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Rapid 3-D Cone-Beam Reconstruction with the
Simultaneous Algebraic Reconstruction Technique

(SART) Using 2-D Texture Mapping Hardware
Klaus Mueller* and Roni Yagel

Abstract—Algebraic reconstruction methods, such as the
algebraic reconstruction technique (ART) and the related simul-
taneous ART (SART), reconstruct a two–dimensional (2-D) or
three–dimensional (3-D) object from its X-ray projections. The
algebraic methods have, in certain scenarios, many advantages
over the more popular Filtered Backprojection approaches and
have also recently been shown to perform well for 3-D cone-beam
reconstruction. However, so far the slow speed of these iterative
methods have prohibited their routine use in clinical applications.
In this paper, we address this shortcoming and investigate the
utility of widely available 2-D texture mapping graphics hardware
for the purpose of accelerating the 3-D algebraic reconstruction.
We find that this hardware allows 3-D cone-beam reconstructions
to be obtained at almost interactive speeds, with speed-ups of over
50 with respect to implementations that only use general-purpose
CPUs. However, we also find that the reconstruction quality is
rather sensitive to the resolution of the framebuffer, and to address
this critical issue we propose a scheme that extends the precision
of a given framebuffer by 4 bits, using the color channels. With
this extension, a 12-bit framebuffer delivers useful reconstructions
for 0.5% tissue contrast, while an 8-bit framebuffer requires
4%. Since graphics hardware generates an entire image for each
volume projection, it is most appropriately used with an algebraic
reconstruction method that performs volume correction at that
granularity as well, such as SART or SIRT. We chose SART for
its faster convergence properties.

Index Terms—Algebraic reconstruction technique (ART),
computed tomography, cone beam reconstruction, hardware
acceleration, simultaneous algebraic reconstruction technique
(SART), three—dimensional reconstruction.

I. INTRODUCTION

T HE ALGEBRAIC reconstruction technique (ART), first
proposed by Gordonet al. [8], tomographically recon-

structs a three–dimensional (3-D) object from its projection
images. These images may be obtained from any projective
imaging modality, such as X-Ray, positron emission tomog-
raphy, or single photon emission computed tomography. ART
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is an iterative method and reconstructs the volumetric object
by a sequence of alternating volume projections and correction
backprojections. The volume projection measures how close the
current state of the volume matches the corresponding scanner
projection, while in the backprojection step a corrective image
is distributed onto the volume. Many such projection/backpro-
jection operations are typically required to make the volume fit
all projections in the acquired set. Different ART variants exist:
While the original ART corrects the volume on a ray-basis,
simultaneous ART (SART) [2] corrects the volume only after a
whole projection image has been computed.1

In this paper, we concentrate on reconstruction from
cone-beam data (parallel-beam reconstruction can be treated
as a special case). Although there are no specially designed
clinical cone-beam scanners as yet, the advent of 3-D recon-
struction angiography using C-arm scanners (see, e.g., [1]) has
recently brought cone-beam computed tomography (CT) into
the arena of real clinical application. Another recent application
of cone-beam CT is in radiotherapy: In an approach termed
tomotheraphy [14], the MV radiation unit is not only used to
administer and measure the radio-therapeutical dose, it is also
employed to collect the necessary data for a 3-D reconstruction
of the patient immediately before treatment. Using this 3-D
reconstruction one can then register the treatment plan with the
patient’s position to ensure optimal tumor targeting.

Although the majority of the proposed cone-beam algorithms
are based on filtered backprojection (FBP) (refer to, e.g., [22],
[25] for comparisons and reviews), more recent research [16]
has demonstrated that both ART (with certain modifications)
and SART can reconstruct general cone-beam data as well, at
high accuracy and even for large cone-angles of up to 60. But
the iterative process is slow [17], and this lack of computational
speed has so far prevented ART from being used in real-life
clinical applications. This is unfortunate since there are quite
a few scenarios in which ART has advantages over the more
commonly used FBP. For example, the use of ART seems ad-
vantageous when one does not have a large set of projections
available, when the projections are not distributed uniformly in
angle, or when the projections are sparse or missing at certain
orientations [3], [11]. Scenarios of this sort occur in both 3-D
reconstruction angiography and tomotheraphy. In the latter, one
can simply not obtain a large number of MV projections due to
the enormous patient dose, and recent research has shown [20]

1For the remainder of this section, we will use the term ART to stand for both
variants of algebraic reconstruction methods: ART and SART.
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that ART can produce a reconstruction with good feature de-
lineation even with just 24 MV projections. On the other hand,
in 3-D reconstruction angiography one may want to reconstruct
a four–dimensional (4-D) volume of the coronary arteries in a
beating heart, and the number of projections that can be obtained
with a safe dose of radio-opaque dye may be limited here as
well.

Thus, cone-beam ART has a number of clinical applications
for which it appears useful, if only its computational speed could
be improved. It was already shown in [16] that two to three itera-
tions with 80 projections are sufficient to reconstruct a low-con-
trast 3-D object. However, still more than 1.5 hrs are needed on a
modern workstation to reconstruct a 128volume from 80 pro-
jections. As a remedy, one could build dedicated ART computer
boards and incorporate those into the clinical scanners, along
with the usual custom digital signal processing (DSP) chips
which already run the FBP algorithm extremely fast. However,
designing and configuring special chips or boards to implement
our ART and SART algorithms would be a rather expensive and
tedious task, and it would produce narrow devices with little
room for modifications and adaptations of the algorithms, ham-
pering the evolution of technology. Fortunately, today’s widely
available graphics workstations provide us with another option,
as the graphics hardware resident in these workstations is es-
pecially designed for fast projection operations, the main in-
gredients of the algebraic algorithms. A plus of this hardware
choice is the growing availability of these machines in hospi-
tals, where they are more and more utilized in the daily task of
medical visualization, diagnosis, and surgical planning. The fea-
ture of these graphics workstations that we will rely on most is
texture mapping, a technique that is commonly used to enhance
the realism of polygonal graphics objects by painting pictures
onto them prior to display. Texture mapping is not always, but
often, implemented in hardware, and runs at fill rates of over
100 Megapixels/s. However, hardware texture mapping is not
limited to graphics workstations only, many manufacturers offer
graphics boards with texture-mapping capabilities that can be
added to any modern PC.

In this paper, we will thoroughly investigate the utility and
applicability of texture mapping hardware for the purpose
of 3-D reconstruction with algebraic methods. Earlier, this
hardware was also used by Cabralet al. to accelerate the FBP
algorithm [5]. Our programs were written using the widely
accepted OpenGL application programming interface (API)
[21] and can easily be reproduced to run on any medium-range
graphics workstation or PC with graphics board. Since graphics
hardware generates an entire image for each volume projection,
it is most appropriately used with an algebraic reconstruction
method that performs volume correction at that granularity
as well, such as SART.2 This constraint does not impose a
restriction in terms of the reconstruction result, since it was
demonstrated in [16] that both cone-beam ART and SART
deliver reconstructions of similar quality at similar conver-
gence rates. We, hence, refer to our proposed approach as
texture-mapping hardware acceleratedSART(or TMA-SART).

2We could have chosen SIRT [7] as well, but its convergence rate is much
slower than that of SART.

The outline of the paper is as follows: After a brief introduc-
tion to SART in Section II, we describe the general approach
of TMA-SART in Section III. Then, in Section IV, we extend
the functionality of TMA-SART to improve accuracy and also
speed. Finally, Section V presents results, and Section VI dis-
cusses the prospects, impact, and future of TMA-SART in light
of current graphics hardware trends.

II. PRELIMINARIES

In tomographic reconstruction with algebraic methods it is
our goal to solve the following simultaneous equation system3 :

(1)

We would like to recover the values of the
voxels in the volume, using the values of the pixels in the
scanner images , where is the source/detector orientation
at which the projection was taken by the scanner, assuming a
planar source/detector orbit (without loss of generality). In (1),
a is the weight with which a voxel contributes its value to
a pixel . SART solves this equation by an iterative procedure,
in which the correction/update for a voxel, to be performed
for each volume correction step, is written as follows:

(2)

In (2), is a relaxation factor, typically chosen . The
collective voxel update procedure of SART can be broken down
into several steps, illustrated in Fig. 1.

A line integral can be computed by sampling the volume at
equidistant locations using some interpolation kernel (trilinear,
Gaussian, or cubic spline) and forming the integral via the trape-
zoidal rule [2], [10]. Alternatively, one can take an approach in
which one thinks of the volume as being decomposed into a field
of (overlapping) 3-D interpolation kernels, with one such kernel
placed at each voxel location (the grid line intersections) and at-
tenuated by the voxel’s value. The weight that a voxel has
on a ray is then the line integral of the traversed voxel kernel
function [12]. Using this representation, volume projection and
backprojection can be performed by a procedure termedsplat-
ting [26], in which the kernel integrals are preintegrated into ta-
bles (so-calledfootprints) and mapped to the image plane where
they accumulate into the projection image or retrieve the voxel
corrections (more detail is given in [17]). The less discretized in-
tegration of the splatting methods yields more accurate weight
factors and, as a consequence, more accurate projections/back-
projections.

3We will use the following terminology: the basic elements of the recon-
structed volume are the voxels� while the bins in the projection images are
referred to as pixelsp.
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Fig. 1. The steps of the SART algorithm.

Although it is possible to simulate the splatting approach
in hardware, using polygon-mounted, voxel-weighted texture
maps for each voxel’s kernel footprint, this approach tends to be
rather slow, since the granularity of this approach (on the order
of voxels) is too small to be efficient [18]. We now describe an
approach with higher granularity (on the order of volume slices)
that offers more promise.

III. TMA-SART COMPONENTS

In TMA-SART, some of the blocks in Fig. 1 can be accel-
erated by the graphics hardware, while others have to be per-
formed on the CPU. We will now describe the basic TMA-SART
algorithm in terms of the decomposition of Fig. 1.

A. Projection

TMA-SART decomposes the volume intoslices and treats
each slice separately. In volume projection [shown in Fig. 2(a)],
each slice is associated with a square polygon that has the
volumetric slice content texture-mapped onto it. Rotating this
texture-mapped polygon by the scanner orientation angleand
perspectively projecting it with cone anglemaps the voxels
in this volume slice, properly weighted, onto the image pixels.4

Fig. 2(b) illustrates the projection algorithm, in which the
slice-to-screen mapping is performed by the graphics hardware,
but the accumulation of projections is done in software, due to
the limited bit resolution of the framebuffer. After all tex-
ture-mapped polygons have been accumulated in the software
buffer, it contains the volume projection at projection angle.

Note that the hardware uses a bilinear interpolation kernel to
resample the texture image into screen coordinates. Thus, the
ray integrals so computed are equivalent to the ray integrals ob-
tained in a software solution that uses a trilinear interpolation
filter in conjunction with raycasting and samples the rays only
within each volume slice. In this respect, the integration follows
the trapezoidal rule and is similar to that obtained by Joseph’s

4For reconstruction from parallel-beam data one just sets the viewing geom-
etry to parallel projection.

Fig. 2. Projection with TMA-SART. (a) Projection geometry
[two-dimensional (2-D) case shown]. (b) Algorithm pseudocode.

Fig. 3. Impractical backprojection with TMA-SART (2-D case shown): the
main viewing axis is not perpendicular to the screen, and the viewing axis does
generally not traverse the volume slices at their center.

algorithm [10]. Continuing this analogy with raycasting, note
that if we sample only within the volume slices, then the distance
between sample points varies depending on the orientation of a
ray with respect to the volume slices. A ray that is perpendic-
ular to the volume slices has a sample spacings of 1.0 [ray
in Fig. 2(b)], while for a nonslice perpendicular rays
[ray in Fig. 2(b)]. Thus we have to normalize the calculated
ray integrals in the projection image for this location-dependent
sample spacing. To save these calculations during reconstruc-
tion, we instead normalize the images obtained from the scanner
by the inverse amount in a preprocessing step. Further, since the
hardware can only produce values in the range of [ ],
the acquired images are also scaled to the range [ ].

B. Correction Image Computation

After a projection image has been generated, the correction
image is computed in software. (A hardware acceleration is not
possible, due to the extended value ranges of the images in-
volved.) First, the calculated projection image is subtracted from
the acquired projection image. Then the resulting image is di-
vided by the weight image at that orientation. A weight image
holds the sum of weights in the denominator of the nominator
in (2) for each pixel. Ideally, this sum of weights is equivalent
to the intersection distance of a ray with a solid sphere, which
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could be calculated analytically. However, it is not exactly the
same, due to the discretized ray integration and the interpolation
round-off errors of the hardware. For this reason, we compute
the weight images in the same fashion than the projections, by
projecting a volume in which all voxels within the spherical re-
construction region have been set to 1.0 and all others have been
set to zero. These weight images can be re-used for all recon-
structions that have equivalent image acquisition spacings and
cone angles. We simply load them from disk prior to reconstruc-
tion.

Finally, since the texture map can only hold values in the
range [ ], but the correction image may have values in
the range [ ], we must scale and translate the values
in the correction image to the [ ] interval. Note that, in
this way, the values in the volume slices are always in the range
[ ].

C. Backprojection

In backprojection, we need to distribute the correction image
onto the volume slices. This is achieved by associating each
volume slice, one by one, with the screen, onto which the cor-
rection image, mapped to a polygon, is rendered. Basically, this
is the reverse situation of Fig. 2, with the screen now being a
volume slice and the texture-mapped polygon being the correc-
tion image. Fig. 3 shows this configuration. We notice, however,
that now the main viewing axis is no longer perpendicular to
the screen, and neither does it always traverse the center of the
screen (i.e., the volume slices). Although OpenGL does allow
the viewing axis to be at an oblique angle, it is difficult, if not
impossible, to set up the correct projection in presence of the
second condition. Hence, a simple reversal of the forward pro-
jection to perform the backprojection is not feasible.

We shall now describe an approach that separates the screen
from the volume slices, thus avoiding the problems stemming
from the misalignment of the viewing axis with the screen
center. Our approach uses the projective textures described by
Segalet al. [23] and works just like a slide projector. Consider
Fig. 4(a) where the method is illustrated: In contrast to the
direct approach, the correction image is now first perspectively
projected onto a polygon, which has been placed at the location
of the volume slice that is to receive the backprojected correc-
tion. The image projected onto the polygon is then viewed by
the framebuffer in parallel (orthographic) projection. In other
words, the correction image is a slide (a projective texture) that
is projected with a cone-beam “light” source onto a slide screen
(the volume slice polygon), and the projected slide is then
photographed by a parallel-beam camera (the framebuffer).
The image captured in that way is the volume slice correction,
properly weighted by bilinear interpolation. Note, however,
that we must first scale and translate the values of the screen
image back into the [ ] range before we can add it
to the volume slice in memory. The resulting voxel values are
then clamped to an interval of [ ] and voxels outside
the spherical reconstruction region are set to zero.

Let us now explain this slide-projector approach in some
more detail, assuming a hardware implementation of OpenGL.
In that case, when a polygon is projected onto the screen,

Fig. 4. Volume backprojection with TMA-SART. (a) Projection geometry
(2-D case shown). (b) Algorithm pseudocode.

Fig. 5. Texture mapping an image onto a polygon. The texture coordinates
(s; t) assigned to the polygon vertices are given in parentheses.

the coordinates of its vertices are transformed by a sequence
of hardware matrix operations, which may include a per-
spective transform and a perspective divide. (For more detail
on these fundamental issues refer to [6] and [21].) A tex-
ture is an image indexed by 2–D coordinates in the range
[ ]. When a texture is mapped onto a
polygon, the polygon’s vertices are associated with texture
coordinates ( ), as shown in Fig. 5. The viewing transfor-
mation (i.e., the world-to-screen mapping) of the polygon
vertices yields a closed region on the screen. In a process called
scan conversion, all pixels inside this region are assigned (via
interpolation) texture coordinates within the range assigned to
the bounding vertices. These texture coordinates are used to
index the texture image. Note that the transformation can lead
to a stretching or shrinking of the texture on the screen.

The texture mapping coordinates need not be 2-D. As a matter
of fact, they can be up to 4-D (involving a homogeneous coordi-
nate), just like the vertex coordinates. In addition, OpenGL pro-
vides a transformation facility, similar to the one supplied for
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vertex transformation, with which the interpolated texture coor-
dinates can be transformed prior to indexing the texture image.
We can use this facility to implement our virtual slide projector.

The algorithm proceeds as follows (see again Fig. 4). First,
we create an array of square texture coordinate polygons with
vertex coordinates ( ) and associate them with the volume
slice polygons. We set the four ( ) coordinates to ( ),
( ), ( ), and ( ), with being
the extent of the cubic volume. The-coordinate is varied be-
tween [ ] ( is the distance
of the camera to thevolume center), depending on the loca-
tion of the volume slice polygon in camera space. Note, that the
( ) texture coordinate system is aligned with the ( )
spatial coordinate system of the camera, where it has its origin.
When a volume slice polygon is parallel (orthographically) ren-
dered to the screen (the framebuffer), the hardware generates
the corresponding texture map coordinates. These are first trans-
formed by the texture transformation matrix before in-
dexing the texture image. To achieve the slide-projector effect,

is built as a concatenation of a number of matrices [see
Fig. 4(b)]. The first sequence of terms, , achieves the co-
ordinate transform from the ( ) volume coordinate system
into the ( ) slide-projector coordinate system, which has
its origin at the volume center. The term rotates each
texture coordinate polygon about the volume centerby the
viewing angle . Next is the perspective mapping, achieved by
the perspective matrix . Here, the distance between slide pro-
jector center and volume center is

(3)

and is defined such that, after the perspective divide, the tex-
ture coordinates of the polygon portions that fall inside the slide
projector cone assume values in the range [ ]. This
is the case in the configuration shown in Fig. 4(a). However,
since we can only index the texture image within a range of
[ ], we need to scale and translate the perspective tex-
ture coordinates prior to the perspective divide and texture in-
dexing. This is achieved by incorporating a scale and translation
given by into . Thus, any texture coordinate ( )
generated by viewing the volume slice polygon is transformed
by

(4)

The perspective divide then produces the texture index
( ):

(5)

Note that this process is not any more expensive than di-
rect texture mapping. Once the texture transformation matrix
is compounded, just one hardware vector-matrix multiplication
is needed. As a matter of fact, this multiplication is always per-
formed, even if the texture transformation is unity.

IV. EXTENSIONS

In this section, we shall describe some extensions to the basic
TMA-SART algorithm, for the benefit of both efficiency and
accuracy.

A. Projection Image Accumulation in Hardware

Let us first assume that the framebuffer has 12 bits, as is the
case for the SGI Octane. We noted before that the accumula-
tion of the projection image takes place in main memory. This
is necessary since the 12 bit framebuffer does not have any extra
bits beyond the resolution of the projected image, which has at
least 12 bits. Besides the fact that now the CPU must be used
to add the projection images, there are alsorather expen-
sive framebuffer reads. One way to perform accumulations in
the framebuffer would be to sacrifice precision (i.e., the lower
bits) for speed. This, however, would impede the accuracy of
the projection images, which is clearly undesirable.

We will now discuss a scheme that we can use to virtually ex-
tend the resolution of the framebuffer. The framebuffer has three
color channels, red, green, blue, and alpha. Usually, we are only
reconstructing grey level data, so all we utilize is a single color
channel, say red, both in texture memory and in the framebuffer.
However, if we partition the 12-bit data word into two compo-
nents, one 8-bit and one 4-bit, and render it into two separate
color channels, red and green, then we can accumulate data into
the remaining upper 4 bits of the two framebuffer channels. This
is illustrated in Fig. 6.

The four extra bits allow us to accumulate up to 16 images,
which decreases the number of necessary framebuffer reads by
2/16 (we now have to read two color channels). Notice, how-
ever, that bit of the texture word are not interpolated by the
texture mapping hardware in 12 bits, but only in 8 bits. This
may cause inaccuracies. To illustrate this problem, imagine the
following simple case. Assume atexel(a texture element) has a
binary value of 1 0000 0000 (only bitis set) and its immediate
neighbors are all 0. Thus the red texture channel contains 0, and
the green texture channel contains 1 0000. Now let us assume
that the texture mapping interpolation of this texel neighbor-
hood yields a binary value of 1000. In the original approach, the
framebuffer would contain that value, in the second approach
(Fig. 6), however, the framebuffer would contain zero.

B. Extending the Framebuffer Accuracy

The accuracy of TMA-SART is mainly determined by the res-
olution of the buffer elements in the graphics hardware, i.e., the
texture memory and the framebuffer. The texture memory on an
SGI Octane has a resolution of 16 bits, while the framebuffer has
a resolution of 12 bits. As there is no need to keep the volume
data at a higher resolution than the texture memory that projects
them, TMA-SART stores the volume data as 16 bit unsigned
shorts. On the other hand, the images—those obtained from the
scanner, the computed projections, and the weight images—are
all stored as 32 bit unsigned integers, since they represent accu-
mulations of many (i.e., ) 16 bit voxel slices. The correction
image is stored in 16 bit, since it is normalized to one volume
slice prior to backprojection. Thus the precision of the recon-
struction process is inherently 16 bit, hampered, however, by
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Fig. 6. Rendering a 12-bit data word using two color channels. The shaded
upper four bits in the framebuffer can be used for accumulation. After the four
upper bits have been filled by 16 projections, we must add the two channels in
the CPU. For this purpose, the green channel must be shifted to the left by four
bits.

Fig. 7. Increasing the framebuffer resolution from 12 bit to 16 bit by adding
up two color channels, properly shifted.

the limited 12 bit resolution of the framebuffer. Although recon-
structions with moderate contrast levels should not be affected
by this precision-bottleneck, it could cause low-contrast detail
to be left unresolved in high-fidelity reconstructions. To alle-
viate these limitations, we shall now investigate a scheme that
extends the framebuffer width in a virtual fashion, without hard-
ware modification.

Consider Fig. 7 where these concepts are illustrated. The
lower 12 bits of the volume data (or correction image data)
are written to the Red texture channel, while the upper 4 bits
of the data are written to the upper 4 bits of the Green texture
channel. Rendering is performed as usual, and the Red and the
Green framebuffer is read into two software buffers. The 16 bit
result is constructed by adding the two software buffers, with
the data in the Green buffer shifted to the left by 4 bits.

Note that, similar to the accumulation buffer, the (virtual) 16
bit data in the Green channel are not interpolated in 16 bits, but
only in 12 bits. This will have effects similar to the ones outlined
in the previous section. Hence, the presented implementation
is not a true 16 bit extension to the framebuffer, it is only an

approximation. However, it will still help produce considerably
more precise results than the original 12 bit implementation.

If only an 8 bit framebuffer is available, along with 8 bit tex-
tures, then we use 12 bit volume data and render the lower 8 bit
into the Red framebuffer channel and the upper 4 bit, shifted 4
bits to the left, into the Green framebuffer channel. Combining
the channels is done as usual and a 12 bit data word results.

V. RESULTS

All programs were written using the widely accepted
OpenGL API (Application Programming Interface) and can
easily be reproduced to run on any medium-range graphics
workstation or PC with graphics board. Using both the soft-
ware implementation of SART (discussed in [16] and [17])
and the new hardware-accelerated version, TMA-SART, we
reconstructed a simulated brain dataset, the 3-D extension of
the Shepp–Logan phantom [24] (described, e.g., in [4], a slice
is shown in Fig. 9(a). Projection sets of 80 cone-beam
projections ( 40 ) of 128 pixels each were obtained
by analytical integration of the phantom.5 These projections
were used to reconstruct a 128reconstruction volume in
three iterations ( 0.1). To evaluate the effect of the limited
framebuffer resolution in TMA-SART, we acquired the brain
projection sets at three different feature contrast levels for the
12-bit SGI Octane and at five different levels for the 8-bit SGI
O2, a low-end Unix-PC equipped with graphics hardware.6

The original contrast of the main features in the phantom is
2% of the full dynamic range, while the background contrast
of the small tumors in the bottom portion of the slices, shown
in Fig. 9(a) is only 0.5%. (Note that, in all images of Fig. 9,
the small dynamic range of the features was stretched into the
full displayable range in order to make the features visible and
to provide equivalent brightness for all contrast levels. The
original range is [ ].)

Fig. 9(b) shows a slice [from the same location than that in
Fig. 9(a)] across a volume reconstructed with the software im-
plementation of SART described in [17]. This implementation
employs splatting with analytically preintegrated Bessel–Kaiser
kernels [12]. Next to the reconstructed slice, we show the inten-
sity profile along a line that cuts horizontally across the center
of the three small tumor ellipsoids [see Fig. 9(a)]. We observe
that very little reconstruction artifacts are present and that the
brain features (e.g., the small tumors) can be well discerned.

The software implementation uses both floating point arith-
metic and floating point buffers throughout the reconstruction
process. TMA-SART, on the other hand, also uses floating point
arithmetic but only fixed point buffers. This amounts to some in-
accuracies in the reconstruction process, which is demonstrated
next. In Fig. 9(c), we show three reconstructions (slices and
profile plots) obtained with the basic 12-bit framebuffer TMA-
SART, while in Fig. 9(d) we show three reconstructions (slices
and profile plots) obtained with the enhanced, 16-bit frame-

5The phantom was centered on the rotation axis, no noise was added to the
projections.

6For the purposes relevant to this paper, the O2 graphics hardwave is equiv-
alent to the various boards available for PC’s. However, computation time is
likely to vary and tends to change fast in today’s rapidly evolving market.
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buffer TMA-SART. The contrast of the imaged phantom dou-
bles in every column from left to right. We observe that the
basic TMA-SART produces reconstructions with consistently
higher levels of noise-like artifacts than the 16-bit TMA-SART.
The difference is particularly striking in the first column for the
original contrast. Here, the three small tumors in the lower third
of the slice are only discernible in the 16-bit TMA-ART recon-
struction. However, the higher the contrast, the lesser the im-
pact of the framebuffer precision. The reconstructions obtained
at twice the contrast of the Shepp–Logan phantom are already
of acceptable quality. In Fig. 9(c) and (d), we also observe a
number of artifacts that do not seem to be dependent on frame-
buffer resolution. These artifacts are more of a structured nature,
as, for example, the dark ripple below the three small tumors.
Other similar artifacts can be seen all over the reconstructions
and do not decrease with framebuffer resolution.

Fig. 9(e) shows reconstructions obtained with an 8-bit
framebuffer that uses the 12-bit enhancement described in
Section IV-B. We notice that the reconstructions at twice the
original contrast are not of the same quality than those of the
true 12-bit framebuffer. This is due to the incomplete 12-bit
precision and the use of an 8-bit texture map instead of the 12
bits available on the Octane. However, the reconstruction at
four times the original contrast, although still somewhat noisy,
already distinguishes the three small tumors rather well. The
images at 8 and 16 times the original contrast resemble those
for the enhanced 12-bit framebuffer at two and four times the
original contrast, respectively, and are of acceptable quality.

Finally, Table I compares the run times for both the soft-
ware and the various TMA-SART implementations. We see that
by utilizing texture mapping hardware for the volume projec-
tion and backprojection operations, dramatic speedups can be
achieved: a cone-beam reconstruction of a 128volume from 80
projections can now be performed in about 2 min, down from
the 1.8 hrs that were required in the software implementation on
the same host CPU. This represents a speed-up of over 50.

By using the accumulation buffer enhancement, outlined in
Section IV-A, we can reduce the reconstruction time even more
to 1.6 min (a speedup of 68 with respect to software-ART). A
reconstruction using the increased precision framebuffer, (out-
lined in Section IV-B, but not the accumulation buffer, takes
somewhat longer (3.1 min for a speedup of 49), due to the in-
creased number of framebuffer reads and CPU computations.
The time required for reconstruction with our O2, using the
12-bit framebuffer enhancement, was 15.8 min, which amounts
to a 6.8 speedup with respect to the software implementation
on the Octane. However, the speedup is about eight when com-
pared to the slower runtime of software SART on the O2 itself.

The runtime complexity of the SART algorithm is O( ),
which indicates that the runtimes given in Table I should scale
linearly with increasing and . This was verified in experi-
ments conducted on volumes up to 512. The SGI Octane tex-
ture memory will currently fit 1 MB of texels, so volumes with
up to 512 voxels (and slices with 51216-bit texels) can be pro-
cessed as is. For larger volumes, the slices need to be broken up
into tiles, with the projection results being merged later, which
adds some overhead. The O2 and many other modern graphics
boards have unified memory architectures in which the texture

Fig. 8. Reconstructed and volume rendered blood vessel in a human brain.
Projection data were obtained by 3-D rotational angiography on a Siemens
C-arm scanner.

TABLE I
RUN TIMES FOR ONE ITERATION AS WELL AS FOR A COMPLETE

RECONSTRUCTION(THREE ITERATIONS) OF DIFFERENT SART
IMPLEMENTATIONS. [THESETIMINGS WERENEEDED TOPRODUCE THEIMAGES

SHOWN IN FIG. 9(b)–(e).] THE OCTANE HAD A MIPS R10000/195-MHz CPU
WITH 640 MB OF RAM. THE O2 HAD A MIPS R10000/175-MHz CPU
AND 128 MB OF RAM. BOTH HAD 32-KB PRIMARY DATA CACHE AND

1-MB SECONDARY CACHE

memory is synonymous with main memory, so the texture ca-
pacity is far less constrained. Since we store the volume as voxel
runs in the volume coordinate that is aligned with the rotation
axis, extra cache faults during volume reads and write-backs will
rarely occur [19]. Although software-ART has a somewhat more
irregular data access [17], which affects its cache behavior, ex-
periments have shown that linear relationships in terms ofand

exist here as well. Thus the speed-up ratios given in Table I
remain approximately the same, even for largerand .

VI. DISCUSSION ANDCONCLUSIONS

In this paper, we have investigated the utility and applica-
bility of widely available graphics hardware with texture map-
ping capabilities for the purpose of 3-D reconstruction with al-
gebraic methods. Algebraic methods have a number of advan-
tages in certain reconstruction scenarios, but are presently far
too slow for routine clinical use. The advantage of employing
graphics hardware for reconstruction acceleration is that this
equipment is likely to exist in clinical imaging labs anyhow,
for image-aided diagnosis and medical procedure planning, and
therefore no or little capital effort has to be made to apply the
proposed technology.

We first determined that of all the available algebraic
methods, SART was the most appropriate one to use. We then
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Fig. 9. Slices across reconstruction volumes obtained with different implementations of SART, software and hardware-accelerated. All reconstructions were
performed usingS = 80 128� 128 projections of the 3-D extension of the Shepp–Logan phantom (cone-angle
 = 40 , three iterations, a 128reconstruction
grid,� = 0.1). The plots show the intensity profiles across the center of the three small ellipsoids (tumors) near the bottom of the phantom.
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Fig. 9. (Continued) Slices across reconstruction volumes obtained with different implementations of SART, software and hardware-accelerated. All
reconstructions were performed usingS = 80 128� 128 projections of the 3-D extension of the Shepp–Logan phantom (cone-angle
 = 40 , three iterations, a
128 reconstruction grid,� = 0.1). The plots show the intensity profiles across the center of the three small ellipsoids (tumors) near the bottom of the phantom.
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partitioned the available graphics architectures into two groups:
1) mid-range graphics workstations (below $25 000), such as
the SGI Octane, that have a 12-bit framebuffer, and 2) low-end
graphics PCs and graphics boards that currently only have an
8-bit framebuffer. Our experiments indicate that the first group
offers speedups between 35 and 68 when compared to a fairly
optimized software implementation of SART, running on the
same host CPU. The second group was investigated primarily
to determine whether an 8-bit framebuffer can provide mean-
ingful reconstructions at all. The timings that were obtained
for that group are bound to be outdated very quickly, given the
rapid performance growth of today’s graphics boards, such
as NVidia’s GeForce series. We obtained a speedup of about
eight on an SGI O2, an entry-level graphics PC with hardware
comparable to a last-generation PC graphics board.

Our experiments indicate that the limiting factor in this en-
deavor is the limited resolution of the framebuffer. To ease this
drawback we devised a scheme that partially extends a given
framebuffer resolution by 4 bits. This allowed the resolvable
contrast to be lowered to half the level that could be resolved
without the extension. Using this extension for a 12-bit frame-
buffer, we found that object features of 1% contrast can already
be distinguished well. We also found that the noise levels due to
the limited framebuffer resolution are in the 0.5%–1% contrast
range. This means that once the features exceed this range, the
signal-to-(reconstruction) noise ratio becomes sufficient for a
reconstruction of good quality. For an 8 bit framebuffer, partially
extended to 12 bit, the noise level is slightly below 2%. Thus
features of 2% contrast can be distinguished, but the noise is
still well perceivable. If only features of 4% contrast are present
then the noise can de-emphasized sufficiently by widening the
brightness window.

The software implementation of SART [17] uses high-quality
Bessel–Kaiser interpolation kernels that were analytically
preintegrated. This provides near-analytical line integration and
very accurate weight factors. TMA-SART, on the other hand,
must use bilinear interpolation within the volume slices and
the trapezoidal rule for integration. Furthermore, the sampling
interval is greater than unity for the majority of rays, i.e., all
those that are nonperpendicular to the volume slices most par-
allel to the image plane. The lower quality filter and integrator
approximation can cause aliasing artifacts that are independent
of framebuffer resolution, and we have observed them as the
minor structured artifacts in Fig. 9(c) and (d). One possible
way to increase the sampling rate is to interpolate additional,
intermittent volume slices prior to a projection step. This
interpolation can be done in hardware by blending two adjacent
volume slices according to their distance relative to the new
slice. Projection would then be based on all volume slices—the
original ones and the interpolated ones. Backprojection would
occur in the reverse fashion: One would backproject onto all
slices, and the contributions of the intermittent slices would be
distributed onto the original slices by a separate blending step
in hardware.

Although TMA-SART, with present hardware, does not de-
liver reconstructions that can resolve the low contrasts (0.5%)
of a software implementation, it can resolve 1% with a 12-bit
framebuffer and 2%–4% with an 8-bit framebuffer, which is not

too far from the desired levels. There are in fact a number of
CT applications that do not require contrast levels beyond the
capabilities of TMA-SART. One example is 3-D reconstruction
angiography [1] (see Fig. 8), where the task is to reconstruct an
opacified blood vessel from its projections. Another application
is the reconstruction of bone structures. Many industrial CT ap-
plications may also benefit from TMA-SART. Finally, algebraic
methods have also been quite successful in PET and SPECT re-
construction, where contrasts are typically rather high [13].

But nevertheless, an improvement of the framebuffer resolu-
tion of inexpensive graphics boards would be ideal. One incen-
tive for board developers to provide wider framebuffers is the
circumstance that they enable fast, high-quality motion-blur, a
highly desirable effect in graphics and game applications. To
achieve motion-blur, a moving object is rendered into the frame-
buffer a number of times, once for each time step. This calls
for an extended framebuffer to allow for the frame accumula-
tions without loss of precision. After a certain number of frames
are rendered, the framebuffer is averaged by bit-shifting it to
the right, and the motion-blurred scene or object is displayed.
These extended framebuffers, called accumulation buffers [9],
can also be used to generate soft shadows, depth-of-field effects,
as well as high-quality anti-aliasing of polygonal objects [9].
On the other hand, there are also a number of new graphics and
volume rendering boards currently being prepared for market
introduction (e.g., the VIZARD volume rendering board [15]).
One may be able to work with the designers to add mechanisms
that would allow a framebuffer word to be changed, via software
switch, from three 8-bit RGB slots to a single 24-bit Luminance
slot. The added arithmetic would only require a small number
of extra logical gates and would enable the TMA-SART accu-
mulator as well.
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