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Sepsis is a complex clinical syndrome that features excessive release of cytokines and other in	ammatory mediators that could
lead to organ dysfunction. Despite di
erent treatment and management options, sepsis associated high morbidity and mortality
rates remain. �is has prompted intensive research into alternative therapeutic approaches such as targeted removal of sepsis
related molecules using extracorporeal hemoperfusion. In this study, we explore the use of graphene nanoplatelets (GNP) as low-
cost alternative hemosorbents for rapid removal of a broad spectrum of proin	ammatory cytokine markers. Firstly, the physical
characteristics, cytotoxicity, and cytokine marker adsorption pro�le of GNP were assessed. �e results not only con�rmed the
surface characteristics of GNP and their ability to rapidly remove cytokine markers, but also indicated a low cytotoxicity towards
the hepatic cell line HepG2. GNP were then incorporated into a freestanding 	exible GNP-poly(tetra	uoroethylene) �lm with
preserved surface characteristics and cytokine adsorption pro�le for potential use in hemoperfusion applications.

1. Introduction

Sepsis is a life-threatening condition caused by the body’s
disregulated host response to infection. Between 1993 and
2003, the number of hospitalizations for severe sepsis doubled
in the United States [1]. Sepsis is the primary cause of death
for children and infants [2, 3], and the number of incidences
was estimated at over 19million casesworldwide annually [4].
Sepsis conditions progress as a function of the cytokine cas-
cade, an exaggerated immune response to the incident infec-
tion [5]. Although the exact mechanism of sepsis remains
poorly understood, it is believed that high concentrations of
proin	ammatory cytokines, such as IL-6, IL-8, and TNF-�
contribute to the progression of sepsis in patients [6, 7].

Current sepsis treatment methods consist of treating the
underlying infection using broad spectrum antibiotics and
remediating hemodynamic changes through 	uid resuscita-
tion [8]. Recently, the use of extracorporeal blood puri�cation
has been investigated as an alternative approach to sepsis
treatment through the removal of substances linked to the
pathogenesis of sepsis. Endotoxins have been identi�ed as
key substances in sepsis progression, and polymyxin B-
immobilized columns have been designed for the removal
of endotoxins through direct hemoperfusion [9]. Despite
the successful targeted removal of endotoxins from septic
patients, clinical trials have shown an inconclusive bene�t
in the removal of endotoxins alone [10, 11]. �e removal
of in	ammatory cytokines has also attracted increasing
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Figure 1: Schematic diagrams showing (a) the layered, open structure of graphene nanoplatelets (GNP)which are suitable for broad spectrum
proin	ammatory cytokine removal and (b) the use of PTFE, as a binder to produce the (c) freestanding 	exible GNP-PTFE �lm with (d)
exposed GNP surfaces and PTFE holding the GNP (indicated by yellow arrow), indicating a potential route for use in (e) hemoperfusion.

attention as an option for sepsis treatment. Polymeric porous
adsorbents such as CytoSorb� (CytoSorbents Corporation,
USA) have been developed for target removal of molecules
between 10 and 50 kDa and have shown some success in both
animal studies and clinical case studies [12, 13]. Furthermore,
synthetic activated carbon (AC) is also an attractive adsor-
bent for hemoperfusion systems, as its inert character and
tunable porosity (e.g., mesomacroporous texture) allow for
optimal adsorption of proteins with di
erent dimensions.
Recent work has utilized carbon in the form of AC [14],
carbide-derived carbons [15, 16], and polymer-pyrolyzed
carbon monoliths [17] for use in adsorbing overexpressed
cytokines and other toxins inherent in septic patients. �ese
amorphous and graphitic carbons rely on an internally
accessible surface area and entrapment of proteins by slit-
shaped pores for adsorption [18].

While the results of these previous investigations have
shown a viable proof-of-concept and e�cient adsorption of
these cytokines, these adsorbents lack rapid kinetics due to a
complex adsorption model [14, 19]. More advanced synthetic
materials have a high manufacturing cost. Graphene
nanoplatelets (GNP) are a new, commercially available, low-
cost graphene material that consists of stacks of graphene
layers 1–5 nm in thickness and tunable lateral dimensions
ranging from submicron scale to over 100 �m, as determined

by milling and processing [20]. GNP have an openly

accessible and large speci�c surface area (∼500m2/g) [21],
making them an ideal material for rapid protein adsorption
(Figure 1(a)). Typical GNP synthesis involves mechanical
exfoliation of expanded graphite prepared from natural
graphite [22, 23]. Previous report has tested the suitability of
expanded graphite materials with inert surface and abundant
macropores for large molecule adsorption and bacteriostatic
properties and, subsequently, demonstrated potential for
medical applications as wound dressings [24]. Owing to the
abundant supply and low price of the source natural graphite
material, GNP warrants further investigation as a potential
cost-e
ectivemedical adsorbent. In this paper, we explore the
use of noncytotoxic graphene nanoplatelets for rapid removal
of a broad spectrum of proin	ammatory cytokines identi�ed
as instigators of sepsis progression and the preparation of
a freestanding 	exible GNP-poly(tetra	uoroethylene) �lm
(Figures 1(b) and 1(c)) with preserved surface (Figure 1(d))
and cytokine adsorption characteristics for practical use in
hemoperfusion applications (Figure 1(e)).

2. Materials and Methods

2.1.Material Synthesis. �eGNPused in this studywasGrade
C-500 xGnPTM obtained from XG Sciences© (Lansing, MI,
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USA). GNP was vacuum annealed (10−6 torr) at 1800∘C for
eight hours in a vacuum furnace (Solar Atmospheres, PA,
USA) to remove functional groups, graphitize the surface of
the GNP, and produce vacuum annealed GNP (VA-GNP).
VA-GNP-PTFE �lm was prepared by mixing defunction-
alized VA-GNP with PTFE (60% w/w in water) solution
(Sigma-Aldrich, US) in ethanol at a ratio of 19 : 1. Evaporation
of ethanol le� a homogenous VA-GNP-PTFE dense slurry
which was rolled out into a cohesive, freestanding 100 �m
thick �lm. �e resulting �lm was then subjected to nitrogen
adsorption analysis and cytokine removal assessments to
establish its e�cacy as a hemoadsorbent.

2.2. Material Characterization. GNP particle size was deter-
mined by dynamic light scattering (DLS) using Zetasizer
Nano ZS (Malvern, UK). High magni�cation images of
GNP were obtained using transmission electron microscopy
(TEM) (JEM2100, JEOL, Japan). �e surface and internal
porous morphologies of GNP powder and GNP-PTFE �lm
were characterized by scanning electron microscopy (SEM)
(Zeiss Supra 50VP �eld-emission SEM, USA). Quadrasorb
pore size analyzer (Quantachrome, FL, USA) was used
to measure speci�c surface area and porosity by carrying
out N2 adsorption-desorption measurements at 0.05–0.99
�/�0 relative pressures at 77.4 K. �e data was analyzed
using Quantachrome data analysis so�ware (Quantachrome
QuadraWin� 5.1). �e speci�c surface areas were calculated
using the Brunauer, Emmett, and Teller (BET) method while
the pore size distribution was estimated using quenched solid
density functional theory (QSDFT) modelling.

2.3. Biocompatibility Assessment. To ensure the safety of
GNP, its cytotoxicity was also assessed. �e liver, as the main
organ for detoxi�cation, has been reported to accumulate
nanoparticles a�er their injection in the bloodstream [25, 26].
A human hepatic epithelial cell line HepG2 (CRL-11997�,
ATCC�, VA, USA) was used for the assessment of GNP
cytotoxicity, with silver nanoparticles as a positive control due
to their widely reported cytotoxicity and hepatocytotoxicity
[27, 28]. HepG2 cell viability a�er treatments was determined
by comparing cellular 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) conversion using CellTiter 96�AqueousOne Solution
Cell Proliferation Assay (Promega, Southampton, UK), while
the material cytotoxicity was assessed through the level of
lactate dehydrogenase (LDH) released by the HepG2 cells
using CytoTox 96� Non-Radioactive Cytotoxicity Assay
(Promega, Southampton, UK).

2.4. Cytokine Adsorption Experiments. �e cytokine marker
adsorption pro�le of GNP was �rst evaluated by incubating
10% v/v of GNP with fresh frozen human blood plasma
(Cambridge Bioscience Ltd., Cambridge, UK) spiked with
1 ng/mL IL-8, IL-1�, IL-6, IL-10, and TNF-� (BD Biosciences,
UK) for 60 minutes. Concentrations of the selected cytokine
marker were determined using BD Cytometric Bead Array
(CBA) Human In	ammatory Cytokines Kit (BD Biosciences,
UK). �e GNP-PTFE �lm adsorption kinetics of selected

cytokine markers IL-8, IL-6, and TNF-� was compared
with PTFE �lm and GNP powder. �e selected cytokine
marker concentrations were measured by enzyme-linked
immunosorbent assay (ELISA) using BD Biosciences ELISA
set. Two-way ANOVA statistical analysis was performed
using Prism 6 version 6.05 (GraphPad So�ware, Inc.).

3. Results and Discussion

3.1. Material Morphology and Surface Characteristics. In the
untreated GNP samples, loose agglomerates of GNP can
be observed under SEM (Figure 2(a)). At a higher mag-
ni�cation, SEM images revealed that these agglomerates
consisted of submicron size particles (Figure 2(b)). A�er
sonication in ethanol, smaller agglomerates of GNP and
single nanoplatelets were observed under TEM (Figure 2(c)),
revealing their multilayer-stacked graphene structure. Under
higher magni�cation, a single nanoplatelet can be observed
from a top-down perspective in TEM (Figure 2(c)). VA-GNP
showed a 2.7-fold decrease in speci�c surface area and pore
volume as compared to GNP. �is was observed along with
a 3-fold increase in VA-GNP particle size as compared to
GNP determined by dynamic light scattering (DLS) analysis.
�e decrease in surface area is caused by the restacking of
graphene planes during annealing [29]. However, increased
agglomeration of defunctionalized hydrophobic VA-GNP in
water is mainly responsible for the DLS-observed increase
in their particle sizes. SEM and TEM images revealed the
small particle size and tightly stacked layered structure of
the GNPwith high electron density between graphene layers,
preventing access of N2 molecules to internal voids in the
material. �e large BET surface area of the GNP is attributed
predominantly to its outer accessible surface area. When VA-
GNP was bound by PTFE (VA-GNP-PTFE) (Figure 2(d)),
the �lm showed a slight decrease in the adsorbed nitrogen
volume (Figure 3(a)) and micropore (<2 nm diameter pores)
volume (Figure 3(b)), while the shape of the isotherm and
the overall pore size distribution remained similar to the
VA-GNP. �e speci�c surface area and micropore volume of
the VA-GNP-PTFE �lm remained as high as 210m2/g and

0.30 cm3/g, respectively, and only slightly lower than the VA-

GNP alone at 294m2/g and 0.39 cm3/g, respectively (Table 1).
�is decrease in the speci�c surface area and micropore
volume measured by the nitrogen adsorption analysis could
be attributed to the addition of nonporous PTFEpolymer that
reduced the accessible VA-GNP surface to N2 molecules.

3.2. Cytokine Markers Removal Pro�le of GNP. Following
materials characterization, cytokine adsorption e�cacy of
the GNP-PTFE �lm was subsequently assessed. �e cytokine
marker adsorption pro�le of GNP showed rapid and e�cient
removal of cytokines from human plasma spiked with a
cytokine cocktail. �e concentration of smaller cytokines
IL-8 (8 kDa) and IL-1� (17 kDa) in the spiked plasma was
reduced from over 1500 pg/mL to 20 pg/mL within 5 min-
utes of direct contact (Figure 4(a)). In comparison, GNP
removal of larger cytokine markers IL-10 (18.5 kDa) and IL-6
(20.5 kDa) by GNP appeared to be slightly slower. However,
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Figure 2: (a) SEM image of a GNP agglomerate; (b) higher magni�cation SEM image revealing submicron GNP particles; (c) TEM image of
a single GNP, indicating a single GNP particle consists of stacks of graphene layers; and (d) SEM image of the GNP-PTFE �lm in which GNP
particles were held together by PTFE (indicated by arrows).

Table 1: Porosity of GNP, VA-GNP, and VA-GNP-PTFE �lm determined using low temperature nitrogen adsorption analysis. Sample speci�c
surface area (�BET) and pore volume (�QSDFT)/size (	mode) were calculated using BET and QSDFT, respectively. Equivalent particle diameter
(
) was determined using dynamic light scattering.

Sample �BET (m2/g) �QSDFT (cm
3/g) 	mode (nm) 
 (nm)

Initial GNP 797 0.807 0.785 547

VA-GNP 294 0.397 0.723 1670

VA-GNP-PTFE 210 0.301 0.852 --

even in these cases 60% and 50% removal, respectively,
were achieved within the �rst 5min of contact. �e TNF-�
trimer (51 kDa) is, reportedly, the most challenging molecule
to remove in conventional blood puri�cation techniques
using carbon sorbents [30–32]. However, a reduction in the
plasma TNF-� concentration from 868 pg/mL to 55 pg/mL
a�er 5min contact with GNP indicated a rapid and e�cient
removal of the TNF-� by GNP. �e fast adsorption kinetics
can be attributed to direct contact with a completely acces-
sible surface area and minimal di
usion barriers to and on

the surface. �ese results demonstrated GNP’s potential for
broad spectrum cytokine removal.

3.3. Biocompatibility of GNP. �e LDH and MTT cytotoxic-
ity assay results indicated that at lower tested concentrations
GNP caused no or minimal cytotoxic e
ect (<20% cytotoxi-
city and >80% cell viability) towards HepG2 cells, while the
silver nanoparticles were cytotoxic at concentrations as low
as 0.01% (v/v) (Figures 4(b) and 4(c)). HepG2 cell viability
fell below 60% a�er 0.06% GNP treatment, indicating a
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Figure 3: (a) Low temperature nitrogen adsorption isotherms (closed circles denote the adsorption branch and open circles denote the
desorption branch) and (b) pore size distributions of the GNP, VA-GNP, and VA-GNP-PTFE �lm.

suppression of metabolic activity (Figure 4(b)). �e cyto-
toxicity of GNP determined using LDH assay appeared
to be dose-dependent and was signi�cantly (� < 0.01)
lower than the silver nanoparticles at the same concentration
(Figure 4(c)). �e slight cytotoxic e
ects of GNP at the
concentrations of 0.03% and 0.06% are likely attributed to
the large absolute volume of GNP in the two-dimensional
culture system, which blocked cellular access to vital oxygen
and nutrients.

3.4. Cytokine Markers Removal E�ciency of GNP-PTFE Film.
�e adsorption data for cytokine markers IL-8 and IL-6 and
TNF-� revealed that the PTFE �lm alone did not reduce the
cytokine concentration in the spiked plasma compared to the
control within the 90min incubation cycle. In contrast, when
the spiked plasma was incubated with the GNP particles, IL-
8 concentration reduced from 633 pg/mL to 7 pg/mL within
5min. IL-6 decreased from 477 pg/mL to 22 pg/mL a�er
5min and further dropped to 8 pg/mL a�er 30min (Figures
5(a) and 5(b)). �e VA-GNP-PTFE �lm showed a slower
and slightly less e�cient adsorption of IL-8 from the spiked
plasma as compared to theGNP, butwith 95% removal of IL-8
over 90min of incubation (Figure 5(a)). A signi�cantly lower
adsorption e�cacy of IL-6was observedwithVA-GNP-PTFE
�lm as compared to the GNP particles, but VA-GNP-PTFE
�lm removed over 50% of IL-6 from the spiked plasma over
the 90min incubation period (Figure 5(b)). Incorporation of
GNP into the PTFE �lm reduced TNF-� removal compared
to the GNP particles alone (Figure 5(c)). �is could be due
to the packing of GNP particles, which reduced the exposed
particle outer surface area. Alternatively, PTFE limited acces-
sibility between the particles and potentially contributed to
this e
ect. We have previously highlighted the need for pores
with diameters that exceed protein molecule size [33]. From
a practical perspective, this translated to meso-/macropores

in activated carbon adsorbents with predominant 70–120 nm
diameter pores as necessary for signi�cant TNF-� adsorption
[17, 34, 35]. AlthoughGNPwith a similar speci�c surface area
did not feature such large pores, it still demonstrated superior
TNF-� adsorption, which was reduced a�er incorporation of
PTFE.�is indicated the bene�t of GNP’s large, outer surface
area and underscored the importance of accessible surface
just as much as the internal porosity of ACs. Overall, the
incorporation of GNP in the PTFE �lm largely preserved
the GNP surface for the adsorption of mid-range molecular
weight cytokine markers IL-6 and IL-8 and demonstrated
signi�cantly lower removal capacity of plasma TNF-� as
compared to unbound GNP. Future experiments may further
improve GNP surface area exposure by preparing VA-GNP-
PTFE �lm with reduced thickness and thus improve TNF-
� adsorption. �is development could yield signi�cant cost
bene�ts to optimize and use GNP for sepsis in blood
detoxi�cation devices.

Novel materials developed for direct blood contacting
applications o�en raise hemocompatibility concerns such
as �ne particle release and blood cell activation. Several of
our previously published studies have demonstrated the safe
use of carbon-based materials for direct blood contacting
applications [34, 36, 37]. Our e
orts have developed a
commercially viable composite material that utilized PTFE
not only to produce a 	exible freestanding �lm structure,
but also to hold the GNP particles in place, eliminating
�ne particle release. In addition to the noncytotoxic nature
of the GNP established in this study, further research that
delves into the assessments of material hemocompatibility
will be bene�cial. In particular, future e
orts must ensure
that the use of this cost-e
ective adsorbent does not trigger
complement cascade, excessive platelet adhesion/activation,
or granulocyte activation in ex vivo setups. �e GNP-PTFE
adsorbent could also be used in the plasma circuit of systems
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Figure 4: (a)�e removal e�ciency of in	ammatory cytokine markers in spiked human plasma samples; GNP cytotoxicity assessments a�er
24 hours of direct contact using (b) MTS and (c) LDH assays. ∗ represents � < 0.05; ∗∗ represents � < 0.01; ∗ ∗ ∗ represents � < 0.001;
∗ ∗ ∗∗ represents � < 0.0001 estimated using two-way ANOVA statistic test (±standard error of mean, 
 = 3).

such as MARS� [38] or Prometheus� [39] where adsorbent

materials do not come into direct contact with patient blood

and, therefore, mitigate issues of blood cell activation and

hemocompatibility.

4. Conclusions

In summary, we have demonstrated the use of GNP as a

fast and very e�cient adsorbent with low cytotoxicity for

rapid removal of proin	ammatory cytokines including IL-

8, IL-1�, IL-6, IL-10, and TNF-� from human plasma on

a clinically relevant scale. �e material reported in this

study shows faster adsorption compared to all other carbons

reported so far, combined with a very high sorption capacity.

Furthermore, we also developed a 	exible freestanding GNP-
PTFE composite material with high accessible surface area
for targeted adsorption of cytokines and showed its potential
as hemoperfusion adsorbent. Further development of these
graphene-based sorbents should aim to con�rm their ex
vivo hemocompatibility. Subsequently, future research e
orts
will enhance accessible surface area for improved adsorption
of the high molecular weight cytokines including TNF-
� and bring forth a cost-e
ective materials solution for
hemoperfusion systems for treatment of sepsis.
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Figure 5: Removal e�ciency of in	ammatory cytokine markers IL-8 (a), IL-6 (b), and TNF-� (c) from spiked human plasma sample of GNP,
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 = 3).
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