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Abstract—Sequence alignment is a core component of many
biological applications. As the advancement in sequencing tech-
nologies produces a tremendous amount of data on an hourly basis,
this alignment is becoming the critical bottleneck in bioinformatics
analysis. Even though large clusters and highly-parallel processing
nodes can carry out sequence alignment, in addition to the exac-
erbated power consumption, they cannot afford to concurrently
process the massive amount of data generated by sequencing
machines. In this paper, we propose a novel processing in-memory
(PIM) architecture suited for DNA sequence alignment, called
RAPID. We revise the state-of-the-art alignment algorithm to make
it compatible with in-memory parallel computations, and process
DNA data completely inside memory without requiring additional
processing units. The main advantage of RAPID over the other
alignment accelerators is a dramatic reduction in internal data
movement while maintaining a remarkable degree of parallelism
provided by PIM. The proposed architecture is also highly scalable,
facilitating precise alignment of lengthy sequences. We evaluated
the efficiency of the proposed architecture by aligning chromosome
sequences from human and chimpanzee genomes. The results show
that RAPID is at least 2× faster and 7× more power efficient than
BioSEAL, the best DNA sequence alignment accelerator.

I. INTRODUCTION

DNA comprises long paired strands of nucleotide bases, and DNA
sequencing is the process of identifying the order of these bases in
the given molecule. Demonstration of nucleotide bases is abstracted
away by four representative letters, A, C, G, and T, respectively
standing for adenine, cytosine, guanine, and thymine nucleobases.
Modern techniques can be applied to human DNA to diagnose
genetic diseases by identifying disease-associated structural vari-
ants [1]. DNA sequencing also plays a crucial role in phylogenetics,
where sequence information can be used to infer the evolutionary
history of an organism over time [2]. These sequences can also be
analyzed to provide information on populations of viruses within
individuals, allowing for a profound understanding of underlying
viral selection pressures [3].

Sequence alignment is central to a multitude of these biological
applications and is gaining increasing significance with the advent
of nowadays high-throughput sequencing techniques which can
produce billions of base pairs in hours, and output hundreds of
gigabytes of data, requiring enormous computing effort. Different
variants of alignment problems have been introduced. However, they
eventually decompose the problem down to pairwise (i.e., between
two sequences) alignment. The global sequence alignment can be
formulated as finding the optimal edit operations, including dele-
tion, insertion, substituting of the characters, required to transform
sequence x to sequence y (and vice versa). The cost of insertion
(deletion), however, may depend on the length of the consecutive
insertions (deletions).

The search space of evaluating all possible alignments is expo-
nentially proportional to the length of the sequences and becomes
computationally intractable even for sequences as small as having
just 20 bases. To resolve this, the Needleman-Wunsch algorithm
[4] employs dynamic-programming (DP) to divide the problem
into smaller ones and construct the solution by using the results

obtained from solving the sub-problems, reducing the worst-case
performance and space down to O(mn) while delivering higher
accuracy compared to the heuristic counterparts such as BLAST [5].
The Needleman-Wunsch, however, needs to create a scoring matrix
Mm×n that has a quadratic time and space complexity dependent on
the lengths of input sequences and is still compute intensive. For
instance, aligning the human’s largest chromosome (among 23 pairs)
with the corresponding chromosome in chimpanzee (to get evolu-
tionary insights) results in a score matrix with ∼ 56.9 peta-elements.
Parallelized versions of Needleman-Wunsch rely on the fact that
computing the elements on the same diagonal of the scoring matrix
need only the elements of the previous two diagonals. The level
of parallelism offered by large sequence lengths often cannot be
effectively exploited by conventional processor architecture. Some
effort has been made to accelerate DNA alignment using different
hardware techniques to exploit the parallelism in the application ([6],
[7], [8], [9]). Their benefits are limited mainly due to the limited
number of cores and a large amount of data movement between
the off-chip memory and the processing cores. However, these
algorithms require just simple bitwise logic and addition operations
rather than complex cores with general-purpose functional units.

Processing in-memory (PIM) architectures are promising solu-
tions to mitigate the data movement issue and provide a large amount
of parallelism. PIM enables in-situ computation on the data stored
in the memory, hence, throttling the latency of data movement [10],
[11], [12], [13]. Nevertheless, PIM-based acceleration demands a
cautious understanding of the target application and the underlying
architecture. PIM operations, e.g., addition and multiplication, are
considerably slower than conventional CMOS-based operations.
The advantage of PIM stems from the high degree of parallelism
provided and minimal data movement overhead. Our proposed
accelerator, RAPID, effectively exploits the properties of PIM to
enable a highly scalable, accurate and energy-efficient solution for
DNA alignment.

Our main contributions in this paper are as follows:

(1) We make the well-known dynamic programming-based DNA
alignment algorithms, e.g., Needleman-Wunsch, compatible with
and more efficient for PIM by separating the query and reference
sequence matching from the computation of the corresponding score
matrix.

(2) We propose a highly scalable H-tree connected architecture
for RAPID. It allows low-energy within-the-memory data transfers
between adjacent memory units. Also, it enables us to combine
multiple RAPID chips to store huge databases and support database-
wide alignment.

(3) A RAPID memory unit, consisting of three blocks, provides
the capability to perform exact and highly parallel matrix-diagonal-
wide forward computation while storing only two diagonals of sub-
stitution matrix rather than the whole matrix. It also stores traceback
information in the form of direction of computation, instead of
element-to-element relation.

(4) We evaluated the efficiency of the proposed architecture by
aligning real-world chromosome sequences, i.e., from human and
chimpanzee genomes. The results show that RAPID is at least 2×978-1-7281-2954-9/19/$31.00 c©2019 IEEE



faster and 7× more power efficient than BioSEAL, the best DNA
sequence alignment accelerator.

II. BACKGROUND AND RELATED WORK

A. Sequence Alignment

Natural evolution and mutation as well as experimental errors
during sequencing poses two kinds of changes in sequences - sub-
stitutions and indels. A substitution changes a base of the sequence
with another, leading to a mismatch whereas an indel either inserts
or deletes a base. Substitutions are easily recognizable by Hamming
distance. However, indels can be mischaracterized as multiple dif-
ferences, if one merely applies Hamming distance as the similarity
metric. The following figure shows comparison of two sequences
x = ATGTTATA and y = ATCGTCC. The left figure rigidly com-
pares the ith base of x with y, while the right figure assumes a
different alignment which leads to higher number of matches, taking
account the fact that not only bases might change (mismatch) from
one sequence to another, insertions and deletions are quite probable.
Note that the notation of dashes (−) is conceptual, i.e., there is no

dash (−) base in a read sequence. Dashes are used to illustrate a
potential scenario that one sequence has been (or can be) evolved
to the other. In short, sequence alignment aims to find out the best
number and location of the dashes such that the resultant sequences
yield the best similarity score.

As comparing all possible scenarios of aligning is exponentially
proportional to the aggregate length of the sequences, hence compu-
tationally intractable, more efficient alignment approaches have been
proposed. These methods can be categorized to heuristic methods
and those based on dynamic programming, namely, Needleman-
Wunsch [4] for global and Smith-Waterman [14] for local alignment.
Heuristic techniques are computationally lighter but do not guaran-
tee to find an optimal alignment solution, especially in sequences
that contain a large number of indels. However, these techniques
are still employed because the exact methods (based on dynamic
programming) were computationally feasible. Though they might
also utilize the Smith-Waterman dynamic programming approach to
build-up the final gapped alignment [5], [15].

Dynamic programming based methods involve forming a sub-
stitution matrix of the sequences. This matrix computes scores of
various possible alignments based on a scoring reward and mismatch
penalty. These methods avoid redundant computations by using the
information already obtained for alignment of the shorter subse-
quences. The problem of sequence alignment is analogous to the
Manhattan tourist problem: starting from coordinate (0,0), i.e., left
upper corner, we need to maximize the overall weights of the edges
down to the (m,n), wherein the weights are the rewards/costs of
matches, mismatches, and indels. Fig. 1 demonstrates the alignment
of our previous example. The reference sequence x = ATGTTATA

is put as the left column and the query sequence y = ATCGTCC

as the first row. Diagonal moves indicate traversing a base in both
sequences, which results in either a match (ց) or mismatch (ց).
Each → (right) and ↓ (down) edge in the alignment graph denotes
an insertion and deletion, respectively.

Fig. 1(b) shows the art of dynamic programming (Needleman-
Wunsch), wherein every solution point has been calculated based
on the best previous solution. The number adjacent to each vertex
shows the score of the alignment up to that point, assuming a score
of +1 for matches and −1 for the substitutions and indels. As an
instance, alignment of x = ATG with y = ATC corresponds to the
coordinate (3,3) in Fig. 1, denoted by . This alignment, recursively,

Fig. 1. (a) Alignment graph of the sequences ATGTTATA and ATCGTCC,
(b) solution using dynamic programming.

can be achieved in three different ways. The first approach is to first
align x′ = AT and y′ = AT, denoted by in the figure, followed
by concatenation of G and C into the x′ and y′, which causes a
mismatch (ց) and score deduction by −1. Another approach could
be moving from to meaning that align ATG with ATC from
x′ = AT− with y′ = ATC by deletion (↓), i.e., making x′ = AT−G

and y′ = ATC−. The third approach was forming by inserting C

while moving from . As it can be perceived, though we need to
solve the three immediate previous alignments, we do not need to
calculate them from scratch as they would be obtained already if
we fill out the alignment graph diagonally, moving from the first
diagonal (which has a single element) towards the last diagonal in a
baroque manner. This grants us diagonal-level parallelism as we can
calculate all elements of a diagonal independently.

All in all, the Needleman-Wunsch global alignment can be for-
mulated as follows. Matrix M holds the best alignment score for
all pairwise alignments and score(xi,−) and score(−,yi) denote the
cost of deletion and insertion. It essentially assumes the scenarios
above when recursively aligning two sequences: whether either x
or y ends with −, or a base. The difference of Smith-Waterman
algorithm is it changes the negative edges to 0 to account for local
alignments.

 

B. Digital Processing In-Memory

Traditionally, processing with memristors is based on reading
currents through different cells. However, some recent work has
demonstrated ways, both in literature [16], [17], [18], [19], [20], [21]
and by fabricating chips [22], to implement logic using memristor
switching. Digital processing in-memory exploits variable switching
of memristors. The output device switches whenever the voltage
across it exceeds a threshold [23]. This property can be exploited
to implement a variety of logic functions inside memory [16],
[18], [24]. Figure 2 shows the latest work in this direction where
the output of operation changes with the applied voltage [16]. In-
memory operations are in general slower than the corresponding
CMOS-based implementations because memristor devices switch
slowly. However, PIM architectures can provide significant speedup
when running applications with massive parallelism. For example, it
takes the same amount of time for PIM to perform operations in a
single row or all rows [25].

The PIM based designs proposed in PRINS [26] and
BioSEAL [26] accelerates the Smith-Waterman algorithm based on
associative computing. The major issue with these works is their
large amount of write operation and internal data movement to
perform the sequential associative search. Another set of work accel-
erates short read alignment, where large sequences are broken down
into smaller sequences and one of the heuristic methods is applied.
The work in RADAR [27] and AligneR [28] exploited the same
ReRAM to design a new architecture to accelerate BLASTN and
FM-indexing for DNA alignment. The work in [29] and Darwin [30]
propose new ASIC accelerators and algorithm [30] for short read
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Fig. 2. Implementing operations using digital processing in-memory.

alignment. Some implementations have been done on FPGAs [8],
[9], [31], of which ASAP [31] proposed a programmable hardware
by using circuit delays proposed by RaceLogic [32].

III. IN-MEMORY IMPLEMENTATION OF RAPID

This section details RAPID, which implements the DNA se-
quence alignment algorithm discussed. It adopts a holistic approach
where it changes the traditional implementation of the algorithm to
make it compatible with memory. Then, it proposes an architecture
which takes into account the structure of and the data dependencies
in DNA alignment. The proposed architecture is scalable and mini-
mizes internal data movement.

A. Implementation of Algorithm using PIM

In order to optimize the DP algorithms for in-memory compu-
tation, we made some modifications to the implementation of the
substitution-matrix buildup. The score of aligning two characters
depends if they do match or not. First, we avoid additional branching
during the computation by pre-computing a matrix C, which sep-
arates the input sequence matching stage from the corresponding
forward computation phase, allowing RAPID to achieve high paral-
lelism. The matrix C is defined as follows:

C[i, j] =

{

0 x[i] = y[ j]

m x[i] �= y[ j]
(1)

As discussed in the previous section, DP algorithms for sequence
alignment are inherently parallelizable in a diagonal-wise manner.
To make it compatible with the column-parallel operations in PIM,
we map each diagonal of the matrix M to a row of memory. Let us
consider the set of diagonals {d0,d1,d2, · · · ,dn′}, where n′ = n+m,
equal to the total length of the sequences. Let M[i, j] correspond to
dk[l]. Then, M[i−1, j], M[i, j−1], and M[i−1, j−1] correspond to
dk−1[l], dk−1[l −1], and dk−2[l −1] respectively.

Second, we deal solely within the domain of unsigned integers,
based on the observation that writing ‘1’ to the memory is both
slower as well as more energy consuming than writing ‘0’ [33].
Since negative numbers are sign-extended with ‘1,’ writing small
negative numbers in the form of 32-bit words has a significantly
higher number of 1’s. Especially, −10 ≤ m < 0, which sets > 90%
of bits to ‘1’ as compared to ∼ 5% for their positive counterparts.
We enable this by changing the definition of matrix M as follows.

M[0, i] = σ × i i ∈ [1,Lx]M[ j,0] = σ × j j ∈ [1,Ly] (2)

with σ being the cost of indels. This modification makes two
changes in the matrix build-up procedure. First, instead of sub-
tracting the matrix elements by σ in the case of indels, now we
need to add sigma with those elements. Consequently, we replace
maximum operation with a minimum function between the three
matrix elements. Hence, when x[i] = y[ j], the element updates as
follow (note that, as shown by Equation 1, the cost of aligning the
same bases is 0).

min(M[i−1, j−1],M[i, j−1]+σ ,M[i−1, j]+σ)

Using the these modifications, we can reformulate the algorithm
in terms of in-memory row operations as follows.

M[i, j] = min(M[i−1, j−1]+C[i, j],M[i, j−1]+σ ,M[i−1, j]+σ)

which is equivalent to,

dk[l] = min(dk−2[l−1]+C[k−2, l−1],dk−1[l]+σ ,dk−1[l−1]+σ)

Since we already have dk−2 and dk−1 while computing dk, we can
express the computation of dk as:
Algorithm-1:

1) Add σ to every element in dk−1 and store it in row A
2) Copy row A to row B, then shift row B right by one
3) Element-wise add Ck−2 to dk−2, and store it in row C
4) Set dk to be the element-wise minimum of A, B and C

We perform all steps of the algorithm using only shift, addition,
and minimum operations.

Once the matrix computation completes, the backtracking step
must occur. As detailed in the following Section, RAPID enables
backtracking efficiently in memory by dedicating small memory
blocks that store the direction of traceback computation.

B. RAPID Architecture

A RAPID chip consists of multiple RAPID-units connected in
H-tree structure, shown in Figure 3. The RAPID-units collectively
store database sequences or reference genome and perform the align-
ment. For maximum efficiency, RAPID evenly distributes the stored
sequence among the units. RAPID takes in a query sequence and
finally outputs details of the required insertions and deletions in the
form of traceback information. As shown in Figure 4b, RAPID takes
in one word at a time. An iteration of RAPID evaluates one diagonal
of the substitution or the alignment matrix. After every iteration,
RAPID takes in a new word of the query sequence and the previous
part is propagated through different units as shown in Figure 4b.
This propagation results in a continuous transfer of data from a unit
to the next unit. Although this transfer is limited to a few words
per iteration, it may create a bottleneck if the conventional bus-like
interconnect is used to connect memory blocks. We also observe that
most of these transfers are local, i.e., between adjacent units. Hence,
RAPID uses an H-tree interconnect to connect different units.

1) RAPID organization: The H-tree structure of RAPID di-
rectly connects the adjacent units. Figure 3a show the organization in
detail. The H-tree interconnect allows low latency transfers between
adjacent units. The benefits are enhanced as it allows multiple
unit-pairs to exchange data in parallel. The arrows in the figure
represent these data transfers, where transfers denoted by same
colored arrows happen in parallel. We also enable computation on
these interconnects. In RAPID, each H-tree node has a comparator.
This comparator receives some alignment scores from either two
units or two nodes and stores the maximum of the two along with the
details of its source. These comparators are present at every level of
the hierarchy and track the location of the global maximum of chip.

2) RAPID-unit: Each RAPID-unit is made up of three ReRAM
blocks: a big C − M block and two smaller blocks, Bh and Bv.
The C − M block stores the database or reference genome and is
responsible for the generation of C and M matrices discussed in
Section III-A. The Bh and Bv blocks store traceback information
corresponding to the alignment in C−M.

C − M block: A C − M block is shown in Figure 3c. The
C −M block stores the database and computes matrices C and M,
introduced in Section III-A. C-M is divided into two sub-blocks
using switches. The upper sub-block stores the database sequences
in the gray region in the figure and computes the C matrix in the
green region while the lower sub-block computes the M matrix in
the blue region. This physical division allows RAPID to compute
both the matrices independently while eliminating data transfer
between the two matrices. C matrix pre-computes the penalties for
mismatches between the query and reference sequences. The C sub-
block generates one diagonal of C at a time. In each iteration, RAPID
stores the new input word received from the adjacent unit as cin1. The
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cin2 to cin32 are formed by shifting the previous part of the sequence
by one word as shown in Figure 4b. The resulted cin is then compared
with one of the database rows to form C[i, j] for the diagonal as
discussed in Equation 1. RAPID makes this comparison by XORing
cin with the database row. It stores the output of XOR in a row, cout .
All the non-zero data points in cout are then set to m (Equation 1).
C[i, j] generation uses just two rows in the C sub-block.

The M sub-block generates one diagonal of the substitution-
matrix at a time. According to Algorithm 1, this computation in-
volves two previously computed rows of M and one row of the C
matrix. Hence, for computation of a row dk in M, dk−2 and dk−1

are required. C[i, j] is made available by activating the switches. The
operations involved as per Algorithm 1, namely XOR, addition, and
minimum, are fully supported in memory as described in Section
III-C. The rows A, B, and C in Figure 3c correspond to the rows
A, B, and C in Algorithm 1. After the evaluation of dk, we need to
identify the maximum value in dk to keep track of the maximum
alignment score. Hence, RAPID reads out dk and stores it in the
row latch in the figure. A comparator next to the row latch serially
processes all the words in a row of C−M block and stores the value
and index of the maximum alignment score. As shown in the figure,
at any instance k, we just store dk, dk−1, and dk−2. This is in contrast
to traditional implementations, where the entire M matrix (of size
length query× length re f erence) is computed and stored. RAPID
enables the storage of just two previous rows by (i) continuously
tracking the global maximum alignment score and its location using
H-tree node comparators and local unit comparators and (ii) storing
traceback information. In total, M sub-block uses just eight rows,
including two processing rows.

C-M block computational flow: Only one row of C is needed
while computing a row of M. Hence we parallelize the computation
of C and M matrices. The switch-based subdivision physically en-
ables this parallelism. At any computation step, k, C[k] is computed
in parallel to the addition of g to dk−1 (1 in Algorithm-1). Then
addition output is read from the row A and written back after being
shifted by one (2 in Algorithm-1) to row B. Following the algorithm,
C[k] is added to dk−2 and stored in row C and finally dk is calculated
by selecting the minimum of the results of previous steps.

Bh and Bv blocks: The matrices Bh and Bv together form the
backtracking matrix. Every time a row dk is calculated, Bh and Bv
are set depending upon the output of minimum operation. Let dkl

represent lth word in dk. Whenever the minimum for lth word is row
A, {Bh[k, l],Bv[k, l]} is set to {1,0}, for row B, {Bh[k, l],Bv[k, l]}
is set to {0,1}, and for row C, both Bh[k, l] and Bv[k, l] are reset to
0. After the completion of forward computation (substitution matrix
buildup), the 1s in matrices Bh and Bv are traced from end to the
beginning. The starting point for alignment is given by the index
corresponding to the maximum score, which is present in the top-
level registered-comparator. The values of [Bh[i, j], Bv[i, j]] form the
final alignment. If [Bhi j, Bvi j] is (i) [1,0]: it represents insertion,
(ii) [0,1]: it represents deletion, and (iii) [0,0]: it represents no gap.
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Figure 3e presents an example of sequence alignment performed
using the traceback information from Bh and Bv. The two blocks
store the same number of words as the C-M block. However, each of
these words is just one bit in length (0 or 1).

3) Sequence Alignment over Multiple RAPID Units: Here,
we first demonstrate the working of RAPID using a small example
and then generalize it.

Example Setting: Say, that the RAPID chip has eight units, each
with a C−M block size of 1024×1024. 1024 bits in a row result in
a unit with just 32 words per row, resulting in Bh and Bv blocks of
size 32× 1024 each. Assume that the accelerator stores a reference
sequence, seqr, of length 1024.

Storage of Reference Sequence: The reference sequence is
stored in a way to maximize the parallelism while performing
DP-based alignment approaches, as shown in Figure 4a. RAPID
fills a row, ri, of all the C − M blocks before storing data in the
consecutive rows. Hence, in total, the first 256 data words, 8×32
(#units×#words-per-row), are stored in the first rows of the units and
the next 256 data words in the second rows. Since only 256 words of
the reference sequence are available at a time, this chip can process
just 256 elements of a diagonal in parallel.

Alignment: Now, a query sequence, seqq, is to be aligned with
seqr. Let the lengths of the query and reference sequences be Lq

and Lr, both being of length 1024. The corresponding substitution-
matrix is of the size Lq×Lr, 1024×1024 in this case. As our sample
chip can process a maximum of 256 data words in parallel, we deal
with 256 query words at a time. We divide the substitution-matrix
into sub-matrices of 256 rows as shown in the Figure 4c and process
one sub-matrix at a time.

The sequence seqq is transferred to RAPID, one word at a time,
and stored as the first word of cin. Every iteration receives a new
query word (base). cin is right-shifted by one word and we append
the new word received to cin. The resultant cin is used to generate one
diagonal of substitution-matrix as explained earlier. For the first 256
iterations, RAPID computes first 256 diagonals completely as shown
in Figure 4c. This processes the first 256 query words with the first
256 reference words. Now, instead of receiving new inputs, RAPID
uses the same inputs but processes them with the reference words
in the second row. This goes on until the current 256 words of the
query have not processed with all the rows of the reference sequence.



In the end, the first submatrix of 256 rows is generated (Figure
4c). It takes 256×5 iterations (words in row× (#seqr rows+ 1)).
Similarly, RAPID generate the following sub-matrices.

4) Suitability of RAPID for DNA alignment: RAPID instru-
ments each storage block with computing capability. This results
in low internal data movement between different memory blocks.
Also, the typical sizes of DNA databases don’t allow storage of
entire databases in a single memory chip. Hence, any accelerator
using DNA databases needs to be highly scalable. RAPID, with its
mutually independent blocks, compute-enabled H-tree connections,
and hierarchical architecture, is highly scalable within a chip and
across multiple chips as well. The additional chips add levels in
RAPID’s H-tree hierarchy.

C. RAPID Circuit Details

The computation of the proposed algorithm uses three main oper-
ations: XOR, addition, and Min/Max. In the following, we explain
how RAPID can implement these functionalities on different rows
of a crossbar memory.

XOR: We use the PIM technique proposed in [16] to implement
XOR in memory. XOR (⊕) can be expressed in terms of OR (+),
AND (.), and NAND ((.)′) as A ⊕ B = (A + B).(A.B)′. We first
calculate OR and then use its output cell to implement NAND.
These operations are implemented by the method ealier discussed
in Section II-B. We can execute this operation in parallel over all the
columns of two rows.

Addition: Let A, B, and Cin be 1-bit inputs of addition, and S
and Cout the generated sum and carry bits respectively. Then, S is
implemented as two serial in-memory XOR operations (A⊕B)⊕C.
Cout , on the other hand, can be executed by inverting the output of
the Min function proposed in [16]. Addition takes a total of 6 cycles
and similar to XOR, we can parallelize it over multiple columns.

Minimum: A minimum operation between two numbers is typi-
cally implemented by subtracting the numbers and checking the sign
bit. The performance of subtraction scales with the size of inputs.
Multiple such operations over long vectors lead to lower perfor-
mance. Hence, we utilize a parallel in-memory minimum operation
recently proposed in [34]. It finds the element-wise minimum in
parallel between two large vectors without sequentially comparing
them. First, it performs a bitwise XOR operation over two inputs.
Then it uses the leading one detector circuit in Figure 3d to find the
most significant mismatch bit in those words. The input with a value
of ‘0’ at this bit is the minimum of the two.

IV. EVALUATION

A. Experimental setup

We created and used a cycle-accurate simulator which simulates
the functionality of RAPID. For the accelerator design, we use
HSPICE for circuit-level simulations to measure the energy con-
sumption and performance of all the RAPID operations using a
45nm process node. We used the VTEAM ReRAM device model
proposed in [23] with the ROFF /RON of 10M/10k Ω. The device has
a switching time of 1.1 ns, allowing RAPID to run at a frequency
of 0.9 GHz. Energy consumption and performance are also cross-
validated using NVSim [35]. The device area model is based on
[36]. We used System Verilog and Synopsys Design Compiler to
implement and synthesize RAPID controller.

For the comparisons, we consider RAPID with an area of
660mm2, similar to NVIDIA GTX-1080 Ti GPU with 4GB memory,
unless otherwise stated. In this configuration, RAPID has a simu-
lated power dissipation of 470 W as compared ˜100 kW for 384-
GPU cluster of CUDAlign 4.0, ˜1.3 kW for PRINS, and ˜1.5 kW for
BioSEAL, while running similar workloads.
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Fig. 5. Runtime comparison across different platforms

B. RAPID & Sequence Length

We first evaluate RAPID’s operational efficiency by implement-
ing a pair-wise alignment of two sequences and compare the results
with in-house CPU and GPU implementations. We vary the length
of sequences to observe its effect on RAPID. For CPU baseline,
we use a Julia implementation of the Needleman-Wunsch algorithm,
run on a 2.8 GHz Intel Core i7 processor. While for GPU baseline,
we use the implementation of Needleman-Wunsch from the package
CUDAlign 4.0 [7], run on NVIDIA GTX 1080 Ti GPU.

Figure 5a shows the execution time of DNA alignment on dif-
ferent platforms. As our evaluation shows, increasing the length
of the sequence degrades the alignment efficiency. However, the
change in efficiency depends on the platform. Increasing the se-
quence length, exponentially increases the execution time of the
CPU. This increase is because the CPU does not have enough
cores to parallelize the alignment computation, resulting in a large
amount of data movement between memory and processing cores.
Similarity, the execution time of GPU increases with the sequence
length. In contrast, RAPID has much smoother increases in the
energy and execution time of the alignment. RAPID enables column-
parallel operations where the alignment time only depends on the
number of memory rows, which linearly increases by the size of
sequences. Our evaluation over varying sequence lengths shows
that for a sequence length of l = 1000 RAPID is 1585× faster
computation than CPU. The benefit increases drastically as the size
of the sequence increases, with RAPID being 9.6x106× faster than
CPU for l = 10,000,000. The GPU implementation is observed to
have significant latency overhead in the initial stages, performing
very poorly on smaller test cases. However, in middle size sequences
of l = 100,000, GPU is only 34× slower than RAPID. However,
as the sequence length further increases, e.g., l = 10,000,000, we
observe that RAPID outperforms GPU by 214×. On the other hand,
RAPID works better than GPU for both small and massive datasets.

C. RAPID for Exact Chromosome-wide Alignment

Workload: To demonstrate the applicability of RAPID to long
chromosome-wide alignment, we used DNA sequences from the Na-
tional Center for Biotechnology Information (NCBI). We compared
the 25 homologous chromosomes from humans (GRCh37) and
chimpanzees (panTro4). The sizes of chromosomes vary from 26
MBP (million base pairs) to 249 MBP. In total, these chromosomes
add up to 3.3 billion base pairs (BBP) for GRCh37 and 3.1 BBP for
panTro4. The human genome is assumed to be pre-stored in RAPID
and acts as the reference sequence. The chimpanzee genome is
assumed to be transferred to RAPID and acts as the query sequence.
RAPID takes in one new base every iteration and propagates it. In
the time taken by the external system to send a new query base
to RAPID, it processes a diagonal of the substitution matrix. In
every iteration, RAPID processes a new diagonal. For example, a
comparison between chromosome-1 (ch−1) of human genome with
249 MBP and ch1 of chimpanzee genome with 228 MBP results in
a substitution matrix with 477 million diagonals, requiring those
many forward computation operations and then traceback.

Comparison to state-of-the-art: We compare RAPID with state-
of-the-art implementations of DNA sequence alignment while run-
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Fig. 6. Comparison of execution of different chromosome test pairs. RAPID-1
is a RAPID chip of size 660 mm2 while RAPID-2 has an area of 1300 mm2.

TABLE I
RELATIVE LATENCY AND POWER OF DIFFERENT RAPID CHIPS FOR ch−1

Chip Area

(mm2)
# Chips

Relative
Latency

Relative
Power

Chip Area

(mm2)
# Chips

Relative
Latency

Relative
Power

660
1 1.00 1.00

168

1 3.82 0.26

2 0.52 1.93 4 1.03 0.97

1300 1 0.52 1.96 8 0.54 1.88

332

1 1.94 0.51
85

1 7.50 0.13

2 1.01 0.99 8 1.04 0.96

4 0.53 1.90 16 0.54 2.09

*One 660 mm2
RAPID chip: 1081 s, 470 W

ning exact chromosome-wide alignment. We compare our results
with CUDAlign 4.0 [7], the fastest GPU-based implementation
and two ReCAM-based DNA alignments architecture proposed in
PRINS [26] and BioSEAL [37]. Figure 5b shows the execution time
of aligning different test pairs on RAPID and CUDAlign 4.0. We
observe that RAPID is on an average 11.8× faster than the CUD-
Align 4.0 implementation with 384 GPUs. The improvements from
RAPID increase further if fewer GPUs are available. For example,
RAPID is over 300× faster than CUDAlign 4.0 with 48 GPUs.
We also evaluated RAPID, CUDAlign 4.0, and the ReCAM-based
designs, PRINS [26] and BioSEAL [37] in terms of cell updates per
sec (CUPS) as shown in Figure 6a. RAPID achieves 2.4× and 2×
higher performance as compared to PRINS and BioSEAL. It is also
on average, 2820× more energy efficient than CUDAlign 4.0 and
7.5× and 6.9× than PRINS and BioSEAL respectively as shown in
Figure 6b. Also, when the area of the RAPID chip increases from
the current 660 mm2 to 1300 mm2, the performance doubles without
increasing the total energy consumption significantly.

Scalability of RAPID: Table I shows the latency and power of
RAPID while aligning ch − 1 pair from human and chimpanzee
genomes on different RAPID chip sizes. Keeping RAPID-660 mm2

as the base, we observe that with decreasing chip area, the latency
increases but power reduces almost linearly, implying that the total
power consumption remains similar throughout. We also see that,
by combining multiple smaller chips, we can achieve performance
similar to a bigger chip. For example, eight RAPID-85 mm2 chips
can collectively achieve a speed similar to a RAPID-660 mm2 chip,
with just 4% latency overhead. This exceptional scalability is due to
the hierarchical structure of H-tree, where RAPID considers multi-
ple chips as additional levels in H-tree organization. However, this
comes with the constraint of having the number of memory blocks
as powers of 2 for maximum efficiency and simple organization.

D. Area Overhead

RAPID incurs 25.2% area overhead as compared to a conven-
tional memory crossbar of the same memory capacity. This addi-
tional area comes in the form of registered-comparators in units
and at interconnect nodes (6.9%) and latches to store a whole row
of a block (12.4%). We use switches to physically partition a C-M
memory block, which contributes 1.1%. Using H-tree instead of the
conventional interconnect scheme takes additional 4.8%.

V. CONCLUSION

We proposed a novel processing-in-memory (PIM) architecture
suited for DNA sequence alignment, called RAPID. The main

advantage of RAPID over the other alignment accelerators is the
dramatic reduction in internal data movement while maintaining
a remarkable degree of operational column-level parallelism pro-
vided by PIM. The proposed architecture is highly scalable, which
facilitates precise alignment of lengthy sequences. We evaluated
the efficiency of the proposed architecture by aligning chromosome
sequences from human and chimpanzee genomes. The results show
that RAPID is at least 2× faster and 7× more power efficient than
BioSEAL, the best DNA sequence alignment accelerator.
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