases, with an exact repeat of 100 bases at position 2000. After counting
the occurrences of all the 8-base words, the value of the corresponding word counters are reported at each position. Only the first 4000 bases are shown in all
six panels. (B) As in (A), but each position shows the sum of a 50 bases window. (C and D) Analysis of a random sequence of 1 Mb, with an exact repeat of
100 bases at position 2000 and word length of 10 bases. The results are very similar to A and B since in both cases w = log4(n) and therefore the chance to
find a repeated word is the same. (E) Data obtained from the sum of 120 gapped patterns, as described in the text. (F) As in (E), but each position shows the
sum of a 50 bases window. The signal corresponding to the repeat becomes very evident and is used for the RAP index (see text).

word and inv/comp coincide. Each word has an associated index that
is calculated as follows:

index = bw−14w−1 + bw−24w−2 + · · · + b141 + b040,

where b indicates the value of the base that is 0, 1, 2 and 3, respect-
ively for A, C, G and T, starting from position 0 (rightmost) to position
w − 1.

At every genomic position RAP calculates the indexes of both word
and inv/comp, then it takes only the index with the lower value and
increments the corresponding counter. However, the actual indexing
method is more complex because each index is divided into two parts,
each related to half word, as described below.

Figure 2 displays a schematic diagram showing the indexes used
by the 256 words of 4 bases. Each word is divided into two half-word
‘nibbles’. The dots indicate the words whose indexes are lower than
their inv/comp, or equal in the case of the palindromic words. There-
fore, if a word is without dot then its inv/comp should be used instead.
It is relevant to notice that all the palindromic words correspond to
the terminal dot of each column.

Fig. 2. Schematic diagram of the 256 words of 4 bases, divided into two
half-word ‘nibbles’. The dots indicate that the index of one word is smaller
than its inv/comp, or equal in the case of the palindromic words.

584

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022



De novo identification of repeats with RAP

n

w w

Fig. 3. Flow chart showing the main steps of the RAP program. The length of the genome is indicated by n, while the word size by w.

A number of 2w arrays is set before the counting starts. Each
array contains the counters corresponding to the words ending with
the same nibble (the second nibble); therefore, in the example of
Figure 2 each array corresponds to one column of dots. In Figure 2
it can be seen that each column of dots has a different size, ranging
from 1 to 2w . The dots are always starting from position zero and
continue uninterruptedly until the last dot. Therefore, the size of each
array can be easily calculated from the inv/comp nibble because, as

mentioned above, each column ends with a palindromic sequence
and therefore the last element will correspond to the inv/comp of the
second nibble. For instance, the array number 2 will count all the
words ending with ‘AG’; the last element corresponds to ‘CT’ row
(the inv/comp of ‘AG’) whose index is 7. Therefore, considering that
the numbering starts from zero, the array 2 will be set to contain
8 counters. The same procedure can be applied to any even-length
word, while it would require a slight adaptation for odd-length words

585

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022



D.Campagna et al.

Fig. 4. The 28 possible symmetric patterns generated by 12 defined bases
(dots) and 4 undefined bases. A gapped word of 12 defined bases is read from
the genome using the 12 positions indicated by the dots.

in which palindromes are not possible and the number of required
indexes is (4w)/2.

As mentioned above, at every genomic position RAP calculates
the index of the word starting at that position, considering the bases
defined in the current gapped pattern (see next section). The index
is calculated as two half-word nibbles, as shown in the right panel
of Figure 3. To determine whether the actual word or its inv/comp
has a lower index, RAP uses a lookup table. Although in principle
it would be possible to set up a lookup table for each of the 4w

words, this would require more memory than the word counters.
Moreover, the dsDNA data structure works with the two half-word
indexes, therefore, instead of a full-word lookup table RAP uses a
nibble lookup table, whose size is only 2w . As shown in Figure 3,
it is enough to compare the high nibble with the inv/comp of the
low nibble to decide whether the actual word or its inv/comp should
be used.

Once the high and low nibbles have been calculated, the corres-
ponding counter is incremented: the low nibble defines the array,
while the high nibble defines the position within the array.

This data structure has several advantages: (1) both word and
inv/comp are considered as the same item; (2) indexes can be cal-
culated extremely rapidly during the time-consuming genomic scan,
without requirements for additional arithmetic operations; (3) there
is no waste of memory as all the memory allocated is actually used
for the counters and (4) most operating systems require the memory
of an array to be contiguous, therefore having the counters divided
into many small arrays, allows a better allocation of the available
memory.

Generation of symmetric gapped patterns
The potential of using gapped pattern to increase the sensitivity of
the signal is one of the main features of RAP and has already been

mentioned in the previous section describing the basic strategy of the
program. Unfortunately, gapped patterns and inv/comp words are not
easily compatible because the complementarity must also include
the pattern of gaps that must remain the same on both strands. To
overcome this problem we use only symmetrical gapped patterns,
as shown in Figure 4 where each line represents a pattern with 12
defined bases (shown as dots) and up to 4 undefined bases.

The gapped patterns must satisfy two main conditions: (1) they
must be symmetric in the region included between the first and the
last defined base and (2) the first defined base must always occupy the
first position to avoid counting the same pattern twice. The symmetric
patterns are obtained by a simple algorithm that generates all the
possible half patterns and produces symmetric full patterns by joining
a half pattern to its mirror image.

Even if only symmetric patterns are considered by RAP, the num-
ber of possibilities is quite high. For instance, with 16 defined bases,
the number of possible symmetric patterns is 8, 44, 164, 494, 1286
and 3002, respectively for 2, 4, 6, 8, 10 and 12 undefined bases.

Calculation of the RAP index
The RAP index is calculated for each position of the genome, essen-
tially as indicated in Figure 3. By default, the actual value of the RAP
index is normalized by dividing the observed counts by the average
value expected in a random DNA sequence.

Alternative modes have also been investigated, giving interesting
results; for instance, the possibility that only the highest scoring
gapped word is considered at every genome position. Some of these
alternative modes have been implemented in the current release of
the program and can be selected at the command line.

IMPLEMENTATION
The RAP program is written in C language. It takes as input the gen-
omic sequence as well as several parameters defining the word length
and the type of analysis. By defaults, it calculates the RAPindex as
described in the previous sections. Alternative modes of analysis are
also possible, including the possibility of recording the highest or
lowest counts rather than the sum of the counters. As an output, RAP
produces a binary file containing the value of each genomic base.

The bintosql script is used to read the binary file produced by RAP
and to create SQL tables that can be directly integrated into the UCSC
genome browser (Kent et al., 2002).

RESULTS AND DISCUSSION
As mentioned in the introduction, repeat analysis algorithms based
on word counting are very much affected by the word size. Here,
we show that the strategy of generating different gapped words at
the same genomic position is very effective in improving the quality
of the signal. Short words can actually produce better results than
long words because they can improve the detection of degenerated
sequences in which long stretches of exact matches can be very rare.

A comparison of the results obtained with different word lengths
is shown in Figure 5 where words of 12, 14 and 16 defined bases
were used to calculate the RAP index at every genomic position of
C.elegans. Each profile was obtained adding up the results from 200
gapped patterns at every position.

The top panel of Figure 5 shows a typical region of the C.elegans
genome. All repeated regions identified by RepeatMasker have evid-
ent signals in the RAP12 and RAP14 tracks, while the RAP16 signal
appears lower, but still indicative of most repeats. It can also be

586

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022



De novo identification of repeats with RAP

Fig. 5. Analysis of the RAP index on three regions of chromosome I (top panel) and chromosome II (central and bottom panels) of C.elegans, as shown by
the UCSC genome browser. The numbers at the top of each panel indicate the position on the chromosome; the GenBank tracks indicate predicted genes.
The RAP 16, 14 and 12 tracks show the actual results obtained with words of 16, 14 and 12 bases, while RAP12–50 shows the average score in a 50 base
long window. For these analysis 200 gapped patterns were considered. At the bottom of each panel are reported the repeats found by RepeatMasker and by
TandemRepeatFinder, as annotated on the UCSC genome browser. Further details are given in the text.

appreciated that different parts of each repeat can be more con-
served than others, resulting in peaks of the RAP indexes. It must
be noted that corresponding to the five exons (thick boxes in the
GenBank track) the RAP signals become practically absent. This is
better appreciated in the RAP12–50 track where the average values
of RAP12 are calculated in a window of 50 bases.

Although the C.elegans genome has been extensively studied and
annotated, it can be seen that some repeated regions are not yet

reported. Two examples of such repeated regions are shown in the
central and bottom panels of Figure 5. In the central panel is clearly
evident a region containing two genes with a similar structure, going
in the opposite direction. A closer analysis revealed that the two
genes are identical, encoding a protein containing the Hsp70 motif.

An interesting argument is how much the repeats found by
RAP correspond to those detected by RepeatMasker, available
in the C.elegans genome browser. It should be considered that

587

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022



D.Campagna et al.

Fig. 6. Finding repeats in C.elegans genome. RAP identifies 38% the genome
as repetitive, RepeatMasker (RM) 11.3% and TandemRepeatFinder (TRF)
3.7%. Only a small fraction of the sequences recognized by RM and TRF
were not recognized by RAP (0.5 and 0.1%, respectively). The following
parameters were used for the RAP program: 16 bases word length, 200
gapped/ungapped patterns and 300 counts threshold in a single base win-
dow. A filter was set to lower the noise due to the different ending of the
repeats. All the percentages refer to the whole genome.

RepeatMasker is only able to identify repeats that have already been
characterized. Therefore, a comparison of the results obtained from
the two programs does not measure the performance of RAP against
RepeatMasker, but rather RAP against known repeats. Another point
is that RAP does not answer the question whether a sequence is a
repeat or not, but how much it is repetitive. Therefore, the concept
of repeat is not qualitative as in the case of RepeatMasker (‘Is this
local sequence one of the specific repeats that I know?’), but quant-
itative (‘How frequent in the genome are the gapped and ungapped
words present in this local sequence?’). As a consequence, the level
of repetitivity depends very much on the parameters used by the
program.

Despite the above considerations, we have compared the results
obtained by RAP with those of TandemRepeatFinder (Benson, 1999)
and RepeatMasker. It can be seen (Fig. 6) that the sensitivity of RAP
is very high, being able to detect the vast majority of the known
repeats, while the small percentage of sequences not detected by RAP
is often due to short extraneous subregion embedded within known
repeats. Interestingly, RAP finds many highly repetitive regions that
are not detected either by RepeatMasker or by TandemRepeatFinder.
From a preliminary analysis, these regions correspond in many cases
to paralogous genes and other repetitive elements that have not yet
been characterized.

Considering that the genome of C.elegans is ∼100 Mb long and
that there are 134 225 920 different dsDNA words of 14 bases, we
can conclude that a word length producing a number of possible
dsDNA words close to the length of the genome (redundancy ≈ 1)

is suitable for the identification of repeated regions. However, words
of 12 bases produce informative results (Fig. 5). Since there are
only 8 390 656 possible dsDNA words of 12 bases, in this case
the redundancy is only 0.08. Therefore, we think that any value of
redundancy between 0.1 and 1 should be suitable for an informative
analysis.

If we consider a typical mammalian genome of 3 Gb, a word length
of 14 bases would probably be too short as it corresponds to a redund-
ancy of ∼0.05. However, a word length of 16 bases (2 147 516 416
different dsDNA words) will give a redundancy of 0.7, which should
produce very good results. Therefore, we can predict that RAP will
be suitable to perform repeat analysis in mammalian genomes using
a word length of 16 bases.

In conclusion, the algorithm presented in this paper when, com-
pared with other word counting algorithms, offers the possibility to
increase the sensitivity and resolution of repeat analysis by perform-
ing multiple reading at the same genomic position, including gaps in
the counted words. This strategy, in combination with the new data
structure for counting dsDNA words, has proved very effective for
the purpose of de novo identification of repeats.

ACKNOWLEDGEMENT
The authors wish to acknowledge the support of MIUR, Progetto
Finalizzato ‘Genomica Funzionale’. D.C. was supported by the
Italian Telethon Foundation (Grant B57.1), N.C. is in part supported
by the grant FIRB-RBNE01F5WT_007.

REFERENCES
Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990) Basic local

alignment search tool. J. Mol. Biol., 215, 403–410.
Bao,Z. and Eddy,S.R. (2002) Automated de novo identification of repeat sequence

families in sequenced genomes. Genome Res., 12, 1269–1276.
Bedell,J.A., Korf,I. and Gish,W. (2000) MaskerAid: a performance enhancement to

RepeatMasker. Bioinformatics, 16, 1040–1041.
Benson,G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic

Acids Res., 27, 573–580.
Burrows,M. and Wheeler,D.J. (1994) A block sorting lossless data compression

algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, CA.
Healy,J., Thomas,E.E., Schwartz,J.T. and Wiegler,M. (2003) Annotating large genomes

with exact word matches. Genome Res., 13, 2306–2315.
Jurka,J., Walichiewicz,J. and Milosavljevic,A. (1992) Prototypic sequences for human

repetitive DNA. J. Mol. Evol., 35, 286–291.
Jurka,J., Klonowski,P., Dagman,V. and Pelton,P. (1996) CENSOR—a program for iden-

tification and elimination of repetitive elements from DNA sequences. Comput.
Chem., 20, 119–122.

Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H., Zahler,A.M. and
Haussler,D. (2002) The human genome browser at UCSC. Genome Res., 12,
996–1006.

Kurtz,S. (1999) Reducing the space requirement for suffix trees. Software Pract.
Esperince, 29, 1149–1171.

Kurtz,S., Choudhuri,J.V., Ohlebusch,E., Schleiermacher,C., Stoye,J. and Giegerich,R.
(2001) REPuter: the manifold applications of repeat analysis on a genomic scale.
Nucleic Acids Res., 29, 4633–4642.

Lefebvre,A., Lecroq,T., Dauchel,H. and Alexandre,J. (2002) FORRepeats: detects
repeats on entire chromosomes and between genomes. Bioinformatics, 19,
319–326.

Manber,U. and Myers,E.W. (1993) Suffix array: a new method for on-line string searches.
SIAM Journal of Computing, 22, 935–948.

McCreight,E.M. (1976) A space-economical suffix tree construction algorithm. J.
Algorithms, 23, 262–272.

Valle,G. (1993) Discover 1: a new program to search for unusually represented DNA
motifs. Nucleic Acids Res., 21, 5152–5156.

Volfovsky,N., Haas,B.J. and Salzberg,S.L. (2001) A clustering method for repeat
analysis in DNA sequences. Genome Biol., 2, RESEARCH0027.

588

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/5/582/219976 by guest on 20 August 2022


