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Rapid adaptive radiation of Darwin’s finches depends 
on ancestral genetic modules
Carl-Johan Rubin1,2†, Erik D. Enbody1†‡, Mariya P. Dobreva3, Arhat Abzhanov3, Brian W. Davis4, 
Sangeet Lamichhaney5, Mats Pettersson1, Ashley T. Sendell-Price1,6, C. Grace Sprehn1§, Carlos A. Valle7, 
Karla Vasco7, Ola Wallerman1, B. Rosemary Grant8, Peter R. Grant8, Leif Andersson1,4,9*

Recent adaptive radiations are models for investigating mechanisms contributing to the evolution of biodiversity. 
An unresolved question is the relative importance of new mutations, ancestral variants, and introgressive hybrid-
ization for phenotypic evolution and speciation. Here, we address this issue using Darwin’s finches and investi-
gate the genomic architecture underlying their phenotypic diversity. Admixture mapping for beak and body size 
in the small, medium, and large ground finches revealed 28 loci showing strong genetic differentiation. These loci 
represent ancestral haplotype blocks with origins predating speciation events during the Darwin’s finch radiation. 
Genes expressed in the developing beak are overrepresented in these genomic regions. Ancestral haplotypes 
constitute genetic modules for selection and act as key determinants of the unusual phenotypic diversity of 
Darwin’s finches. Such ancestral haplotype blocks can be critical for how species adapt to environmental variability 
and change.

INTRODUCTION
Identification of factors that promote or constrain the process of adap-
tive radiation—rapid morphological and ecological diversification 
from a common ancestor—provides opportunities for understanding 
the origins of biodiversity. Species that radiate rapidly are thought 
to share some common features (1), promoting their ability to evolve 
into diverse forms (2, 3), whereas depauperate clades may lack them 
(4, 5). One such feature, evolvability, may be determined in part by 
the modularity of phenotypic traits (6), allowing some species to 
exploit ecological opportunity more readily (3). Two factors that 
influence why some species exhibit greater evolvability than others 
are phenotypic plasticity and the genetic potential for diversification 
(3). While rapid speciation in adaptive radiations provides limited 
time to generate de novo genetic variation, ancestral polymorphisms 
can facilitate rapid accumulation of diverse combinations of alleles 
(7–12). Under this model, ancestral variation is sorted in unique com-
binations in descendent lineages (13) and/or is transmitted across 
lineages through introgression (9, 11). Introgressive hybridization 
may lead to loss of genetic differentiation (14, 15); on the other hand, 
it enhances the potential for selection by increasing phenotypic and 
genetic variation (16, 17). Identification of genetic variants underlying 
phenotypic variation is essential for understanding the role of ancestral 

genetic variation in evolutionary change. This remains an outstanding 
challenge when comparing species because causal variants are greatly 
outnumbered by neutral variants. However, recent adaptive radia-
tions, particularly those that still hybridize, are excellent groups for 
studying the origins of genetic variation and their effects on pheno-
type because gene flow has homogenized the genetic background, 
thus facilitating the identification of loci contributing to phenotypic 
differences among species (18, 19).

The Darwin’s finch radiation comprises 18 species, 17 present in 
Galápagos and one on Cocos Island. The group is highly unusual in 
that no species is known to have become extinct because of human 
activities, in contrast to some other avian radiations (20). The spe-
cies have experienced current and historical gene flow (21–24), and 
diversification involved a key ecological trait, beak morphology, 
that mediates the efficient use of different food sources (insects, seeds 
of various sizes, cactus fruits, and even blood from other birds) (25). 
Previous genetic studies have revealed a few loci where ancestral 
alleles explain variation in beak morphology: ALX1 affecting beak 
shape (21), a genomic region controlling beak size including HMGA2 
and three other genes (MSRB3, LEMD3, and WIF1) (26, 27) and, in 
addition, a number of suggestive loci under selection (21, 26–28). 
Whether the presence of ancestral alleles is a general property of the 
genetic architecture, governing phenotypic variation in the radiation 
is unknown. Here, we present a high-quality chromosome-scale 
reference genome and leverage a natural scaling transformation in 
beak size (29) across three species of ground finches (Geospiza) to 
identify 28 loci under selection. We show that the origin of these 
haplotype blocks linked to phenotypic divergence predates specia-
tion events. These genetic modules have been reused over the past 
million years, were exchanged by gene flow, and contributed to the 
rapid phenotypic evolution and speciation among Darwin’s finches.

RESULTS
High-quality assembly of the Camarhynchus parvulus genome
The previously reported genome assembly based on Illumina short 
reads of a medium ground finch (Geospiza fortis) is highly fragmented 
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(contig N50 = 30.5 kb) (30). We therefore developed a high-quality, 
highly contiguous assembly for Darwin’s finches by combining long-
read data with chromatin contact (HiC) data (fig. S1). Because of 
uncertainty in safely exporting tissue samples with intact long DNA 
molecules from the Galápagos National Park, we carried out Oxford 
Nanopore Technologies (ONT) sequencing at the Galápagos Sci-
ence Center. Genomic DNA prepared from a male small tree finch 
(C. parvulus) was of high molecular weight, and this individual was 
selected for ONT sequencing. The close evolutionary relationship 
among all species of Darwin’s finches (pairwise interspecies dxy in 
the range of 0.2 to 0.3% (31)) implies that this reference assembly 
can be used across the phylogeny. We generated 35x ONT long-read 
sequence coverage from the reference individual and assembled the 
haploid genome (fig. S1). Erroneous base calls were corrected using 
linked-read data, and chromosome-sized scaffolds were generated 
using HiC data. The resulting assembly is of similar quality to cur-
rent state-of-the art genome assemblies in contiguity and accuracy 
[96% of the sequence assigned to chromosomes, scaffold N50 = 
71.1 Mb, Benchmarking Universal Single-Copy Orthologs (BUSCO) = 
96.1% complete, gaps = 0.01%] and shows a high degree of conserved 
synteny to the zebra finch genome assembly (Fig. 1A). Field-collected 
tissue samples were used to generate RNA sequencing (RNA-seq) 
data for annotation (table S1 and fig. S1). Genome annotation of 
these data using the Ensembl annotation pipeline (32) generated 

17,167 gene modules that include noncoding RNA and microRNA.  
We further used 25 C. parvulus individuals to generate a linkage 
disequilibrium–based recombination map (fig. S2) (33). Consistent 
with other avian species (34, 35), recombination rates are generally 
elevated at the ends of chromosomes and correlated with nucleotide 
diversity [coefficient of determination (R2) = 0.19, P < 0.001], par-
ticularly on the Z chromosome (R2 = 0.27, P < 0.001). This relationship 
is consistent with the widespread effects of background selection 
known in birds (35, 36).

Twenty-eight trait loci explaining phenotypic differentiation
We used admixture mapping (37) to search for loci contributing to 
genetic differentiation among three closely related species that differ 
primarily in a scaling factor for beak and body size from small to 
large (29): the small, medium, and large ground finches (Geospiza 
fuliginosa, G. fortis, and Geospiza magnirostris, respectively) (fig. S3).  
This trio was selected on the basis of their notable phenotypic dif-
ferentiation in beak and body traits alone and low genome-wide 
genetic differentiation (pairwise FST = 0.02 to 0.10) because this re-
duces the background noise due to genetic drift. In this study, we 
generated whole-genome, short-read sequence data from 28 indi-
viduals across the three species and combined them with previously 
published samples for a total of 75 birds on nine islands (mean 
coverage = 17 ± 9; table S2 and data S1) and applied phenotypic 

0

5

10

15

1
1A

2
3

4
4A

5
6

7
8

9
10

11
12

13
14

15
17

18
19

20 Z

Z
F

S
T

Contrast fortis-fuliginosoa fortis-magnirostris fuliginosa-magnirostris

−1.5

−1.0

−0.5

0.0

0.5

fuliginosa fortis magnirostris

 (
×

10
3 )

A B

C D

1 2–9
10–17

18–19

20

21–22

23

24
25 26

27

28Peak #:

a

Fig 1

C. parvulus T. guttata
G. fuliginosa G. fortis G. magnirostris

Fig. 1. Genome assembly, genetic diversity, and differentiation among three species of Darwin’s finches. (A) Illustration of conserved synteny to zebra finch (Taenopygia 
guttata). (B) Genome-wide admixture mapping using three species sorted ascendingly by beak and body size: 0 = G. fuliginosa, 1 = G. fortis, and 2 = G. magnirostris. The 
red dashed line indicates the significance threshold set by permutation. Illustrations of the three species are adapted from P.R.G. and Darwin (65). (C) Boxplot showing the 
difference in nucleotide diversity between the regions of association marked in (B) and regions outside the main area of association. Centerline indicates the median, 
bounded by the 25th and 75th percentiles, with whiskers extending to 1.5× the interquartile range. (D) Genome-wide Z-transformed FST for all three possible pairwise 
combinations of Geospiza considered here. Lines are colored by the comparison of interest. Many highly divergent regions are shared between contrasts and overlap with 
regions of association in (B) (data S2 and S3).
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scores of 0, 1, and 2 to reflect the increasing beak and body size of 
G. fuliginosa < G. fortis < G. magnirostris because phenotypic data 
were not available for each individual. The experimental setup is 
similar to an earlier study of these three species from only one 
island and which used reduced representation sequencing (27). Ad-
mixture mapping (37) revealed 28 loci that exceeded the significance 
threshold set by permutation (Fig. 1B) and represent independent 
loci (data S2). The size of these regions ranges from hundreds of 
kilobases (kb) to 2.7 Mb (Fig. 2) and contained between 0 and 35 genes 
(data S2). Outlier loci were clustered on macrochromosomes and 
included the previously described ALX1 and HMGA2 loci affecting 
the beak morphology, both located on chromosome 1A and only 
~7 Mb apart (loci 4 and 9 in Fig. 1B). These loci are separated by a 
recombination hotspot (fig. S2), consistent with previous results show-
ing that these loci do not show strong linkage disequilibrium (21, 26).

Regions of association identified with admixture mapping largely 
mirrored the results of FST-based contrasts (Fig. 1D) and strongly 
correlated with per-window estimates in the two contrasts involving 
G. fuliginosa (R2

fortis-fuliginosa = 0.84, R2
magnirostris-fuliginosa = 0.69; data 

S2). We do not expect a perfect match between the results of admix-
ture mapping and FST analysis because the former is based on a linear 
comparison of the trio, while the latter is derived from pairwise 
comparisons of species. In the 28 regions of association, G. fuliginosa 
and G. magnirostris were often homozygous for different haplotypes, 
while G. fortis exhibited intermediate allele frequencies (fig. S4 and 
data S3). This is highlighted at the HMGA2 locus on chromosome 1A, 
where measures of Tajima’s D are strongly negative for G. fuliginosa 
and G. magnirostris but strongly positive for G. fortis (fig. S4), con-
sistent with balancing selection maintaining haplotype diversity in 

the phenotypically variable G. fortis population (25). Nucleotide di-
versity was reduced in G. magnirostris relative to the genomic back-
ground in 23 of the 28 regions (Fig. 1C), consistent with selective 
sweeps in G. magnirostris or an ancestor. The 28 loci also fell in 
genome-wide low recombination regions (mean  in peaks = 1.4 com-
pared with mean  outside = 2.0), with the exception of one peak on 
chromosome 25 ( = 4.7), consistent with previous studies in Darwin’s 
finches showing that regions of elevated differentiation often lie in 
recombination coldspots (31). Low recombination in these regions 
has likely facilitated the persistence of large haplotype blocks despite 
high gene flow among Darwin’s finch species, as predicted from 
theoretical studies (36).

To explore the extent to which the loci detected in the ground 
finch contrast are also associated with phenotypic diversity among 
tree finches (Camarhynchus), we next performed a similar admixture 
analysis comparing small, medium, and large tree finches (C. parvulus, 
Camarhynchus pauper, and Camarhynchus psittacula, respectively), 
also classified as 0, 1, and 2, respectively, based on beak and body size. 
These samples were previously sequenced and include 46 individuals 
(n = 10 to 25 each) from eight islands. This replicated a signal for 
the HMGA2 locus affecting beak size (P = 4 × 10−16) (fig. S5), as 
expected from previous work (26). No other locus showed such a 
notable signal of genetic differentiation, but we noted an overlap of 
higher genetic differentiation, approaching genome-wide signifi-
cance, at several of the loci detected in the ground finch contrast 
(fig. S5). The identification of regions associated with phenotypic 
variation in size among Camarhynchus is hampered by the relatively 
small sample size (n = 46 versus n = 75 for Geospiza). Furthermore, 
we should not expect a perfect overlap because the beak proportions, 
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skull architecture, and musculature of the three tree finches differ 
from those in the ground finches and thus may have a different 
genetic basis (38).

To determine the evolutionary origin of haplotypes at the 28 loci 
detected in the ground finch contrast, we compared allele frequencies 
at the most differentiated single-nucleotide polymorphisms (SNPs) 
across all 18 species of Darwin’s finches and two outgroups Loxigilla 
noctis and Tiaris bicolor. We also included the Big Bird hybrid lineage, 
which was formed by the mating of a Geospiza conirostris male and 
two G. fortis females (24). The sample included genome sequences 
from previously published data and 62 new individuals (n = 321 in 
total; data S1). If genetic differentiation among Geospiza is caused 
primarily by de novo mutations that occurred after the split from 
Camarhynchus, then we would expect to find little shared haplotype 
structure in non-Geospiza species as a consequence of random 
accumulation of variants. In sharp contrast to this expectation, the 
allele frequency comparison revealed a nonrandom pattern (Fig. 2) 
and broad haplotype structures across the most differentiated SNPs 
at the 28 loci (data S4). Notably, a few G. magnirostris haplotypes 
are present at a relatively high frequency across the radiation (e.g., 
10 and 25), while most are consistently highly differentiated from 
haplotypes in other species, except those with relatively large beaks. 
Furthermore, a large portion of G. magnirostris major alleles, 67% 
(1273 of 1914), were derived relative to outgroups L. noctis and 
T. bicolor, consistent with selective sweeps in the G. magnirostris 
lineage and after Galápagos colonization (data S5). Together, these 
results imply that the “large” and “small” haplotype blocks identified 
by admixture mapping in Geospiza predate the separation of Geospiza 
and Camarhynchus.

The radiation of finches in the Galápagos proceeded rapidly, 
and phylogenetic reconstructions are characterized by short branch 
lengths, gene tree discordances, and incomplete lineage sorting (ILS). 
We therefore evaluated the hypothesis that these haplotype blocks 
are ancestral by examining the haplotype structure at each locus. 
Neighbor-joining trees based on the most differentiated SNPs at the 
28 loci are not consistent with the genome-wide phylogeny of 
Darwin’s finch (fig. S6), which is driven by haplotype structuring at 
each locus (locus 24 in Fig. 3A and all 28 loci in data S4). We also 
find support for phylogenetic discordance at each locus using topology 
weighting, which demonstrates that the placement of G. magnirostris 
at each locus is inconsistent with the species tree (Fig. 4 and fig. S7). 
Next, we estimated the divergence time between haplotypes among 
all pairwise combinations of G. magnirostris, G. fuliginosa, and 
Certhidea olivacea (green warbler finch) based on pairwise nucleotide 
divergence (dxy). These data indicate that the divergence times 
between the G. magnirostris and G. fuliginosa haplotypes at the 
28 loci tend to be older than the coalescent time for the two species 
(~260,000 years before present; Fig. 3A) and in the range of 380,000 
to 800,000 years before present (Fig. 3B, fig. S8, and data S2), which 
means that the great majority predate the split between Geospiza 
and Camarhynchus about 400,000 years ago (Fig. 3A). The estimated 
divergence times involving C. olivacea haplotypes consistently 
exceeded the divergence time between haplotypes from the two 
Geospiza species, suggesting that they evolved after the split between 
warbler finches and other finches in the phylogeny. However, these 
data do not exclude the possibility of a divergence before this early 
split for some loci, because genetic exchange between haplotypes is 
possible in species that segregate for both alleles like many do in 
G. fortis (data S4). To explore this possibility, we estimated the time 

to most recent common ancestor (TMRCA) among all haplotypes 
of each strongly associated SNP using a probabilistic modeling 
approach that incorporates both mutation and recombination rate. 
We found that strongly associated SNPs have a broad distribution 
of TMRCA (fig. S9), but, on average, the 28 loci have an upper allele 
age of 937,000 years ago (SD = 206,000 years).

Hybridization and the mixing of ancestral haplotypes
The presence of distinct combinations of haplotypes across the phy-
logeny (Fig. 2 and data S4) indicates ILS or hybridization and intro-
gression. The Genovesa cactus finch Geospiza propinqua has not 
only the fourth largest beak of all Geospiza but also the pointed beak 
characteristic of other cactus finches and carries a mixture of large 
and small haplotypes (Fig. 2). Gene flow from G. magnirostris to 
G. propinqua has been implicated from field observations (16). 
We estimated the fraction of introgression from G. magnirostris to 
G. propinqua on Genovesa using df, which incorporates dxy into an 
extension of ABBA/BABA D statistics (39), and found that regions 
of high G. magnirostris similarity share an excess of derived alleles 
(fig. 3C) and often reduced genetic divergence dxy (data S6), consistent 
with introgression and not ILS. In general, it remains an outstand-
ing challenge to distinguish between ILS and introgression using D 
statistics (40), but the genomic evidence presented here for intro-
gression in G. propingua demonstrates that gene flow can transfer 
these haplotypes among species. The role of hybridization in gener-
ating distinct combinations of haplotypes is demonstrated in the 
Big Bird lineage (Fig. 2). The Big Bird lineage is characterized by a 
proportionally large beak for its body size (24). The combination of 
G. conirostris, a sister species to G. magnirostris, and G. fortis alleles 
resulted in a unique phenotype and genotype with G. magnirostris 
haplotypes predominating at 22 of the 28 loci (Fig. 2).

Trait loci are enriched for developmental genes
The loci identified here segregate with phenotypic variation among 
the species and are expected to contain genes important for beak 
and body size variation. However, because this result is based on 
between-species contrasts, we cannot exclude the possibility that 
some loci reflect unmeasured phenotypic differences. We therefore 
explored previously described genotype-phenotype relationships in 
other taxa for the genes within these regions and their expression 
patterns. We conducted an enrichment analysis using mouse ortho-
logs for the genes in the vicinity of the 28 loci using the software 
GREAT (genomic regions enrichment of annotations tool) (41) and 
found that deleterious mutations at these loci were significantly asso-
ciated with abnormal development of cartilage and bones (Fig. 5A 
and fig. S10). Furthermore, these mouse orthologs were significantly 
enriched for genes expressed during craniofacial and limb develop-
ment, consistent with our expectation that genetic changes at many 
of these 28 loci affect beak development and body size variation. The 
enrichment includes genes spread across the 28 loci (data S2).

Because of the difficulties in interpreting gene-by-term enrich-
ment with data from other species (42), we performed two types of 
analysis to validate the association of beak gene expression with the 
differentiated loci. Using RNA-seq data from Darwin’s finches, we 
compared genes expressed at embryonic day 7 (E7) in the develop-
ing upper beak (nine embryos representing six species) with five other 
tissues (brain, gut, heart, left forelimb, and trunk from six embryos 
representing three species) (table S1). This analysis revealed that 
many of the genes within the 28 loci are expressed in the developing 
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beak, and these loci were 14-fold enriched for genes with higher 
expression levels (M≥5 = fold change ≥32) in the developing beak 
compared with other tissues (2 test, P = 7.4 × 10−24, d.f. = 1; Fig. 5B). 
We carried out in situ hybridization (ISH) of two candidates for 
craniofacial development (ALX1, locus 7; RUNX2, locus 24). ISH data 
on a total of seven zebra finch (Taeniopygia gutatta) and 27 Darwin’s 

finch embryos (of nine species) revealed that ALX1 expression was 
strongly biased to the beak region over the developmental period 
when beak size and shape are established (E6 to E7) (Fig. 5C and 
figs. S11 and S12A) (43). In addition, we confirmed a similar ex-
pression pattern in zebra finch embryos for RUNX2 (alias OSF2)—
an essential gene for ossification of the mesenchyme (fig. S12B) (44) 
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Fig. 3. Characterization of 28 adaptive loci. (A) Left: A neighbor-joining tree for all species of Darwin’s finches based on 4.9 million SNPs. The tree was converted to a 
chronogram using ape (66), and branching times are from Lamichhaney et al. (21). Right: A haplotype plot for each of the top associated variants on locus 24 with 0/0 for 
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horizontal line marks 900,000 years, the approximate time of divergence between warbler finches and all other finches in the radiation (21). (C) Fraction of introgression 
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located within a strong signal of differentiation among Geospiza 
(fig. S4B).

DISCUSSION
We have identified ancestral haplotypes at 28 loci that contribute to 
the unique phenotypic diversity of the Darwin’s finch radiation. 
Our functional characterization of these loci contributes to a growing 
body of literature, suggesting that genetic differences between spe-
cies of Darwin’s finches are enriched for genes involved in the key 
pathways for growth and development of beaks (21, 26–28, 43). In 
this study, we show that the distribution of these genetic modules 
across the phylogeny reflects natural selection and most likely both 
ILS and introgression (21, 22). It is not only the presence/absence of 
these haplotype blocks that affects the phenotype but also their fre-
quency within species, which is illustrated by intermediate haplo-
type frequencies at many of these loci in G. fortis (Fig. 2 and data S4 
and S5). Intermediate frequencies, indicative of balanced polymor-
phism, provide the underlying variation for selection to sort adaptive 
haplotypes during speciation. In G. fortis, variation may have been 
crucial for survival during strong selection events (26). Our findings 
support previous suggestions that ancestral variants contribute to 
phenotypic diversity, as indicated for pigmentation phenotypes 
among other songbird species (8, 13), color morphs in the common 

wall lizard (45), color patterns in Heliconius butterflies (11), various 
phenotypic traits in cichlids (7, 9), craniofacial morphology in pupfish 
(46), winter coat in snowshoe hares (47), and adaptation to high 
altitude in humans (48). This type of ancestral variation is also re-
tained within large populations preceding speciation, as illustrated 
in Atlantic herring and stickleback where ecotypes show differences 
in the frequency of haplotype blocks at hundreds of loci, all under-
lying ecological adaption (49, 50).

Characteristic features of these 28 loci are the large size of the 
haplotype blocks, often spanning hundreds of kilobases, and their 
ancient origins (Fig. 3B). The haplotype structure is in contrast to 
another ancestral polymorphism in Darwin’s finches, at the BCO2 
locus controlling nestling beak color, where a single base change con-
stitutes the likely causal mutation (51). The identification of causal 
variants within the haplotype blocks described here is challenging 
because of strong linkage disequilibrium among many sequence 
variants within each region. Such large haplotypes could include 
structural variants, which have been proposed as a key determinant 
of adaptive evolution and speciation (52, 53), but these 28 loci do not 
represent large inversions (>5 Mb) and tend to be relatively small 
(0.1 to 2.7 Mb) compared to previously described inversions in 
vertebrates (49, 54–57). Furthermore, none of the loci exhibit the 
sharp borders in our association analysis that are characteristic of 
inversions maintained as balanced polymorphisms (49, 54).
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The block structures at the 28 loci most likely reflect large-effect 
haplotypes composed of clusters of multiple causal variants that 
have accumulated during the evolution of Darwin’s finches (58), 
similar to the evolution of alleles in domestic animals by the sequen-
tial accumulation of causal mutations during the past 10,000 years 
(59). The occurrence of these haplotype blocks in low recombina-
tion regions likely facilitated their evolution (data S2). The reuse of 
ancestral genetic modules is a much faster route to adaptive change 
than the slow accumulation of adaptive de novo mutations (7). Our 
study is comprehensive in surveying genomic variation across all 18 
extant species of a single adaptive radiation, and yet, the principle 
finding, of repeated reassembly of ancient haplotype blocks in the 
formation of species, is likely to be a general feature of rapid radia-
tions (8, 46) and of general importance for how species adapt to 
environmental variability and change (25).

METHODS
Sample collection
Blood samples were collected from various Galápagos islands as part 
of sampling described elsewhere (21, 24) and stored on EDTA-
soaked filter paper in DRIERITE to preserve red blood cells for DNA 
extraction later. This included 101 individuals of eight different 
species (data S1). An additional 18 samples of six species were cap-
tured using mist nests on San Cristóbal in 2018 for this study and 
resequenced using short reads (data S1). In total (combined with 
sequences from previous studies), our sampling includes all 18 species 

of Darwin’s finches, the hybrid Big Bird lineage, and two outgroup 
species that sum to a combined sampling of 321 individuals (data S1). 
Of the individuals captured on San Cristóbal in 2018, one small tree 
finch was sampled for targeted long-read sequencing (see below). 
Sampling was conducted in accordance with the protocols of Princeton 
University’s Animal Welfare Committee. Embryos for RNA-seq for 
annotation (n = 11, three species) and for differential expression 
(n = 9, six species) analyses and for ISH (n = 27, nine species) were 
collected on Santa Cruz, Genovesa, and Pinta as described (table S1) 
(60). Embryos were stored in methanol or RNAlater (Thermo Fisher 
Scientific, CA) until further use.

ONT sequencing
Pilot experiments before the expedition indicated that avian DNA 
(chicken and Darwin’s finches) was not sequenced efficiently. We 
decided to develop a protocol to optimize yield from avian DNA 
sequencing with the MinION and hypothesized that the issue was 
partially due to avian DNA being enriched in molecules carrying 
certain motifs or creating certain types of secondary structures, 
which promoted blocking of nanopores and thus resulted in premature 
loss of actively sequencing nanopores and ultimately poor sequencing 
yields. We further hypothesized that T7 endonuclease I treatment 
of DNA before library generation would increase yields because 
T7 endonuclease I has been used to increase sequencing yield in an 
ONT protocol for sequencing DNA amplified using bacteriophage 
29 polymerase and has a broad substrate specificity involving 
four-way junctions, various branched structures, and single-base 
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mismatched heteroduplexes (61). We first used g-TUBEs (Covaris) 
to achieve a controlled fragmentation of the isolated DNA to ap-
proximately 6 to 10 kb. Electrophoresis of the original g-TUBE–
fragmented DNA side by side with the T7 endonuclease I–treated 
sample revealed a low-molecular weight smear unique to the treated 
sample. To efficiently remove DNA cut by T7 endonuclease I, we 
used a custom SPRI bead mixture (SeraMag SPRI beads, Thermo 
Fisher Scientific) capable of retaining DNA above the size of approxi-
mately 4 to 5 kb, thus selecting against the DNA cut by T7 endo-
nuclease I. We used the T7 endonuclease I cleavage protocol to 
prepare DNA for library generation for libraries aimed to generate 
reads in the 6 to 10 kb size range. For libraries where we aimed at 
sequencing longer molecules, we did not conduct any T7 cleavage. 
In the case of T7 cleavage of DNA before library generation, we ran 
agarose gel electrophoresis before advancing to library isolation 
to ascertain successful removal of the low–molecular weight DNA 
smear by the SeraMag speed bead mixture.

DNA was isolated by two main protocols, depending on whether 
we aimed to construct DNA libraries in the 6- to 10-, 20- to 30-, or 
50+-kb size ranges. For all samples, we started out with small amounts 
of blood (5 to 20 l) sampled from wing veins of birds using glass 
capillaries. Immediately following sampling, the blood was deposited 
in a tube containing 1 ml of cold phosphate-buffered saline (10 mM 
EDTA). The sampled blood was kept cold in a Styrofoam box con-
taining ice packs until back at the laboratory facility. Nuclei were 
isolated by adapting the protocol for cell culture in the QIAGEN 
Genomic DNA Handbook using ice-cold buffer C1 (QIAGEN). 
Following isolation of nuclei, we used either blood and tissue spin 
columns (QIAGEN) or NaCl/ethanol precipitation to isolate <30 kb 
or high–molecular weight DNA, respectively. Regardless of means 
of DNA isolation, we included a DNA cleanup step using SPRI 
beads before library generation. SeraMag SPRI beads were prepared 
by mixing 10 ml of 5 M NaCl, 500 l of 1 M tris, 100 l of 0.5 M 
EDTA, and 10 ml of H2O in a 50-ml Falcon tube. SeraMag beads 
(1 ml) were washed five times in 1 ml of tris-EDTA buffer (10 mM tris, 
1 mM EDTA) using a magnet stand, and the final 1-ml volume was 
added to the 20.6 ml of solution. A 50% (w/v) solution of PEG8000 in 
water was prepared, and 18 ml of this mix was added to the 21.6 ml 
of bead solution. The content was rigorously vortexed. Tween 20 
(27.5 l) was added to the mixture, and the volume was adjusted to 
50 ml with H2O. The final mixture was vortexed and then aliquoted 
to 1.5-ml Eppendorf tubes. The performance of the bead mix at 
different bead/sample volume ratios was evaluated using a mixture 
of bacteriophage lambda DNA and 1 kb of DNA ladder.

From one small tree finch (C. parvulus) individual (STF5), we 
produced four LSK-108 libraries from g-TUBE–fragmented DNA 
and five LSK-108 libraries made from high–molecular weight DNA 
using the protocol Genome sequencing by ligation, selecting for 
long reads (ONT). The libraries were sequenced on a GridION 
instrument (ONT) according to the manufacturer’s instructions. 
Together, from individual STF5, we generated 32.3 Gb of sequence 
data, corresponding to approximately 30× coverage.

HiC analysis
We were not able to perform HiC analysis at the Galápagos Science 
Center but were able to export fresh blood from a G. fortis individual; 
therefore, the HiC analysis was based on a G. fortis individual, al-
though the long-read data were from a C. parvulus individual. The 
blood was kept refrigerated until departure from Galápagos and 

was kept chilled (2° to 10°C) until arrival at Uppsala University, 
where a nuclei isolation protocol (buffer C from the QIAGEN 
Genomics Buffer) was applied to isolate erythrocyte nuclei. Isolated 
nuclei were immediately snap frozen in liquid nitrogen and kept 
at −80°C until further use. Nuclei were used for HiC library gener-
ation using the Arima Genomics HiC Kit v1, and the resulting HiC 
library was sequenced on a NextSeq 2000 instrument (Illumina).

RNA sequencing
We prepared RNA-seq libraries for genome annotation using a va-
riety of library preparation protocols, tissues, and finch species. We 
used a ribosomal RNA depletion kit from NEBNext for six samples 
of lower beak, jaw muscles, brain, gut and heart, left forelimb, and 
brain. An additional four samples were prepared using poly(A) en-
richment protocols from NEBNext for brain and jaw muscle tissues. 
Last, a single G. fortis trunk sample was enriched using a Lexogon 
SENSE total poly(A)-enriched RNA-seq kit and sequenced at three 
times higher depth than the remaining samples. The specific kits and 
sample accessions are listed in table S1. All 11 libraries were multi-
plexed and sequenced on a flow cell of an Illumina (San Diego, CA) 
SP chip. For differential expression analysis, we extracted RNA from 
the upper beak primordia of nine embryos from six species of 
Darwin’s finches (table S1), prepared cDNA libraries with the NEBNext 
Ultra RNA Library Prep Kit for Illumina (New England Biolabs, 
MA) with poly(A) selection, and sequenced them on HiSeq 4000 
(Illumina, CA).

Contrasting gene expression in beak and other tissues
RNA-seq data were aligned to the genome assembly using STAR 
v2.7.2b (62), guided by the GTF file from genome annotation. For 
each sample, uniquely mapping reads for each annotated gene were 
extracted using the STAR option “--quantMode GeneCounts.” Per-
sample gene counts were normalized to transcripts per kilobase million 
(TPM) values, by first dividing observed counts with the longest 
isoform length in kilobases and then by dividing those values with the 
total numbers (in millions) of uniquely mapping reads. Obtained 
TPM values were used to contrast upper beak development samples 
(n = 9) with samples corresponding to other tissues (n = 7) (table S1). 
P values for differential expression from two-sided t tests were 
calculated for each gene. M values were calculated as −log2(average 
TPM beaks / average TPM other tissues).

Short-read sequencing
One hundred one individuals were extracted using a custom salt 
preparation method [described by Enbody et al. (51)] and sequenced 
using the TruSeq Kit (Illumina, CA). Sixteen additional whole-
genome libraries were prepared using a custom Tn5 transposon–
based tagmentation protocol derived from Picelli et al. (63) and detailed 
by Enbody et al. (51). Briefly, we assembled the Tn5 transposon 
construct using the stock Tn5 (prepared by Karolinska Institutet 
Protein Science Facility) and the following primers (63): Tn5MErev: 
(5′-[phos]CTG TCTCTTATACACATCT-3′), Tn5ME-A (Illumina 
FC-121-1030) (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG-
ACAG-3′), and Tn5ME-B (Illumina FC-121-1031) (5′-GTCTCGT-
GGGCTCGGAGATGTGTATAAGAGACAG-3′).

In situ hybridization
Tissue sectioning and fixation, probe hybridization, and signal detec-
tion were performed according to the previously published protocols 
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(64) with probe concentration of 0.5 ng/l. Digoxigenin (DIG)–labeled 
antisense riboprobes were generated by polymerase chain reaction 
followed by RNA synthesis according to the standard procedures 
using T3/T7 promoter primers combined with the following gene-
specific primers: ALX1 [581 base pairs (bp)] (forward: 5′-CAGGACAG-
CAACGTCAACTA-3′; reverse: 5′-AAGCCTGTGTAGCCAGAATC-3′), 
COL2A1 (683 bp) (forward: 5′-GCAAGGCCAAGGAGAAGAA-3′; 
reverse: 5′-TGATTCTGGTGTTGGGATGAG-3′), COL9A1 (608 bp) 
(forward: 5′-CTGGCCCAAAGGGTAATAGAG-3′; reverse: 5′-AC-
CAAATTCTGGCCTCCTAAG-3′), and RUNX2 (619 bp) (forward: 
5′-GAACCAGGTGGCCAGATTTA-3′; reverse: 5′-GACTGGCG-
GTGTATAGGTAAAG-3′).

Genome assembly
The methods used for genome assembly, gene and repeat annota-
tion, and construction of linkage map are provided in Supplemen-
tary Methods.

Population genomics analysis
The Supplementary Methods contains a full description of the 
methods used for short-read variant analysis, genotype phasing, ad-
mixture mapping, genetic diversity and divergence analyses, allele 
age estimation, analysis of introgression, gene enrichment analysis, 
phylogenetic reconstruction, analyses of allele frequencies, and 
topology weighting.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm5982
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