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Abstract

Interstitial fibrosis is an inevitable outcome of all kinds of progressive chronic kidney disease (CKD). Emerging data indicate
that rapamycin can ameliorate kidney fibrosis by reducing the interstitial infiltrates and accumulation of extra cellular matrix
(ECM). However, the cellular mechanism that regulates those changes has not been well understood yet. In this study, we
revealed the persistent activation of mammalian target of rapamycin (mTOR) signaling in the interstitial macrophages and
myofibroblasts, but rarely in injured proximal epithelial cells, CD4+ T cells, neutrophils, or endothelial cells, during the
development of kidney fibrosis. Administration of rapamycin to unilateral ureteral obstruction (UUO) mice significantly
suppressed the immunoreactivity of mTOR signaling, which decreased the inflammatory responses and ECM accumu-
lation in the obstructed kidneys. Isolated macrophages from rapamycin-treated obstructed kidneys presented less
inflammatory activity than vehicle groups. In vitro study confirmed that rapamycin significantly inhibited the fibrogenic
activation of cultured fibroblasts (NIH3T3 cells), which was induced by the stimulation of TGF-b1. Further experiment
revealed that rapamycin did not directly inhibit the fibrogenesis of HK2 cells with aristolochic acid treatment. Our findings
clarified that rapamycin can ameliorate kidney fibrosis by blocking the mTOR signaling in interstitial macrophages and
myofibroblasts.
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Introduction

Tubulointerstitial fibrosis is the final common pathway of a wide

variety of chronic progressive kidney diseases. Intense studies have

focused on the molecular and cellular pathogenesis of interstitial

fibrosis due to the strong correlation between the degree of

interstitial fibrosis and renal functional loss in CKD. Recently,

studies in a wide variety of animal models confirmed that

treatment of rapamycin to inhibit mTOR could markedly

ameliorate the interstitial inflammation, fibrosis, and loss of renal

function associated with CKD [1–7]. However, little has been

clarified in these studies upon the cellular targets of rapamycin,

regarding its protective role in kidney fibrosis.

Progression of renal fibrosis can initially be characterized as

induction of inflammatory response and ultimately result in

widespread fibrotic changes. Multiple cell types within the

interstitium, including kidney resident cells and infiltrates from

circulation, directly contribute to the induction of inflammatory

cascade and the fibrogenic process as a source of various

proinflammatory and profibrotic molecules [8–10]. To date, the

regulatory mechanism in these effector cells still remains obscure

in kidney fibrosis, which limits the prevention and early

interruption in the disease development.

mTOR is a major effector of cell growth and protein synthesis

via the direct functional control of its downstream targets,

ribosomal protein S6 kinase (S6k) and eukaryotic initiation factor

4E-binding protein-1 (4EBP-1) [11]. Recently, novel regulation of

mTOR signaling has been identified in various pathological

conditions, including activation of macrophages [12,13] and

myofibroblasts [14–16], indicating the importance of mTOR in

the regulation of kidney fibrosis. However, it is unclear which cell

types have mTRO activation and where rapamycin works on

during the development of kidney fibrosis.

In this study, we looked into each specific cell type in the kidney

to evaluate the role of rapamycin in renal fibrosis. We char-

acterized the activation pattern of mTOR signaling in different

renal cell types during kidney injury-fibrosis; we also evaluated the

effect of rapamycin on the fibrogenic activity of cultured

fibroblasts, HK2 cells and macrophages isolated from the fibrotic

kidneys.

Materials and Methods

Ethics statement
All experiments were performed in accordance with the animal

experimental guidelines issued by the Animal Care and Use
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Committee at Xiangya Medical School of Central South

University. This study was approved by the Animal Care and

Use Committee of the 2nd Xiangya Hospital (protocol approval

number 2008-S 062).

Animals
C57BL/6 mice were obtained from the animal facility in the 2nd

Xiangya hospital and maintained under specific pathogen-free

conditions. Rapamycin (2 mg/kg?day) (LC laboratories, Woburn,

USA) was administered to a subgroup of UUO mice by daily

intraperitoneal injections starting one day prior to surgery and

continuing until termination of the experiment.

Induction of kidney injury in mice
Female C57BL/6 mice aged 8–10 weeks weighing 20–22 g

were used for induction of kidney injury. In brief, ischemia-

reperfusion-injury (IRI) was induced by the retroperitoneal

approach on both kidneys for 28 min at 37uC (moderate IRI).

One milliliter of warm saline (37uC) was injected intraperitoneally

after surgery for volume supplement. Sham operations were

performed with exposure of both kidneys but without induction of

ischemia. To generate the UUO mice, the left kidney and ureter

were exposed via a flank incision. The ureter was ligated at two

points proximal to the kidney with 6–0 silk. The wound was closed

in layers. Sham animals had kidney exposed but ureter was not

tied.

Kidney tissue preparation
Mice were anesthetized, sacrificed and immediatlely perfused

via the left ventricle with ice-cold PBS for 2 min. Kidneys were

hemi-sectioned and portions were snap frozen in liquid nitrogen

for later western blot and real-time qPCR analysis. Some kidneys

were fixed in 10% neutral buffered formalin at 4uC for 12 hr,

processed, embedded in paraffin wax, sectioned in 4 mm and

stored at room temperature for use. Some kidneys were fixed in

4% PLP fixative (4% paraformaldehyde, 75 mM L-lysine, 10 mM

sodium periodate) for 4 hr at 4uC, cryoprotected in 30% sucrose

and snap frozen in optimal cutting temperature (OCT, Sakura

FineTek). Frozen kidneys were sectioned in 7 mm for immunoflu-

orescent stainging.

Renal histological analysis
Kidney paraffin sections were stained with hematoxylin-eosin

(HE) using standard procedures. HE-stained paraffin sections were

assessed by quantitative measurement of tubular injury in 10

individual high-power fields (magnification 6400) per kidney. A

percentage of the area affected was estimated for the number of

necrotic cells, loss of brush border, cast formation, and tubule

dilation as follows: 0, 0 to 5%; 1, 5 to 10%; 2, 11 to 25%; 3, 26 to

45%; 4, 46 to 75%, and 5, .76%. The matrix score for collagen-I

deposition in the renal cortical interstitium was determined by

procedures in accordance with previous reports [17]. The fields

analyzed in each section were selected randomly. Ten separate,

nonoverlapping microscopic fields of each kidney section were

averaged to yield the score of each kidney. The scores for 3–6

separate animals for each group were then averaged.

Immunofluorescence and immunohistochemical staining
All stainings of kidney were performed on 4 mm paraffin setions

or 7 mm cryosections as previously described [18]. In brief,

cryosections were air-dried for 15 min, then primary antibodies

against the following proteins were used: pS6K (rabbit, 1:100, Cell

signaling, USA), F4/80 (rat, 1:100, Abcam, USA), CD3 (rabbit

1:100, Vectorlab, USA), CD4 (mouse, 1:100, Abcam, USA), anti-

neutrophil (rat, 1:50, Santa Cruz, USA), aSMA (mouse, 1:200,

Abcam, USA), collagen-I (rabbit, 1:500, Abcam, USA), Kim-1

(goat, 1:100, R&D, USA), Lotus tetragonolobus lectin (LTL,

1:1000, Vectorlab, USA). The slides were then exposed to FITC

(1:200) or Cy3-labeled (1:500) secondary antibodies (Jackson

ImmunoResearch, USA). Sections were mounted in Vectashield

medium containing DAPI (Invitrogen, USA). Representative

images were taken with confocal microscopes (Leica TCS

SP5).

Immunohistochemical stains were performed on formalin fixed,

paraffin embedded 4 mm sections. Sections were rehydrated and

antigens retrieved using heated citrate. Incubation of primary

antibodies was performed same as decribed above. Staining was

visualized using horseradish-peroxidase coupled secondary anti-

bodies (Vectastain elite, Vector Labs).

Related isotype immunoglobulins (Jackson ImmunoResearch,

USA) were used as negative controls in all stainings. All

immunohistochemical analyses were repeated at least three times

and representative images were presented.

Isolation of F4/80+ macrophges from obstructed kidneys
At day 1 post-obstruction, kidneys derived from either vehicle or

rapamycin-treated groups were harvested, minced, and homoge-

nized, followed by incubation with 0.1% collagenase (Worthing-

ton, USA) and 20 g/ml DNase I (Qiagen, USA) for 30 min at

37uC. Following the manufacture’s instruction, mononuclear cells

Table 1. Applied Primers for Real-time qPCR.

Genes GenBank accession Sense primers (59 – 39) Anti-sense primers (59 –39)

CXCL1 NM_008176 CTGGGATTCACCTCAAGAACATC CAGGGTCAAGGCAAGCCTC

IL-1b NM_008361 GAAATGCCACCTTTTGACAGTG CTGGATGCTCTCATCAGGACA

MCP-1 NM_011333 TAAAAACCTGGATCGGAACCAAA GCATTAGCTTCAGATTTACGGGT

TNF-a NM_013693 CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

CTGF NM_010217 GACCCAACTATGATGCGAGCC TCCCACAGGTCTTAGAACAGG

TGF-b1 NM_011577 GAGCCCGAAGCGGACTACTA GTTGTTGCGGTCCACCATT

Col1a2 NM_007743 AGCTTTGTGGATACGCGGAC TAGGCACGAAGTTACTGCAAG

GAPDH NM_008084 AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA

Abbreviations: CXCL1 - chemokine (C-X-C motif) ligand 1, IL-1b - interleukin 1 beta, MCP-1 - chemokine (C-C motif) ligand 2, TNF-a - tumor necrosis factor alpha, CTGF -
connective tissue growth factor, TGF-b1 - transforming growth factor beta 1, Col1a2 - collagen type I alpha 2, GAPDH - glyceraldehyde-3-phosphate dehydrogenase.
doi:10.1371/journal.pone.0033626.t001
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were obtained by density separation using Lympholyte M

(Cedarlane, USA). Macrophages were labeled with biotin-

conjugated rat anti-mouse F4/80, purified and enriched using

MACS (Miltenyi Biotec). Total RNA was extracted from enriched

F4/80 macrophages and reverse transcribed for real-time qPCR

analysis of gene expression.

Cell culture and immunocytochemical staining
The NIH 3T3 fibroblast cell line and HK2 cell line from ATCC

(American Type Culture Collection) were cultured in DMEM

medium supplemented with 10% FBS until the cells were 80%

confluent. Cells were then incubated in DMEM medium

containing 0.2% FBS for 24 hr. NIH3T3 cells and HK2 cells

were cultured for 24 to 48 hr in the presence of 10 ng/ml

recombinant human TGF-b1 (PeproTech, NJ, USA) or 5 mg/ml

aristolochic acid (AA, Sigma), with or without addition of 50 nmol

rapamycin (LC lab, MA, USA) for 12 hr. Portions of NIH3T3

cells and HK2 cells were cultured in four-chamber glass and

immunocytochemical staining was performed as previously

described [18]. In brief, Cells were fixed and blocked before

immunocytochemical staining. Cells were then incubated in

primary antibodies (including aSMA and pS6K) at 4uC overnight,

Figure 1. Assessment of immunoreactivity of mTOR signaling in normal and pathological kidneys. Kidney tissues derived from wide
type C57BL/6J mice, moderate IRI and UUO mouse models were used for analysis. Animals were treated as described in Methods. A(A9)–C(C9):
Costaining of pS6K (red) and LTL (green) in renal sections from post-natal day 1(P1, A: low-power and A9: high-power), post-natal day 7 (P7, B: low-
power and B9: high-power), 6-week (6w, C) and 16-week mice (16w, C9). D–F: Representative costaining images of pS6K (red) and LTL (green) in
kidney sections derived from moderate IRI mice, including 48-hour (IR-48 hr, D), 7-day (IR-7d, E) and 2-week (IR-2w, F) after operation. G–I:
Representative costaining images of pS6K (red) and LTL (green) in kidney sections derived from UUO models, including 1-day (U1d, G), 3-day (U3d, H)
and 7-day (U7d, I) post-obstruction. J: Western blot and quantitative analysis of p-mTOR and pS6K in developing kidneys (right panel), moderate IRI
model (middle panel) and UUO model (left panel). n = 5 animals in each group. *P,0.05, **P,0.01, NS, no significance. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g001
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followed by incubation in secondary antibodies consisting of anti-

rabbit-Cy3 and anti-mouse-FITC. After rinsing in PBS, slides

were mounted with Vectashield mounting medium containing

DAPI (Invitrogen) and visualized under a confocal microscope

(Leica TCS SP5). All immunocytochemical analyses were repeated

3 or more times and related isotype immunoglobulins were used as

negative controls.

Western blot analysis
Lysates of kidney or cultured cells were prepared as previously

described [19]. Membranes were incubated with the following primary

antibodies, respectively: rabbit antibody to p-mTOR and pS6K (Cell

signaling, 1 in 1000), mouse antibody to aSMA and vimentin (Abcam,

1:1000), rabbit antibody to collagen-I (Abcam, 1:1000). b-actin–specific

antibody (Abcam, 1:1000) was used for loading controls on stripped

membranes. Horseradish peroxidase–conjugated secondary antibodies

were applied, and enhanced chemiluminescence (Thermo, IL,

USA) was used to visualize bands.

Evaluation of mRNA expression by real-time qPCR
To determine the gene expression profiles of kidney tissues,

real-time qPCR was performed as previously described [19],

to compare designated mRNA expression of obstructive kidneys

in different groups. In brief, total RNA was extracted from

the kidney cortexes using an RNA isolation kit (Qiagen, RNeasy

Mini Kit). To ensure samples without genomic DNA contami-

nation, total RNA was treated with DNase (Qiagen, RNase-

Free DNase Set) and cDNA was synthesized using a Synthesis

Kit (Bio-rad, USA). Total cDNA (1 ml) was loaded in each

well, mixed with PCR master mix (TaqMan Universal, Applied

Biosystems, USA) and pre-designed primers (IDT, San Diego,

USA) for TNF-a, IL-1b, CXCL-1, MCP-1, TGF-b1 CTGF

and Col1a2, respectively (Listed in Table 1). The procedure

for real-time qPCR included 2 min at 50uC, 15 min at 95uC,

followed by 40 cycles of 15 s at 95uC, 30 s at 55uC, and

30 s at 72uC (ABI PRISM 7900 HT; Applied Biosystems).

Expression (evaluated as fold change for each target gene)

Figure 2. Inhibition of mTOR signaling by Rapamyicn in UUO mice. UUO mice received daily i.p. injections of rapamycin (2 mg/kg of body
weight) or vehicle respectively, starting 1 day prior to operation and continuing until termination of the experiment. A–H: Representative co-staining
images of pS6K (red) and LTL (green) in UUO kideny sections with (E–H) or without (A–D) rapamycin treatment, from day 0 (A, E), day 3 (B, F), day 7(C,
G) and day 14(D, H). Nuclei were labeled with DAPI (blue). Scale bar = 50 mm. I: Representative western blot (panel left) and quantitative analysis
(panel right) of pS6K expression in renal sections from vehicle-treated or rapamycin-treated UUO mice. *P,0.05, **P,0.01 vs. vehicle treated groups.
Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g002
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was normalized to glyceraldehyde-3-phosphate dehydrogenase

(GAPDH, a housekeeping gene) following the well-established

delta-delta method. All assays were performed in triplicate.

In addition, a non-template control was included in the ex-

periment to estimate DNA contamination of isolated RNA and

reagents.

Data analysis
Statistical analysis was performed using the SPSS12.0 software

package. Results were expressed as mean 6 SE (standard error of

mean). Differences among groups were tested by using One-Way

ANOVA followed up with Tukey’s test or t-test, as appropriate,

and two-tailed p values are reported.

Figure 3. Rapamycin reduces tubulointerstitial injuries and collagen deposition in obstructed kidneys. Animals were treated as
decribed above. A(A9)–H(H9): Representative sections of vehicle (A–D:low power, inserted A9–D9: high power) or rapamycin-treated (E-H: low power,
inserted E9–H9: high power) kidney with hematoxylin-eosin staining. Scale Bar: 200 mm. I–P: Representative costaining sections of obstructed kidneys
with vehicle (M–P) or rapamycin (I–L) treatment, using anti-collagen I (red) and anti-LTL (green) as primary antibodies. Scale bar: 50 mm. Q–S:
Quantitative assessment of tubular injuries (Q), interstitial infiltrates (R) and collogen-I deposition (S) in kidneys derived from UUO mice with or
without administration of rapamycin. **P,0.01 vs. vehicle treated groups, NS no significance. n = 5 animals for each group. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g003
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Results

Activation of mTOR signaling in kidney development and
fibrogenesis
mTOR signaling highly activated, indicated by the expression

of pS6K, in all kidney components (including renal parenchyma

and interstitium) during the kidney development (Figure 1A(A9)–

B(B9)), but declined to baseline in adult kidneys where its

expression is mostly limited in small portion tubules (Figure 1C

6-week, Figure 1C9 16-month). The protein amount of pS6K and

p-mTOR in the kidneys derived from post-natal mice was

significantly higher than adult kidneys (left column in Figure 1J),

indicating mTOR signaling is essential for kidney development

(i.e. cells growth) and might have some basic physiological

functions (i.e. protein synthesis) in adult kidneys. The expression

of pS6K can be significantly induced by either ischemic (Figure 1D

and middle column in Figure 1J) or obstructive injury (Figure 1G

and right column in Figure 1J) immediately. The activation of

mTOR signaling returned to normal level along with the recovery

of reversible kidney injury (Figure 1D–F and middle images in

Figure 1J), but in irreversible obstructed nephropathy, activation

of mTOR signaling kept increasing along with the progression of

fibrosis (Figure 1G–I and right images in Figure 1J).

Improvement of kidney fibrosis by administration of
rapamycin
Expression of pS6K (red) and specific proximal tubule marker

Lotus tetragonolobus lectin (LTL, green) were determined by

immunofluorescent staining. Significant activation of mTOR

signaling was observed in dilated tubules and interstitium of

obstructed kidneys, but little in glomeruli (Figure 2A–D).

Rapamycin significantly suppressed expression of pS6K in injured

kidneys (Figure 2E–H). Quantitative assessment of pS6K by

western-blot further confirmed that activation of mTOR signaling

was highly induced after kidney injury and reached the peak

around 7-day post-obstruction, whereas administration of rapa-

mycin resulted in a significant inhibition of pS6K expression

(Figure 2I).

Figure 4. Rapamycin reduces proliferation in obstructed kidneys. Animals were treated as decribed in Methods. A(A9)–F(F9): Representative
sections from kidneys with [D(D9)–F(F9)] or without [A(A9)–C(C9)] rapamycin treatment, using anti-ki67 for immunohistochemistry. Ki67 postive cells
are labeled with brown staining. High-power micrographs are presented as inserted images (A9–F9). Scale bar: 50 mm. G–H: Quantitative analysis of
Ki67+ tubular cells (G) and interstitial cells(H) in representative kidney sections. n = 5 animals for each group. **P,0.01 vs. vehicle-treated groups. NS
no significance. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g004
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Immunohistochemical analysis with HE staining revealed

progressive tubular dilation tubules atrophy, interstitial infiltrates

and matrix deposition in mouse obstructed kidneys (Figure 3A–D,

A9–D9: magnification of representative areas). Rapamycin mark-

edly reduced these pathological changes. (Figure 3E–H and E9–

H9). Co-staining of collagen-I and LTL showed that administra-

tion of rapamycin resulted in less collgen-I expression in the renal

interstitium (Figure 3M–P), compared with the vehicle-treated

group (Figure 3I–L). Quantitative analysis of kidney injury in

UUO mice further confirmed that inhibition of mTOR signaling

by rapamycin remarkably improved tubular injury (Figure 3Q),

interstitial infiltrates (Figure 3R) and collogen-I deposition

(Figure 3S).

Rapamycin suppressed the proliferative activity of
tubular and interstitial cells in obstructed kidneys
We analyzed the influence of rapamycin on the cells

proliferation in fibrotic kidneys by immunohistochemical staining

of anti-ki67 (brown). Only sporadic ki67-positive cells were

observed in the normal kidneys of adult animals (Figure 4A–A9).

Figure 5. Rapamycin attenuates inflammatory responses in obstructed kidneys. A–B: Immunoflurescent staining (A) and quantitative
assessment (B) of F4/80+ macrophages in kidney sections from UUO mouse models. anti-F4/80 (green) was used to label macrophages in kidney
tissues, costaining with DAPI (blue). Scale bar: 20 mm. ** P,0.01 vs. vehicle treated groups. n = 5 animals in each group. C–D: Immunohistochemical
staining (C) and quantitative assessment (D) of CD3+ T cells in kidney sections from UUO mice. anti-CD3 was used to label T cells in the kidneys,
counterstained with hematoxylin (blue). Representative areas were magnified in the inserted images(C). Scale bar: 50 mm. *P,0.05 vs. vehicle treated
groups. n = 5 animals in each group. E–F. Analysis of proinflammatory (E) and fibrotic (F) profiles of kidney tissues from UUO models, using
quantitative realtime-PCR. IL-1b, TNF-a, CXCL-1 and MCP-1 were selected as pro-inflammatory chemokines for detection (E). **P,0.01, vs control
group (sham operation); ##P,0.01, rapamycin vs. vehicle treated groups; 11P,0.01 vs U1d-vehicle group; ""P,0.01 vs U3d-vehicle group. n = 5
animals in each group. TGF-b and CTGF were selected as fibrotic cytokines for detection (F). *P,0.05, **P,0.01, vs control group (sham operation);
#P,0.05, ##P,0.01 rapamycin vs vehicle-treated group. NS no significance, n = 5 animals in each group. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g005
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However, a substantial increase of cell proliferation, including in

tubules and interstium, was induced by ureter obstruction

(Figure 4B–C, B9–C9), in accordance with the activation of

mTOR signaling. Administration of rapamycin resulted in a

significant decrease of cell proliferation, as well as tubulointerstitial

involvement, in the obstructed kidneys (Figure 4D–F and D9–F9).

Quantitative assessment of cell counting further confirmed that

proliferation in both tubular (Figure 4G) and interstitial cells

(Figure 4H) was significantly suppressed in rapamycin groups.

The regulation of rapamycin on interstitial inflammatory
cells during kidney fibrosis
Quantitative analysis by immunofluorescent and immunohisto-

chemical staining revealed the marked infiltrates of F4/80+ macro-

phages (Figure 5A–B) and CD3+ T lymphocytes (Figure 5C–D) in

obstructed kidneys since one day post obstruction, which aggravated

along with the progression of interstitial fibrosis. Significantly,

administration of rapamycin reduced the interstitial infiltrates

of macrophasges and T lymphocytes in obstructed kidneys

(Figure 5A–D). Further examination with real-time qPCR revealed

that obstructed kidneys developed progressive inflammatory

responses, indicated by elevating the expression of mutiple

proinflammatory chemokines (IL-1b, TNF-a, CXCL-1 and

MCP-1) in a time-dependent manner post-obstruction, which was

dramatically reduced by rapamycin (Figure 5E). Real-time qPCR

also revealed a lower expression of pro-fibrotic cytokines, including

TGF-b1 and CTGF, in rapamycin treated groups (Figure 5F).

In UUO and IRI mouse models, large portion of infiltrated F4/

80+ macrophages in interstitium highly expressed pS6K on day-1

after the initiation of kidney injury (Figure 6A–A90 and Figure 6B–

B90, representative cells indicated by white arrows). The obstructed

kidneys also featured progressive infiltrates of CD4+ T cell and

neutrophils, however, little expression of pS6K was observed in

either CD4+ T cells (Figure 6C–E) or neutrophils (Figure 6F) in

UUO mice. Therefore, the activation pattern of mTOR signaling

in kidney inflammatory cells, revealed by immunoreactivity

assessment, indicated that macrophages, instead of CD4+ T cells

or neutrophils, may be direct targets of rapamycin in its anti-

inflammation effects.

To further confirm whether the mTOR signaling really

regulates the activity of macrophages in the initiation of kidney

fibrosis, we isolated macrophages from both vehicle (Figure 7A–

A90) and rapamycin-treated (Figure 7B–B90) kidneys on day-1 post-

obstruction and characterized their mRNA profiles of inflamma-

tory chemokines, including IL-1b, TNF-a and MCP-1. Real-time

qPCR analysis revealed that macrophages from rapamycin-treated

groups presented much less inflammatory activity than vehicle

groups (Figure 7C).

Figure 6. Activation profiles of mTOR signaling in the interstitial inflammatory cells. Kidney sections derived from either UUO or IRI
models were analyzed by immunohistochemistry using antibodies against pS6K, F4/80, CD4 or anti-neutrophil. A–A90 and B–B90: Expression of pS6K
(red) is immediately induced in F4/80+ macrophages (green) after kidney injury. Large portions of interstitial macrophages in obstructed kidney (A–
A90) and IRI kidney (B–B0) are co-stained with F4/80 and pS6K (indicated by arrwos). C–E: Co-staining of CD4 (green) and pS6K in obstructed kidneys.
F: Costaining of anti-neutrophil and pS6K in obstructed kidneys. Scale bar: 20 mm.
doi:10.1371/journal.pone.0033626.g006
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The inhibition on the activation of myofibroblasts by
rapamycin
In normal kidney, aSMA expression was only observed in

arteries and arterioles (Figure 8A–A90 indicated by arrow-head).

Low expression of pS6K was found in tubules and sporadic

interstitial cells but little overlapped with the aSMA (Figure 8A–

A90). However, activation of fibroblasts and mTOR signaling were

markedly induced on day-1 post ureteral obstruction, indicating by

de novo expression of aSMA and pS6K within the interstitium

(Figure 8B–B9). Merged images showed the co-expression of

aSMA and pS6K in a large portion of interstitial myofibroblasts

(Figure 8B0–B90). Representative areas (Figure 8C–C90) were

maginified to further confirm the expression of pS6K in active

myofibroblasts (white arrow), but not in arterial cells (asterisk). In

rapamycin treated group, the expression of aSMA and pS6K in

obstructed kidneys was significantly suppressed (Figure 8D–D90). Given

the pivotal role of TGF-b1 in kidney fibrosis, we further investigated the

effect of rapamycin on TGF-b1-induced myofibroblast activation.

NIH3T3 cells cultured in regular condition slightly expressed aSMA

and pS6K (Figure 8E–E0). Stimulation of TGF-b1 in NHI3T3 cells

resulted in marked expression of aSMA and pS6K (Figure 8F–F0),

which was significantly suppressed by rapamycin (Figure 8G–G0).

Western blot analysis further confirmed these changes (Figure 8H–I).

To further evaluate the effect of mTOR signaling on myofibro-

blasts transition, we quantify aSMA and vimentin expression in

obstructed kidney using immunohistochemical staining and western

blot analysis. In sham-operated kidney, a-SMA was found only in

arteries and arterioles. However, along with the progression of

interstitial fibrosis in obstructed kidneys, substantial accumulation of

aSMA was found increasing within the interstium. The amount of

aSMA deposition and renal histological changes were significantly

ameliorated in rapamycin-treated kidneys (Figure 9A), indicating

inhibiton of mTOR signaling markedly reduced myofibroblasts

activation. Co-staining of vimentin (red) and LTL (green) further

revealed the progressive accumulation of vimentin in the intersti-

tium as a hallmark of fibrotic kidneys, which could be significantly

attenuated by rapamycin (Figure 9B). Western blot of kidney

lysates further confirmed that inhibition of mTOR signaling by

rapamycin markedly reduced aSMA and vimentin production in

UUO mice.

Figure 7. Rapamycin inhibits inflammatory activity of macrophages isolated from obstructed kidneys. A–B: Co-immunostainging
images of kidney sections from day-1 post-obstruction with administration of rapamycin (A–A90) or vehicle (B–B90), using anti-pS6K (red), anti-F4/80
(green) and DAPI (blue) for immunofluorescent staining. Representative areas in A0 and B0 (indicated by white square) are magnified in A90 and B90,
respectively. Scale bar: 50 mm. C. Assessment of inflammatory activity of isolated macrophages from obstructed kidney on day-1 post-operation.
mRNA level of proinflammatory chemokines, including TNF-a, IL-1b and MCP-1, were determined by realtime-PCR. *P,0.05, **P,0.01, vs control
group (sham operation); #P,0.05, ##P,0.01 vs vehicle-treated group. n = 5 animals in each group. Ctrl: control group, U1d-Ve: 1-day post UUO
operation with administration of vehicle, U1d-Rp: 1-day post UUO operation with administration of rapamycin. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g007
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The effect of rapamycin on fibrogenic phenotype of
tubular epithelial cells
To determine whether the tubular epithelial cells remain

potential targets of rapamycin in the progression of renal fibrosis,

we studied the relationship between tubular fibrogenic activity and

mTOR signaling. Kidney Injury Molecule-1 (Kim-1) was

markedly up-regulated in either obstructed (Figure 10A) or

ischemic kidneys (Figure 10B), where it localized to the apical

surface of injured proximal tubule epithelial cells. These surviving

epithelial cells, indicated by Kim-1 staining, were surrounded by

abundant interstitial aSMA-positive myofibroblasts (Figure 10A)

and CD11b-positive macrophages (Figure 10B), which revealed

profibrogenic and proinflammatory roles of active epithelial cells

after kidney injury. However, few Kim-1 positive epithelial cells

co-expressed pS6K, although these tubules was surrounded by

pS6K-positive intersitial cells (Figure 10C), indicating the mTOR

signaling may play little role in the fibrogenic pathway conducted

by active epithelial cells.

To further determine whether rapamycin could functionally

affect the fibrogenic phenotype of epithelial cells, we examined the

effect of rapamycin on the generation of profibrotic factors in

cultured HK2 cells after exposure to aristotochic acid (AA).

Immunocytochemistry confirmed that rapamycin markedly inhib-

ited the proliferation and mTOR signaling in cultured HK2 cells

(Figure 10D). AA treatment for 48 hr resulted in marked

upregulation of CTGF and collagen-I in HK2 cells. Adminstration

of rapamycin significantly inhibited pS6K expression but had little

effect on the production of above fibrotic factors (Figure 10E).

Real-time qPCR results confirmed that AA treatment induced the

activation of fibrogenic and proinflammatory genes in HK2 cells,

including TGF-b1, CTGF, Col1a2 and MCP-1. Administration of

rapamycin did not improve the fibrogenic and inflammatory

phenotype of HK2 cells, induced by AA treatment (Figure 10F).

Discussion

Although the inhibitory effect of rapamycin on renal fibrosis has

been reported in previous studies [1,2], little was elucidated upon

its cellular targets and regulatory mechanism. This study, for the

first time, clarified that which cell types have mTOR activation in

renal fibrosis and where rapamycin works on to protect the kidney.

Infiltration of inflammatory cells has long been established as an

early and characteristic feature of renal fibrosis in virtually all

situations [20]. We suggested that mTOR signaling might play an

important role in the initiation and progression of kidney

inflammation. To test this hypothesis, we characterized the

activation profiles of mTOR signaling in different inflammatory

cells types, including macrophages, CD4+ lymphocytes and

neutrophils. Activation of mTOR and significant inflammatory

response were induced in infiltrated macrophages post ischemic or

obstructed injury, which could be significantly blocked by

rapamycin (Figure 6 and Figure 7). Interestingly, little expression

of pS6K was observed in either CD4+ lymphocytes or neutrophils

in UUO mice, although rapamycin reduced the infiltrates of those

inflammatory cells in the kidneys (Figure 5 and Figure 6).

Therefore, the activation pattern of mTOR signaling in kidney

inflammatory cells, revealed by immunoreactivity assessment,

indicated that interstitial macrophages, instead of CD4+ T cells or

neutrophils, might be direct targets of rapamycin. As multiple

studies suggested that rapamycin presented a paradoxical aspect in

regulating T cells immunobiology, depending on the subgroups of

targeted T cell [21] and the conditions under which T cells are

stimulated [22], it is difficult to conclude the role of rapamycin

in regulating T cells in fibrotic kidneys based on our current

observation. Furthermore, future experiments are also necessary to

elucidate the role of mTOR signaling in the subgroups of

macrophages, as macrophages present totally different phenotypes

during kidney injury and repair progress, depending on the local

inflammatory milieu [9,23] and rapamycin might accordingly

have different regulatory effects on them.

The presence of activated myofibroblasts is considered as a

hallmark of kidney fibrosis in CKD [10]. In our study,

colocalization of pS6K and aSMA in fibrotic kidneys revealed

the activation of mTOR signaling in interstitial myofibroblasts,

which was also supported by the experiment of TGF-b1 induced

transition of fibroblasts into myofibroblasts (Figure 8). We further

confirmed that the expression of aSMA and vimentin in

obstructed kidney were significantly ameliorated in rapamycin-

treated kidneys (Figure 9), indicating inhibiton of mTOR signaling

markedly reduced myofibroblasts activation. Taken together, our

studies revealed that rapamycin could ameliorate renal fibrosis by

inhibiting the mTOR signaling in activated myofibroblasts.

Recently, emerging evidence indicated that tubular epithelial

cells had an active role in the progression of renal fibrosis via

generation of various proinflammatory and profibrotic factors,

including cytokines, growth factors and matrix proteins [8,24,25].

To determine whether rapamycin protects the kidney from fibrosis

partly by inhibiting the fibrogenic role of tubular epithelial cells,

we labeled the surviving proximal tubules in both obstructed and

ischemic kidneys, using anti-Kim-1, which has been widely

identified as a sensitive and specific biomarker for injured

proximal epithelial cells [26,27]. After kidney injuries, significant

infiltration of myofibroblast and macrophage was observed around

the Kim-1 positive tubules (Figure 10 A–B), indicating surviving

tubular epithelial cells recruited these effector cells and contributed

to the interstitial fibrosis. However, little pS6K expression could be

detected in the active tubular epithelial cells (Figure 10C),

suggesting that mTOR signaling has not been activated in the

fibrogenic epithelial cells. To further assess the effect of rapamycin

on epithelial fibrogenesis, we established a cellular fibrotic model

with HK2 cells secondary to AA exposure, which has been widely

used to induce kidney interstitial fibrosis [28–30]. HK2 cells with

AA treatment showed increased activity in pro-fibrogenesis and

pro-inflammation, indicating by elevated protein and mRNA

levels of TGF-b1, CTGF, Collagen-1 and MCP-1, but these levels

were not lowered down by rapamycin (Figure 10E–F), providing

further evidence that rapamycin does not directly block the

fibrogenic activity of tubular epithelial cells during the progression

of kidney interstitial fibrosis.

Figure 8. Rapamycin suppresses activation of mTOR signaling in active myofibroblasts. Immunofluorescent staining of kidney sections
derived from UUO models on day-1 post-obstruction was performed, using anti-aSMA (green, A–D) and anti-pS6K (red, A9–D9). Images were merged
(A0–D0) and co-labeled with DAPI (A90–D90). Representative areas in B–B90 (white square) were magnified in C–C90. Arrow heads (A–A90) and asterisks
(C–C90) indicate arterioles in the kidneys Arrows indicate representative myofibroblasts expressing pS6K (C–C90). Scale bar: 50 mm. NIH3T3 cells were
cultured for 24 hours in the absence (E–E0) or presence of 20 ng/ml recombinant human TGF-b1 (F–F90, G–G90), with administration of vehicle (F–F90)
or rapamycin (G–G90). The cells were stained for aSMA (green) and pS6K (red). DAPI was used to stain the nuclei. Magnification was 4006. (H–I):
Representative Western blot and quantitative assessment for expression of aSMA and pS6K in NIH3T3 cells. b-actin was used in this experiment to
control for equal protein loading. *P,0.05, **P,0.01 vs. control groups. #P,0.05, ##P,0.01 vs. TGF-b+vehicle groups. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g008
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Figure 9. Assessment of myofibroblasts activation in obstructed nephropathy. Animals were treated as described in Methods and
Materials. A. Representative sections of vehicle or rapamycin-treated kidneys stained with anti-aSMA by immunohistochemistry. Scale bar: 100 mm. B.
Representative confocal images of vehicle or rapamycin-treated kidneys costained with anti-vimentin (red) and anti-LTL(green). Scale bar: 100 mm.
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Activation of mTOR within the kidney has been reported in

different kinds of kidney diseases, including acute ischemic injury

[31], polycystic kidney disease [32,33], diabetic nephropathy

[34,35] and other causes of progressive kidney disease [2,36].

Although the overall effects of mTOR inhibitors on glomerular

hypertrophy, interstitial inflammation and fibrosis, prove to be

protective in CKD, the different function that mTOR signaling

acts in acute and chronic kidney injury are significant [31,37]. In

this study, we observed the different expression pattern of mTOR

signaling between reversible IRI and progressive fibrotic models

(Figure 1), which indicated the induction of mTOR activation

after kidney injury might therefore serve a dual purpose. Firstly, it

is able to activate the innate immune effector cells at the early

stage of injury, such as macrophages, which thereby clear

C–F: Representative western blot and densitometric analyses for aSMA (C–D) and vimentin (E–F) expression in UUO kidneys. b-actin was used in this
experiment to control for equal protein loading. Data were presented as mean 6 S.E.M. n = 5 animals in each group. *P,0.05, **P,0.01 vs. vehicle-
treated groups. NS no significance. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g009

Figure 10. Rapamycin has little effect on the fibrogenic phenotype of tubular epithelial cells. HK2 cells or Animals were treated as
described in Methods and Materials. A–C. Representative immunofluorescent costaining images of kidney sections derived from UUO mice or IRI
mice, using anti-Kim-1 and anti-aSMA (A), anti-Kim-1 and anti-CD11b (B), anti-pS6K and anti-Kim-1 (C). Nuclei were labeled with DAPI (blue). Scale bar:
50 mm. D. HK2 cells were cultured for 48 hours in the absence or presence of aristolochic acid (AA), with or without administration of rapamycin. The
cells were stained for Ki67 or pS6K. DAPI was used to stain the nuclei. E. Representative western blot and densitometric analyses for expression of
CTGF, Collagen-I, and pS6K in cultured HK2 cells. b-actin was used in this experiment for equal protein loading control. Data were presented as mean
6 SE. ** P,0.01, NS no significance. F. Assessment of proinflammatory and profibrogenic gene expression in culture HK2 cells. mRNA level of MCP-1,
TGF-b, CTGF and Collagen-I were determined by realtime-PCR. ** P,0.01, NS no significance. Error bars represent S.E.
doi:10.1371/journal.pone.0033626.g010
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apoptotic cells and debris at a site of tissue damage. Secondly,

persistent mTOR activation in these effectors at an extended stage

of injury, however, might be maladaptive by promoting chronic

inflammation and ultimately renal fibrosis. Therefore, the balance

of mTOR signaling activation could be a key to control the

outcome of kidney injuries. Our data are in accordance with the

current views that tightly balanced mTOR activity is required in

kidney homeostasis and the role of rapamycin in kidney diseases is

context dependent [1,38].

In conclusion, this study confirmed the interstitial macrophages

and myofibroblasts as the cellular targets of rapamycin for its

protection of kidney fibrosis. Suppression of mTOR signaling in

active macrophages and myofibroblasts leads to amelioration of

kidney inflammation and fibrosis. A better understanding of the

underlying mechanisms of mTOR signaling in renal fibrosis might

help to find out a way to halt the fibrotic progression.
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