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Abstract—End-to-end congestion control mechanisms have been
critical to the robustness and stability of the Internet. Most of to-
day’s Internet traffic is TCP, and we expect this to remain so in the
future. Thus, having “TCP-friendly” behavior is crucial fo r new
applications. However, the emergence of non-congestion-controlled
realtime applications threatens unfairness to competing TCP traffic
and possible congestion collapse.

We present an end-to-end TCP-friendly Rate Adaptation Pro-
tocol (RAP), which employs an additive-increase, multiplicative-
decrease (AIMD) algorithm. It is well suited for unicast playback
of realtime streams and other semi-reliable rate-based applications.
Its primary goal is to be fair and TCP-friendly while separat ing net-
work congestion control from application-level reliability.

We evaluate RAP through extensive simulation, and conclude
that bandwidth is usually evenly shared between TCP and RAP traf-
fic. Unfairness to TCP traffic is directly determined by how TCP
diverges from the AIMD algorithm. Basic RAP behaves in a TCP-
friendly fashion in a wide range of likely conditions, but we also
devised a fine-grain rate adaptation mechanism to extend this range
further. Finally, we show that deploying RED queue management
can result in an ideal fairness between TCP and RAP traffic.

I. I NTRODUCTION

The Internet has recently been experiencing an explo-
sive growth in the use of audio and video streaming.
Such applications aredelay-sensitive, semi-reliable and
rate-based. Thus they require isochronous processing
and quality-of-service (QoS) from the end-to-end point
of view. However, today’s Internet does not attempt to
guarantee an upper bound on end-to-end delay or a lower
bound on available bandwidth. As a result, the quality of
delivered service to realtime applications is neither con-
trollable nor predictable. Lack of support for QoS has
not prevented rapid growth of realtime streaming appli-
cations and this is expected to continue. Many of these
applications playback stored video or audio for a client
over the network. Examples include continuous media
servers, digital libraries, distant learning and shopping.
These playback clients can afford to slightly delay the
playback point and buffer some data to partially absorb
variation of the network bandwidth and end-to-end delay.

This work was supported by DARPA under contract No. DABT63-
95-C0095 and DABT63-96-C-0054 as part of SPT and VINT projects.

In a shared network such as the Internet, all end-
systems are expected to react to congestion by adapting
their transmission rates, to avoid congestion collapse and
to keep network utilization high[6]. Another important is-
sue is inter-protocol fairness: the rate adjustment should
result in a fair share of bandwidth for all the flows that
coexist along the same path. Applications that adapt their
transmission rates properly and promptly are known as
“good network citizens”. Since a dominant portion of
today’s Internet traffic is TCP-based, it is crucial that
realtime streams perform TCP-friendly congestion con-
trol. By this, we mean that a realtime flow should ob-
tain approximately the same average bandwidth over the
timescale of a session as a TCP flow along the same path
under the same conditions of delay and packet loss [13].

We have been working on an architecture (fig. 1) for de-
livery of layered-encoded stored realtime streams over the
Internet[20]. Our goal is to make realtime playback appli-
cations be good network citizens. A typical target applica-
tion could be a web-server or a video-on-demand server
that provides access to a variety of multimedia streams
for a large number of heterogeneous clients. The idea
is to separate congestion control from error (and qual-
ity) control because the former depends on the state of
the network while the latter is application specific. The
server’s transmission rate is continuously adjusted by the
Rate Adaptation Protocol (RAP) in a TCP-friendly fash-
ion. The RAP module is exclusively in charge of con-
gestion control and loss detection. The layer manager
adapts the quality of transmitted streams based on the rate
specified by the RAP module. There are many ways to
adjust the quality, but the one we are investigating is to
use layered encoding. The layer manager tries to deliver
the maximum number of layers that can fit in the avail-
able bandwidth. Rate adaptation happens on a timescale
of round-trip times but layers are added and dropped on
a longer timescale by using receiver buffering to accom-
modate temporary mismatches between transmission and
consumption rates. Buffering at the client side also pro-
vides the opportunity for selective retransmission as de-
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Fig. 1. RAP in a typical end-to-end architecture for realtime playback applications in the Internet

termined by the retransmission manager. Note that the ag-
gregate bandwidth used by the server, including retrans-
mission, should not exceed the bandwidth that is specified
by RAP. This approach copes with bandwidth heterogene-
ity among clients without recoding the stream for each
client.

Currently, most Internet realtime applications lack end-
to-end congestion control or are not TCP-friendly. Wide
deployment of these applications will have severe nega-
tive impact, ranging from unfairness to competing TCP
traffic to the potential for congestion collapse. One so-
lution would be to make realtime flows use reservations
or differentiated service. However, even if such services
become widely available, there will remain a significant
group of users who are interested in using realtime ap-
plications at low cost. Even in a network that supports
reservation, different users that fall into the same class of
service or share a reservation still interact as in best effort
networks. Thus we believe that congestion control for
these applications is critical for the health of the Internet.

This paper presents the design and evaluation of the
RAP protocol through simulation. RAP is an end-to-end
rate-based congestion control mechanism that is suited
for unicast playback of realtime streams as well as other
semi-reliable Internet applications. We are also investi-
gating the use of RAP as part of a reliable multicast con-
gestion control scheme. The goals of RAP are to be well-
behaved and TCP-friendly.

It has been shown that the Additive Increase and Mul-
tiplicative Decrease (AIMD) algorithm efficiently con-
verges to afair state [4]. RAP adopts an AIMD algorithm
for rate adaptation to achieve inter-protocol fairness and
TCP-friendliness. RAP performs loss-based rate control
and does not rely on any explicit congestion signal from
the network since packet loss seems to be the only fea-
sible implicit feedback signal in the Internet due to the
presence of competing TCP traffic. However, if the net-
work supported explicit congestion signaling, RAP could

exploit this to behave more efficiently.
We extensively evaluated performance of RAP through

simulation. Our results show that RAP is TCP-friendly
as long as TCP’s congestion control is dominated by the
AIMD algorithm. The more TCP’s congestion control
diverges from AIMD, the less bandwidth is obtained by
the TCP traffic. We identified the contribution of TCP’s
inherent limitations to this unfairness. Our observations
lead us to conclude that RAP behaves in a TCP-friendly
fashion over a wide range of scenarios. To further im-
prove RAP, we have also devised a fine-grain rate adap-
tation mechanism that enables it to exhibit TCP-friendly
behavior over an even wider range. Our results show that
deploying RED [7] queue management results in an ideal
fairness between TCP and RAP traffic. Finally, we inves-
tigated self-limiting issues in RAP and did not observe
any evidence that implies inherent instability in RAP.

The rest of this paper is organized as follows. We re-
view some of the related work in section II. In section III,
we present various aspects of the RAP protocol. Detailed
description of our simulation results are presented in sec-
tion IV. Finally, section V concludes the paper and dis-
cusses some of our future work.

II. RELATED WORK

Congestion control is not a new topic and a large body
of work has accumulated describing various mechanisms.
However, the critical work for TCP-friendly congestion
control mechanism in best-effort networks is somewhat
more limited.

Jacob et al.[10] propose an architecture for Internet
video applications that uses a TCP variant modified so
as not to perform retransmission. However, no details of
these modifications are given, so it is difficult to tell how
these changes affect performance. Moreover, this scheme
still inherits TCP’s bursty behavior.

A common approach for rate adaptation is adaptive en-
coding through the adjustment of codec quantization pa-
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rameters based on state of the network. Many of these
studies have not addressed inter-protocol fairness; instead
they strive to improve the perceptual quality. However,
work in [23] proposes an adaptive coding scheme, using
the formula presented in [13] and [15] that captures the
macroscopic behavior of TCP. This shows promise, but it
has yet to be shown that this formula or the more detailed
variant of it in [18] can be used in a wide range of situa-
tions without introducing possible large-scale oscillatory
behavior. Moreover, it is CPU-intensive for a server to
adaptively encode a large number of streams simultane-
ously for all active clients.

Cen et al.[2] present the SCP protocol for media
streaming. This is a modified version of TCP that per-
forms TCP Vegas-like rate adjustment in steady state.
Their results show that SCP is not TCP-friendly. This
may be due to its rate adjustment mechanism using the
shortest RTT that has been measured since this may
widely vary for different flows.

There are many commercial media streaming players
that are currently deployed over the Internet such as Re-
alplayer[17] and Microsoft Netshow[9]. Although they
claim to be adaptive, no analysis is available to verify any
claims. Work in [3] describes the VDP protocol that is
deployed in Vosaic. Their adaptation algorithm is clearly
not TCP-friendly.

Our study differs from previous studies of realtime
streaming over best-effort networks. We develop a rate
adaptation mechanism that will result in inter-protocol
fairness and TCP-friendly behavior. The majority of pre-
vious work either does not address fairness, or has not
examined sufficient cases to find the bounds where they
cease to be fair(e.g. [22]).

III. T HE RAP PROTOCOL

The RAP protocol machinery is mainly implemented
at the source. A RAP source sends data packets with
sequence numbers, and a RAP sink acknowledges each
packet, providing end-to-end feedback. Each acknowl-
edgment (ACK) packet contains the sequence number of
the corresponding delivered data packet. Using the feed-
back, the RAP source can detect losses and sample the
round-trip-time (RTT). To design a rate adaptation mech-
anism, three issues must be addressed [12]. These are the
decision function , the increase/decrease algorithm, and
thedecision frequency.

Decision Function

The rate adaptation scheme can be summarized by its
decision function as follow:� If no congestion is detected,periodically increase the
transmission rate;

� If congestion is detected, immediately decrease the
transmission rate.
RAP considers losses to be congestion signals, and uses
timeouts, and gaps in the sequence space to detect loss.

Similar to TCP, RAP maintains an estimate of RTT,
calledSRTT , and calculates the timeout based on the
Jacobson/Karel’s algorithm. However, it detects the time-
out losses differently because RAP isnot ack-clocked.
Unlike TCP, a RAP source may send several packets be-
fore receiving a new ACK to update the RTT estimate.
Thus RAP couples the timer-based loss detection to the
packet transmission. Before sending a new packet, the
source checks for a potential timeout among the outstand-
ing packets using the updated value of theSRTT esti-
mate.

The ACK-based loss detection mechanism in RAP is
based on the same intuition as fast-recovery in TCP. If
a RAP source receives an ACK that implies delivery of
three packets after the missing one, the packet is consid-
ered lost. RAP requires a way to differentiate the loss of
an ACK from the loss of the corresponding data packet.
We have added redundancy to the ACK packets to specify
the last hole in the delivered sequence space and provide
robustness against single ACK losses. Note that the time-
out mechanism is still required as a back up for critical
scenarios such as a burst of loss.

Increase/decrease Algorithm

RAP uses an AIMD increase/decrease algorithm. In
the absence of packet loss, the transmission rate is period-
ically increased in a step-like fashion. The transmission
rate is controlled by adjusting the inter-packet-gap(IPG).
To increase the rate additively,IPG must be iteratively
updated based on equation (1) [11]:Si = PacketSizeIPGi , IPGi+1 = IPGi�CIPGi+C (1)� = Si+1�Si = PacketSizeC (2)

whereSi and� denote transmission rate andstep height
respectively.C is a constant with the dimension of time.
Upon detecting congestion, the transmission rate is de-
creased multiplicatively, by doubling the value ofIPG:Si+1 = �Si, IPGi+1 = IPGi=�, � = 0:5 (3)

Decision Frequency

Decision frequency specifies how often to change the
rate. The optimal adjustment frequency depends on the
feedback delay. Feedback delay in ACK-based schemes is
equal to one RTT. It is suggested that rate-based schemes
adjust their rates not more than once per RTT [13].
Changing the rate too often results in oscillation whereas
infrequent change leads to unresponsive behavior.
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RAP adjusts theIPG once everySRTT using (1).
The time between two subsequent adjustment points is
called astep. If no loss is detected,IPG is decreased
and a new step is started. Adjusting theIPG once everySRTT has a nice property; packets sent during one step
are likely to be acknowledged during the next step. This
allows the source to observe the reaction of the network
to the previous adjustment before making a new adjust-
ment. If the value ofIPG is updated once everySRTT
and we choose the value ofC to be equal toSRTT , the
number of packets sent during each step is increased by
1 every step. Since the length of each step isSRTT and
the height of each step is inversely dependent onSRTT ,
the slope of the transmission rate is inversely related toSRTT 2.Slope = StepHeightStepLength = �SRTT = PacketSizeC�SRTT (4)C = SRTT ) Slope = PacketSizeSRTT 2 (5)

TCP’s slope of linear increase is related to RTT in the
same way in the steady state. Thus a RAP source can
exploit RTT variations and adaptively adjust its rate in
the same manner as TCP. The adaptive rate adjustment in
RAP is meant to emulate the coarse-grain rate adjustment
in TCP. The step length in RAP is analogous to the time
it takes for TCP to send a full window worth of packets.

RAP is “unfair” to flows with longer RTT in the same
way that inter-TCP unfairness has frequently been re-
ported[8]. RAP connections with shorter RTTs are more
aggressive and achieve a larger share of the bottleneck
bandwidth. In general, other measures of fairness can be
only achieved by implementing the required machinery
in the network[21]. As long as the unfairness problem is
not resolved among TCP flows, being TCP-friendly im-
plies accepting this unfairness. Due to lack of space, we
have not discussed startup behavior of RAP, but as it is
designed for relatively long-lived sessions, its startup be-
havior is not crucial.

A. Clustered Losses

In a shared best-effort network with a high level of sta-
tistical multiplexing, the observed loss pattern has a near
random behavior[1] that is determined by the aggregate
traffic pattern. Thus it is generally hard for an end system
to predict or control the loss rate by adjusting the trans-
mission rate. End systems are expected to react to conges-
tion at most once per RTT as long as they react properly
and promptly[13].

To achieve this, RAP requires a mechanism to identify
a cluster of losses that are potentially related to the same
congestion event. Right after loss of packetSeqFirstLoss
that results in a back-off, the outstanding packets in the
pipe, called acluster, have a sequence number,Seq,

within the following range:SeqLastSent � Seq > SeqFirstLoss (6)
whereSeqLastSent is the last packet that has been trans-
mitted. Any packet in the cluster can be potentially
dropped due to the recent congestion event that was de-
tected by the loss ofSeqFirstLoss. As the source has al-
ready reacted to the congestion, loss of other packets from
the cluster are silently ignored. This cluster-loss-mode is
triggered by a back-off and terminated as soon as an ACK
with sequence number greater or equal toSeqLastSent is
received. This mechanism is similar to that employed in
TCP-Sack.

B. Fine-Grain Rate Adaptation

The AIMD rate adaptation algorithm does not neces-
sarily result in a TCP-friendly behavior when TCP’s per-
formance is degraded due to heavy load. The motivation
for fine-grain rate adaptation is to make RAP more stable
and responsive to transient congestion while still perform-
ing the AIMD algorithm at a coarser granularity.

A short-term exponential moving average of the RTT
captures short-term trends in congestion. However, we
require adimension-less, zero-mean feedback signal to be
independent of the connection parameters and has a wider
applicability. The ratio of the short-term to the long-term
exponential moving average of the RTT signal exhibits
these desired properties. We have exploited the RTT sig-
nal and devised acontinuous feedback function that is
defined as:Feedbacki = FRTTiXRTTi , whereFRTTi andXRTTi are the value of short and long term exponential
moving average of RTT samples respectively.

At eachtuning point, the value ofIPGi is modulated
by the fine-grain feedback signal and the resulting value,IPG0i, is used for the transmission timer:IPG0i = IPGi � Feedbacki (7)
The value ofIPG is adjusted once per step iteratively and
acts as abase transmission rate. Thus, during one step
the base transmission rate remains unchanged. However,
the actual inter-packet-gap,IPG0, adaptively varies with
the short-term congestion state. Note that the fine-grain
feedback does not have a cumulative effect.

C. Random Early Detection Gateways

There seems to be general agreement in the community
on deploying Random Early Detection (RED)[7] gate-
ways to improve both fairness and performance of TCP
traffic. RED queue management tries to keep the aver-
age queue size low and, by preventing the buffer from
overflowing, it also accommodates bursts of packets. One
of the main problems for TCP’s congestion control is to
recover from multiple losses within a window [5]. This
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Fig. 2. Simulation Topology

occurs mainly due to buffer overflow in drop-tail queues.
Ideally, RED should be configured such that each flow
experiences at most one single loss per RTT. Under these
circumstances, TCP flows can efficiently recover from a
single loss without experiencing a retransmission time-
out. Intuitively, as long as a RED gateway operates in its
ideal region, RAP and TCP obtain an equal share of band-
width since both use the AIMD algorithm. Nevertheless,
if the average queue length exceeds the maximum thresh-
old, RED starts to drop packets with a very high proba-
bility. At this point, RAP and TCP start to behave dif-
ferently. When regular TCP experiences multiple losses
within a window, it undergoes a retransmission timeout
and its congestion control diverges from the AIMD algo-
rithm. RAP, however, follows the AIMD algorithm and
reacts only once to the first loss in an RTT.

We expect to observe substantial improvement in fair-
ness by deploying RED even if it only prevents the buffer
from overflowing and causing burst of loss. This behavior
limits the divergence of TCP’s congestion control from
the AIMD algorithm.

Since RED parameters are closely dependent on the be-
havior of aggregate traffic, it is hard to keep a RED gate-
way in its ideal region as the traffic changes with time.
Thus, configuration of RED is still a research issue.

IV. SIMULATION

In this section we present a summary of our simula-
tion results. More details can be found in [19]. Our main
goal is to explore the properties of RAP, namely TCP-
friendliness, ability to cope with background TCP traf-
fic, interaction with RED gateways and the behavior of
the fine-grain rate adaptation over a reasonable parame-
ter space. Our simulations demonstrate that RAP is in
general TCP-friendly. We have simulated RAP using the
ns2 simulator [16], and compared it to TCP Tahoe, Reno,

NewReno [5], Sack [14] and also run real-world experi-
ments. Fig. 2 shows the topology of our simulations. The
link betweenSW1 andSW2 is always the bottleneck andSW1 is the bottleneck point. The switches implement
FIFO scheduling and drop-tail queuing except in RED
simulations.m RAP connections from sourcesR1...Rm
to receiversP1...Pm share the bottleneck bandwidth withn TCP flows from sourcesT1...Tn to receiversS1...Sn.
Data and ACK packet sizes are similar for RAP and TCP
flows. For a fair comparison, all connections have equal
end-to-end delay. The buffer size atSW1 is four times
the RTT-bandwidth product of the bottleneck link, except
where otherwise stated. All simulations were run until
they exhibited steady state behavior. All TCP flows are
“FTP” sessions with an infinite amount of data. The TCP
receiver window is large enough that TCP flow control is
not invoked. The average bandwidth for each flow is mea-
sured by the number of delivered packets during the last
three quarters of the simulation time to ignore transient
startup behavior. Simulation parameters are summarized
in table 1.

Table 1
Packet Size 100 Byte
ACK Size 40 Byte
Bottleneck Delay 20 ms
B/W per Flow 5 KByte/s
B/W of Side Links 1.25 MByte/s
Tot. Delay of Side-Links 6 ms
Simulation Length 120 sec
TCP Maximum Window 1000
TCP Timeout Granularity 100 ms

A. Evaluation Methodology

In an environment with large numbers of parameters, it
is generally hard to isolate a particular variable and study
its relation with a particular parameter because of existing
inter-dependency among variables. In particular, TCP is
a moving target. It’s behavior changes drastically with
configuration parameters and it has some internal con-
straints. During our simulations, with some exceptions,
we attempted to minimize these problems by using the
following guidelines:
1. To identify the impact of TCP’s constraints from the
inter-protocol dynamics on our results, we have compared
RAP with different flavors of TCP.
2. We limited the side-effect of bottleneck bandwidth and
buffer space contention by scaling up resources propor-
tional to the number of flows so that the amount of re-
source share per flow remains fixed across simulations.
Since the bandwidth and the buffer size of the bottleneck
link are scaled up equally, the maximum queuing delay
does not change across simulations. The impact of re-
source contention is also studied separately.
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3. We chose configuration parameters so that the TCP
congestion window tends to be sufficiently large and TCP
remains in its well-behaved mode.
4. We have explored a reasonable portion of the param-
eter space to examine inter-protocol fairness over a wide
range of circumstances.
5. As a baseline for comparison, we occasionally re-
placed all the RAP flows with TCP and ran the same sce-
nario without any RAP flow. We call thisTCP base-case.
The TCP base case may help us to separate those phe-
nomenon that are purely related to TCP traffic.

B. Experiments and Results

B.1 TCP-friendliness

The first set of simulations examines the TCP-
friendliness of RAP without fine-grain rate adaptation.
Fig. 3 shows the average bandwidth share ofn RAP andn TCP Tahoe flows coexisting over the topology depicted
in fig. 2. The resources (i.e. the bottleneck bandwidth
and the buffer size) are scaled up linearly with the to-
tal number of flows. The range of the bandwidth share
among RAP and TCP flows are represented by vertical
bars around the average value. This result implies that
RAP is not terribly TCP-friendly across these simula-
tions. The observed unfairness can be due to TCP’s in-
herent performance limitations, an artifact of configura-
tion parameters, or unfairness imposed by coexisting RAP
flows.

TCP suffers from some performance limitations[5]. In
particular, when TCP experiences multiple losses within a
window or the window is smaller than 4, it is constrained
to either wait for retransmission timeout or go through
slow-start. As a result, TCP may temporarily lose its ack-
clocking and its congestion control mechanism diverges
from the AIMD algorithm. The severity of the problem
varies among different flavors of TCP and mainly depends
on window size and loss patterns. TCP Sack is able to re-

cover from the multiple loss scenarios easier than other
flavors of TCP whereas Reno’s performance is substan-
tially degraded [5]. Generally, TCP’s ability to efficiently
recover from multiple losses increases with its window
size. The more TCP diverges from the AIMD algorithm,
the less bandwidth it obtains.

We exploited the difference among various TCP flavors
to assess the impact of TCP’s performance problem on
the observed unfairness. We have repeated the same ex-
periment with RAP against Reno, NewReno[5] and Sack
TCP. Our results confirm that the large-scale behavior of
TCP traffic is in agreement with the behavior reported
in [5]. These experiments also reveal that TCP’s inher-
ent performance problems partially contribute to unfair-
ness. We would like to limit the impact of the TCP’s per-
formance problems and focus on the interaction between
RAP and TCP traffic. Therefore, we chose TCP Sack as
an ideal representative for TCP flows. For the rest of this
paper whenever we refer to TCP, we mean TCP Sack un-
less explicitly stated otherwise.

Since we are unable to exhaustively examine the pa-
rameter space, we focus our attention on parameters that
play key roles in protocols’ behavior. RTT and TCP’s
congestion window are particularly important. RTT is
crucial because it affects rate adjustment in both RAP and
TCP. TCP’s congestion window is a primary factor in the
performance of the TCP protocol. We introduce the term
inter-protocol fairness ratio that is the ratio of the aver-
age RAP bandwidth calculated across all the RAP flows
over the average TCP bandwidth calculated across all the
TCP flows. We changed the delay of the bottleneck link
to control the value of RTT. The bandwidth was linearly
scaled up with the total number of flows and the buffer-
ing was adjusted accordingly. Other parameters are the
same as table 1. Fig. 4 depicts the fairness ratio as a func-
tion of the bottleneck link delay and the total number of
flows. Each data point is obtained from an experiment
where half of the flows are RAP and the other half are
Sack TCP. This reveals several interesting trends in the
fairness ratio:

For a particular value of the bottleneck delay, increas-
ing the number of flows improves the fairness ratio except
for the smallest value of delay (20ms) in which the ratio
never converges to one. This figure illustrates that except
for small simulations, RAP exhibits TCP-friendly behav-
ior. The different behavior in small simulations has to
do with TCP’s burstiness and loss pattern in these scenar-
ios[19].

Excluding simulations with a small bottleneck delay
as well as small simulations, the fairness ratio is mostly
close to one and is not a function of the RTT. The prob-
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lem with short bottleneck delay in small simulations has
to do with the small size of TCP’s congestion window. In
these scenarios, TCP has a smaller congestion window
and frequently experiences retransmission timeout. As
the bottleneck delay increases, both the bottleneck pipe
size and the buffer size increase. This allows TCP flows
to have a larger number of packets on-the-fly and main-
tain their ack-clocking. We conducted another set of
simulations to observe the primary effect of TCP’s con-
gestion window on the fairness ratio. The congestion win-
dow is dependent on several parameters such as available
bandwidth per flow, buffer size, mean queue size, queue
management scheme and number of flows. We adjust the
bottleneck bandwidth as a primary factor to control the
value of congestion window. We decided to measure the
number of outstanding TCP packets per flow instead of
congestion window for two reasons. Firstly, TCP’s con-
gestion window may not be full during the fast-recovery
period. In those cases, TCP’s behavior depends on the
number of outstanding packets. Secondly, since RAP is

 Fairness Ratio across the parameter space with F.G. adaptation

Fairness Ratio

0204060801001201401601802000
20

40
60

80
100

120
140

160
180 0

0.5

1

1.5

2

2.5

3

Bottleneck Delay (ms)

Total number of flows

Fairness Ratio

Fig. 6. Fairness Ratio across the parameter space

not a window-based mechanism, the number of packets
on-the-fly seems to be the only common base of compar-
ison from the network’s point of view. Fig. 5 shows the
variation of the fairness ratio as a function of the num-
ber of flows and the amount of allocated bandwidth per
flow. Since the number of outstanding packets is depen-
dent on both variables, we have used the mean number
of outstanding packets (averaged across all the TCP flows
in a simulation) as the x coordinate for the corresponding
data point instead of the amount of allocated bandwidth
per flow. This graph clearly confirms our hypothesis that
TCP’s performance is directly influenced by the number
of outstanding packets in transit. As the number of out-
standing packets grows, the fairness ratio improves ex-
cept for simulations with a small number of flows (n=1).
Therefore, under a heavy load, if the number of outstand-
ing packets for a TCP flow drops below a threshold, its
performance is substantially degraded. Under these cir-
cumstances, RAP can easily utilize the available band-
width because it decouples congestion control from error
control and only performs the former.

Fig. 5 also implies that the number of coexisting flows
does not have a visible impact on fairness when resources
are scaled appropriately, except for very small numbers of
flows.

B.2 Fine-grain rate adaptation

We have theorized that fine-grain rate adaptation at-
tempts to emulate a degree of congestionavoidance that
TCP obtains due to ack-clocking. To investigate the ef-
fect of fine-grain rate adaptation on TCP-friendliness, we
explored the parameter space over a wide range. Fig. 6
shows the fairness ratio as a function of bottleneck link
delay and the total number of coexisting flows. Half of
the traffic consists of RAP flows. Comparison with fig. 4
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reveals that fine-grain rate adaptation only improves the
fairness among connections with small RTT (i.e. small
TCP window) while it does not affect other areas. This
result implies that as long as TCP flows do not diverge
from the AIMD algorithm, the fairness ratio is primar-
ily determined by TCP’s behavior and the large-scale be-
havior remains intact. This is indeed a desired property.
However, for those scenarios where TCP traffic is vulner-
able to loss of ack-clocking and achieves a smaller share
of the bandwidth, the fine-grain rate adaptation enhances
resolution of rate adaptation for RAP flows by preventing
them from overshooting the available bandwidth share.
This in turn, reduces the probability of experiencing loss
of ack-clocking across all the TCP flows. Consequently,
TCP traffic obtains a fair share of bandwidth.

B.3 RED Gateways

The main challenge here was to configure the RED
gateway so that it behaves uniformly across all simula-
tions. RED’s performance closely depends on the be-
havior of the aggregate traffic. Since this behavior could
change with the number of flows, it is hard to obtain the
same performance over a wide range without reconfigur-
ing the gateway. Table 2 summarizes our configuration
parameters:

Table 2
Min. Threshold 5 Packets
Max. Threshold 0.5 * Buffer
Bottleneck B/W 5 KByte/s * No. of Flows
Bottleneck Delay 20 ms
Buffer Size 12 * RTT * Bottleneck B/W
q weight 0.002

Half of the traffic consists of RAP flows with fine-grain
adaptation. We provided sufficient buffer at the bottleneck
to eliminate buffer overflow. Fig. 7 shows the fairness ra-
tio for different value ofmaxp (i.e. maximum probabil-
ity of loss) as the number of flows changes. This graph
clearly illustrates three interesting points:
1. There exists a range formaxp where RAP and TCP
evenly share the bottleneck bandwidth.
2. Except for small simulations, the fairness ratio does
not change with simulation size.
3. The behavior of the aggregate traffic is substantially
different in small simulations.
Fig. 7 demonstrates that RED is able to evenly distribute
the losses across all the flows and avoid buffer overflow
over a wide range. Thus RED has eliminated the unfair-
ness caused by TCP’s burstiness. The higher the value ofmax p, the more likely RED is to drop a packet before
the buffer becomes full, and so the lower the mean buffer
utilization is. Fig. 5 has already shown that TCP per-
forms poorly with small congestion window, and higher
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Fig. 7. Impact of RED on the fairness

values ofmax p tend to reduce TCP’s mean conges-
tion window. RAP takes advantage of this, and a de-
gree of unfairness results. As long as the average queue
size remains in RED’s operating region (belowmaxth),
the bandwidth share between RED and TCP is quite fair.
However, if the value ofmaxp is too small, the average
queue size reachesmaxth, and RED then starts dropping
all packets until the average queue size decreases belowmaxth again. This process repeats and oscillations occur,
with the loss probability alternating betweenmaxp and
one. RED should not be operated in this region, and the
curve in figure 7 shows this effect whenmaxp = 0:005.
The differences between RAP and TCP are due to TCP’s
burstiness interacting with periodic oscillations of the av-
erage queue size aboutmaxth. With small simulations,
the oscillation period is long, and both TCP and RAP
lose whole RTT worth of packets. TCP takes a very long
time to recover, while RAP recovers comparatively eas-
ily. With large simulations, the period of these oscilla-
tions is much shorter, and although a few TCP’s may lose,
on average a TCP is less likely to be hit by one of the
loss periods than a RAP flow which spaces its packets out
evenly. Hence, on average TCP performs better than RAP.
It should be emphasized that this RED regime will im-
pose terrible loss bursts on realtime flows, and should be
avoided at all costs. Figures 8 and 9 graph the measured
RTT for small simulations, and demonstrate these oscil-
lations in fig. 8 withmaxp = 0:005 versus normal RED
behavior in fig. 9 withmaxp = 0:16. We conclude that,
with appropriate tuning, RED can significantly improve
the fairness between RAP and TCP. However that aggres-
sively pushing for very low buffer utilization is counter-
productive when RAP and TCP share a link because TCP
then diverges from AIMD.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a rate adaptation protocol and exten-
sively examined its interaction with TCP through simula-
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tion. Although achieving TCP-friendliness over a wide
range of network parameters is extremely challenging,
RAP reasonably achieves this goal. We devised and eval-
uated a fine-grain rate adaptation mechanism to emulate
TCP’s ack-clocking property. Our results show that the
fine-grain rate adaptation extends inter-protocol fairness
to a wider range. Divergence of TCP’s congestion con-
trol from the AIMD algorithm is often the main cause for
the unfairness to TCP in special cases. This problem is
pronounced more clearly with Reno and Tahoe while it
has a more limited impact on Sack. We observed that the
bigger TCP’s congestion window is, the closer it follows
the AIMD algorithm. Properly configured RED gateways
can result in an ideal inter-protocol sharing.

We plan to continue our work in several directions.
We have developed a prototype to examine RAP’s perfor-
mance in a real network. RAP is just a core component
of the end-to-end architecture (fig. 1) for unicast play-
back of realtime streams over best-effort networks. We
have also developed a “quality adaptation” mechanism
that smoothly adjusts the quality of a layered encoded
playback video while its transmission rate is controlled
by RAP.
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