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Rapid age-grading and species identification of
natural mosquitoes for malaria surveillance
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Abdoulaye Diabaté 2,9, Fredros O. Okumu1,3,9 & Francesco Baldini 3,9✉

The malaria parasite, which is transmitted by several Anopheles mosquito species, requires

more time to reach its human-transmissible stage than the average lifespan of mosquito

vectors. Monitoring the species-specific age structure of mosquito populations is critical to

evaluating the impact of vector control interventions on malaria risk. We present a rapid,

cost-effective surveillance method based on deep learning of mid-infrared spectra of mos-

quito cuticle that simultaneously identifies the species and age class of three main malaria

vectors in natural populations. Using spectra from over 40, 000 ecologically and genetically

diverse An. gambiae, An. arabiensis, and An. coluzzii females, we develop a deep transfer

learning model that learns and predicts the age of new wild populations in Tanzania and

Burkina Faso with minimal sampling effort. Additionally, the model is able to detect the

impact of simulated control interventions on mosquito populations, measured as a shift in

their age structures. In the future, we anticipate our method can be applied to other arthropod

vector-borne diseases.
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Malaria presents a paradox: its transmission depends on
mosquito vectors that have a shorter mean lifespan than
the malaria parasite requires for its development1.

Consequently, its persistence depends on the small proportion of
mosquitoes that live long enough to transmit malaria sporozoites
to a mammalian host. Consequently, small changes in mosquito
longevity have a big impact on malaria transmission2, which
explains why malaria control has focussed on interventions that
primarily target adult mosquito survival3. Examples include
insecticidal nets which have substantially reduced the incidence of
malaria in Africa4, but their effectiveness may now be threatened
by insecticide resistance5. An accurate and reliable assessment of
mosquito age structure is crucial for monitoring the impact of
vector control interventions. However, current mosquito age-
grading methods typically rely on 60-year-old techniques based
on ovary dissections6,7 that are slow, labour-intensive, coarse and
imprecise, and which vary between mosquito species8. Many
alternatives have been investigated with variable success9–14. As
malaria is transmitted by multiple, often morphologically indis-
tinguishable, mosquito species that differ in longevity, behaviours,
and vectorial capacity15,16, a method that simultaneously esti-
mates vector species and age without relying on time-consuming
techniques and expensive reagents would be of great value.

Like all arthropods, mosquitoes have a cuticle whose chemical
composition differs between species and changes with age8.
Infrared spectroscopy can detect changes in mosquito cuticle by
quantifying how it absorbs light13,17. Early work on infrared
spectroscopy for mosquito analysis was restricted to the near-
infrared spectrum (10,000– 4000 cm−1)13,17,18.

While near-infrared spectroscopy (NIRS) can distinguish spe-
cies and age groups with relatively high success in laboratory
settings, it has not yet been able to accurately predict the age of
mosquitoes in more natural environments19. This fall in accuracy
is likely due to the greater genetic and ecological variability in
wild populations that may affect how the mosquito cuticle
develops over time and between populations, even of the same
species. Mid-Infrared Spectroscopy (MIRS, 4000–400 cm−1) is an
alternative technology that, unlike NIRS, measures discrete fun-
damental vibrations of biomolecules, allowing more information
to be extracted from biological samples (such as on protein
conformation)20,21 including detection of more subtle changes
among species or mosquitoes of different ages. Recently, we
demonstrated that MIRS can accurately predict the species and
age structure of African malaria vectors under controlled
laboratory conditions22 but its applicability to ecologically and
genetically variable wild mosquitoes is not known yet. In addi-
tion, MIRS was used to predict sex, age class (2- or 10-day old),
and Wolbachia infection in laboratory-grown colonies of Aedes
aegypti mosquitoes23, as well classifying the species of Aedes
aegypti, Ae. albopictus, Ae. japonicus, and Ae. triseriatus24, both
by using Partial Least Squares-Discriminant Analysis on samples
collected under laboratory-controlled conditions.

In this study, we aimed to develop a MIRS approach to ulti-
mately predict species and age of natural populations of three
major African malaria vectors either raised in semi-field meso-
cosms or collected from the field. We used a deep-learning MIRS
(DL-MIRS) model based on geographically and ecologically dis-
tinct female mosquitoes in East and West Africa to reconstruct
the age structure of semi-field mosquito populations and detect
their changes pre- and post-simulated vector control interven-
tions. Specifically, to predict the age and species of semi-field-
reared mosquitoes from a model trained on lab-reared mosqui-
toes, we used a transfer-learning approach, which took advantage
of the convolutional filters learned from training the model on
laboratory-reared mosquitoes and retrained the new model on a
small sample of independent semi-field-collected mosquitoes,

providing high predictive accuracy on natural mosquitoes. In
addition, to test this approach on wild populations, we collected
mosquitoes in villages in Burkina Faso and Tanzania, and vali-
dated our DL-MIRS model predictions against age structures
based on the number of gonotrophic cycles that females under-
went, showing high similarity between the two age classification
methods. These results demonstrate how this low-cost, artificial
intelligence-based approach can determine the age structure of
natural vector populations, and constitute a new surveillance tool
in the fight against malaria.

Results and discussion
Ecologically and genetically variable dataset built for natural
mosquito population surveillance. We created a dataset of
mosquito MIR spectra from 41,151 female mosquitoes of three
An. gambiae s.l. group species, An. gambiae, An. arabiensis, and
An. coluzzii from diverse genetic backgrounds and reared both in
different laboratories and in ecologically realistic semi-field sys-
tems in East and West Africa to capture laboratory (LV), genetic
(GV), and environmental variation (EV) (Fig. 1 and Supple-
mentary Table 1 and Supplementary Table 2). This dataset
comprised the LV subset of mosquitoes from three different
laboratories in the UK, Tanzania, and Burkina Faso and the GV
and EV subsets of adult mosquitoes that were collected from the
field as eggs or larvae, or derived from laboratory colonies in
Tanzania and Burkina Faso and reared in the laboratory or semi-
field systems, respectively (Supplementary Table 3).

First, we used unsupervised clustering of all MIRS data using
Uniform Manifold Approximation and Projection v0.5.2
(UMAP)25. This revealed signatures within MIR spectra of both
geographic origin and rearing environment in all three An.
species (Fig. 2a, b). This discrepancy between clusters indicates
two properties of these datasets: (i) there exists useful variation
between species, suggesting that MIRS are predictive of species,
and (ii) there is also unsurprising19,23 variation between mosquito

LABORATORY
VARIATION

GENETIC
VARIATION

ENVIRONMENTAL
VARIATION

Larvae from lab Larvae from field Larvae from lab

Lab adult rearing Lab adult rearing Semi-field adult rearing

Fig. 1 Experimental setup for capturing variation in MIRS caused by the
laboratory of origin, individual genetic differences and natural
environment. To disentangle genetic and environmental effects,
mosquitoes were obtained from either laboratory-bred colonies or from
genetically heterogeneous wild larvae; half of the laboratory larvae were
then reared and allowed to develop through the adult stage in semi-field
conditions, which offer ecologically realistic conditions while still allowing
control of mosquito age.
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origins and rearing environments, indicating that models based
on cuticle composition must include representative samples from
each origin to statistically adjust for origin bias.

Mosquito MIRS were then labelled according to their species
and one of three age classes (days after pupal emergence)
corresponding to their potential to be infected and transmit
malaria (Fig. 2c): younger non-infected (1–4 days old), potentially
infected but not infectious (5–10 days old) and old enough to be
infectious (≥11 days old).

DL-MIRS transfer learning accurately predicts semi-field-
reared mosquito age and species. The costs associated with
rearing and collecting samples from semi-field mosquitoes are
substantially higher than for laboratory samples. To minimise
end-user investment, we, therefore, adopted a transfer-learning
approach to use minimal amounts of semi-field data, while
benefiting from a large “one-off” laboratory-reared mosquito
dataset. This minimises the computational and data production
costs that would be incurred when adapting our models to new
wild-living mosquitoes. Specifically, we pre-trained a model on
the MIRS from 7200 LV+GV mosquitoes (Fig. 1), which are
expected to share many features of wild mosquitoes, then froze
the convolutional layers, and re-calibrated the dense layers with
MIRS from semi-field mosquitoes using both age class and spe-
cies as the output layer (Fig. 2d). We thereby retain the feature
extraction capability that was learned through training on lab-
reared data and utilise this to achieve better predictive accuracy
on semi-field data than would be achievable had we purely
trained the model on semi-field data (Supplementary Fig. 1).
Testing on a separate set of semi-field data of the same geographic
origin (Burkina Faso, Tanzania) demonstrates that with a model
trained on adult female LV+GV mosquitoes and transfer learning
with a further 1452 semi-field (EV) female mosquitoes, DL-MIRS

achieved > 95% accuracy in predicting both age (Fig. 3a) and
species (Fig. 3b) of unseen mosquitoes reared in ecologically
realistic semi-field environmental conditions (EV).

Transfer learning requires few examples from new target
populations. To assess the smallest number of local samples
required by DL-MIRS to perform adequately while minimising
field collection effort, we tested model accuracy by using a range
of EV mosquito MIRS for transfer learning (Fig. 1d). With no EV
samples, the model could predict neither species nor age (Sup-
plementary Fig. 2e, f), regardless of whether we preselected che-
mically relevant wavenumber values for the input layer as
previously described22 (Supplementary Table 4 and Supplemen-
tary Fig. 3). However, increasing the quantity of EV data in the
training set caused the prediction accuracy to increase rapidly,
already exceeding 80% accuracy with 324 examples and exceeding
90% accuracy when over 815 EV data points were included
(Fig. 3c).

To further test the value of the transfer-learning approach, we
built models using only the EV included in the training dataset.
Without transfer learning, the prediction accuracy was signifi-
cantly reduced, for example, with 324 and 815 EV training data
and no lab data, only 70% and 83% accuracy were achieved,
respectively (Supplementary Fig. 1).

In addition, while the model trained on lab-reared data could
not predict semi-field samples, on a test set of unseen GV samples
it achieved 89% and 95% accuracy on age and species, respectively
(Supplementary Fig. 2c, d), highlighting that it had learned
features that capture important characteristics of mosquitoes, and
which were potentially useful for transfer learning. Further,
models trained on only LV mosquitoes achieved 84% and 93%
accuracy in classifying age and species of unseen LV data
(Supplementary Fig. 2a, b).

Fig. 2 Variation in MIRS, machine-learning model architecture, the sensitivity of the trained model. We collected the MIRS of 41,151 female mosquitoes
belonging to three species from diverse laboratories, genetic backgrounds, and environments and three age classes spanning 1-17 days post pupal
emergence. a, b Unsupervised clustering of MIRS measurements using Uniform Manifold Approximation and Projection of MIRS in two dimensional space
(plot axes) from An. arabiensis, An. coluzzii and An. gambiae coloured according to site of origin (a) and source of variation (b). c Representative variation of
mid-infrared absorption spectra of An. arabiensis, An. coluzzii and An. gambiae and of three age classes. d Schematic representation of the deep
convolutional neural network that takes MIRS inputs and outputs mosquito age and species. The input layer (wavenumber values) is fed through five
1-dimensional convolutional layers, comprising of 16 filters each (convolutional layers region), followed by a dense layer of 500 features and age and
species output layers (dense layers) that were used to make predictions.
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These results demonstrate that transfer learning is an efficient
and promising approach for minimising the number of new
samples needed for recalibration, making DL-MIRS readily
transportable to new mosquito populations.

DL-MIRS sensitivity to different mosquito cuticle biochemical
signatures. We conducted a sensitivity analysis on the model
trained for predicting both LV and GV datasets to understand the
regions in the MIR spectra that were the most informative of
mosquito age and species (Fig. 4). The sensitivity profiles indicate
that the DL-MIRS extracted key biochemical features present in
the spectra, corresponding more specifically to wavenumber
values associated with the vibration of chitin and protein bonds.
Furthermore, the aliphatic hydrocarbon bands (green stripes in
Fig. 4) contributed little to the model, suggesting that lipids like
wax in the cuticle are less informative in distinguishing age and
species of mosquitoes.

Variation in MIRS profiles between lab and semi-field-reared
mosquitoes. To test whether ecological effects were country-
specific, we then trained and tested the DL-MIRS with distinct
combinations of mosquito origins. Training a deep convolutional
neural network (CNN) including mosquitoes reared in semi-field
facilities from one country could not predict age and species of

populations from another (Study E2, Supplementary Fig. 4).
Similarly, training a CNN including laboratory-reared mosqui-
toes from two sites could not predict age and species of those
reared at the third (Study E3, Supplementary Fig. 5), even with
preselected wavenumber values (Study E4, Supplementary Fig. 3).
Further, reducing training input parameters does not improve
generalisation, showing that the CNN algorithm is not overfitting
(Supplementary Table 4 (Study E1) and Supplementary Fig. 6).
These results highlight local variations in MIR spectra even under
very similar controlled laboratory conditions and are consistent
with the prediction that some spectra from the target population
are required to re-calibrate DL-MIRS.

DL-MIRS detects age structure shifts in simulated mosquito
populations following vector control interventions. Next, we
evaluated how well DL-MIRS could detect the impacts of vector
control on simulated wild mosquito populations. We have pre-
viously demonstrated that models trained on MIRS from
laboratory-reared mosquitoes can be utilised to reconstruct the
age structure of simulated populations from which they were
sampled, and correctly detect whether those populations had been
subjected to long-lasting insecticide-treated nets (LLINs)22.
However, it remains unclear if our present DL-MIRS model can
achieve similar performance on genetically- and ecologically
diverse mosquitoes. We therefore investigated the power of DL-
MIRS to detect changes in the age structure of simulated mos-
quito populations subjected to two vector control interventions
selected to reflect the probable impacts of current and next-
generation vector control strategies: (i) intervention with a rapid
killing effect as expected from long-lasting insecticide-treated nets
(LLIN); (ii) intervention with the slower killing effect that pri-
marily impacts “old” mosquitoes as expected with attractive toxic
sugar baits (ATSB) (Fig. 5a).

We first simulated the age structure of mosquito populations
before and after LLIN or ATSB intervention estimating 9%
mortality for the control group from previous reports26, and
assuming 36% mortality for mosquitoes above three days old for
LLIN or constant 18% mortality for ATSB. Then, we estimated
the statistical power of DL-MIRS to detect shifts in the three age
groups (non-infected, potentially infected, potentially infectious)
anticipated from these interventions (Fig. 5b, c, dotted line). We
then assessed how the power to detect age structure shifts varied
with the number of local mosquitoes used for model testing
(Supplementary Table 5; see 'Methods' for power analysis details).
In both intervention scenarios, sampling 300 mosquitoes pre- and
post-intervention was sufficient to obtain >80% power to detect
an age structure shift when the training set was composed of 162
EV mosquito spectra (Fig. 5b, c, solid lines and Supplementary
Fig. 7). This shows that with relatively minor sampling and
machine-learning training efforts, this approach is capable of
detecting population age structure shifts following vector control
interventions.

DL-MIRS predicts wild mosquito physiological age. Next, we
evaluated the ability of DL-MIRS to predict the age of wild mos-
quito populations. As no measure of chronological age exists for
wild mosquitoes, we used the Polovodova ageing technique27 as an
independent gold standard for estimating age, as defined by the
number of gonotrophic cycles females mosquitoes have completed
at the time of capture. The number of gonotrophic cycles is assessed
through observation of ovarian morphology. Mosquitoes were
collected in Tanzania and Burkina Faso from villages where only
one An. gambiae s.l. species was expected. This was confirmed
through PCR identification of a subset of collected mosquitoes in
each village, An. coluzzii in Burkina Faso and An. arabiensis in

Fig. 3 Confusion matrices of model prediction accuracies and transfer-
learning power. DL-MIRS was trained using mosquitoes from laboratory
larvae reared in the lab (LV, laboratory variation), larvae from the field
reared in the lab (GV, genetic variation), and laboratory larvae reared in
semi-field (EV, environmental variation). To improve model generalisation
from lab to field-reared mosquitoes, we used transfer learning by freezing
the convolutional layers of a model trained on LV+GV datasets only and
calibrated using a smaller number of EV mosquitoes (here, 1294 examples)
to train only the dense layers, resulting in highly accurate identification of
(a) mosquito age and (b) mosquito species. c Classification accuracy
improved from ~50% to 94% for both age group and species with a training
set comprising 0 (i.e. effects of increasing sampling of lab-reared
mosquitoes only) through 1452 semi-field (EV) mosquitoes used to re-train
the transfer learned model. The solid and shaded lines indicate the mean
and standard deviation of the mean of 20 trained models, respectively.
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Fig. 4 Average model sensitivities to different wavenumber values and comparison with the features of the average absorption spectrum (grey line)
of each output class. The coloured stripes show the regions associated with the particular vibration of a functional chemical group. The upper part
(maxima) displays the intervals of wavenumber values in which the maximum of the absorption peaks of each vibration appear for each of the three most
abundant components in the cuticle of a mosquito22. Here, the vibration of the same bonds appears in different wavenumber values depending on which
cuticular component they belong to (chitin, protein or wax), which modifies the shape of the peaks.

Fig. 5 DL-MIRS generalisation and detection of vector control intervention. a Computer simulations were used to assess the power of DL-MIRS a 'rapid
kill' (long-lasting insecticide-treated nets; LLIN) or ‘slower kill’ intervention (attractive toxic sugar baits; ATSB) relative to a population with no intervention
(control). b, c Power to detect an effect of the vector control intervention was estimated over 10 levels of training set size represented by coloured points,
with EV mosquitoes ranging from 0 to 1452 and seven sample sizes per population from 20 to 300 (Supplementary Table 5). The dashed red line shows
the power that would be achieved with 100% accurate age group classification. The difference between the solid and dashed lines represents the cost in
power due to prediction error.
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Tanzania (Supplementary Table 2). Live collected mosquitoes were
killed and dissected either on the same day, or 2–3 days after field
collection to allow for oviposition in cages. The number of gono-
trophic cycles passed was morphologically identified (Supplemen-
tary Table 6). After dissection, mosquitoes were dried and scanned
by MIRS. Gonotrophic cycle classification was used to (i) estimate
the overall physiological age structure over the collection period at
each site, and (ii) provide known age classes for transfer learning of
DL-MIRS spectra. To independently test model predictions, we also
scanned non-dissected mosquitoes, selected at random from the
same populations as the dissected ones. Here, we assumed that the
age structure of dissected and non-dissected mosquitoes should be
similar. We retained the convolutional layers of the previous model
trained on 7200 LV+GVmosquitoes, and retrained the dense layers
with MIRS from the wild dissected mosquitoes using the number
gonotrophic cycle as the true output classification. Although the
convolutional layers we used were built to predict chronological age
classes, we expect these to share many features of wild mosquitoes
classified into gonotrophic cycles. Indeed, the three classes of 1–4,
5–10 and ≥11 days old correspond to females that underwent 0, 1
or ≥2 gonotrophic cycles28. Separate models were trained with 335
wild mosquitoes collected in Burkina Faso and 758 from Tanzania.
DL-MIRS predicted very similar age structures for non-dissected
(test) and dissected (morphologically assessed) wild mosquitoes
(Fig. 6). This suggests that DL-MIRS can be readily adapted to
diverse field settings and ageing methodologies.

Malaria continues to be a major cause of mortality and
economic hardship in communities across the world. Vector
control remains a primary weapon against it and has generated
substantial progress in reducing malaria burden worldwide.
However, the epidemiological impact of such interventions can
be difficult and time-consuming to assess, requiring laborious and
costly large-scale trials. Here, we have demonstrated that an
approach based on transfer learning has the potential to
overcome this limitation, and facilitate prediction of age structure
in diverse malaria vector populations with limited sampling.
Building on an earlier proof-of-principle that MIRS and machine
learning allow high throughput speciation and age classification
in laboratory settings22, here we demonstrate that deep-learning
models pre-trained on cheap, large-scale MIRS datasets from
laboratory-reared mosquitoes could be rapidly transferred to new
ecologically realistic mosquito populations with only a few
mosquitoes (<1000) from the target population. Further, the
impact of vector control interventions such as LLIN and ATSB
could be detected by a DL-MIRS model re-calibrated on those
populations with >90% accuracy with as few as 150 mosquitoes

sampled before and after the intervention. Finally, validation of
this approach on wild mosquito populations whose physiological
age was inferred by ovarian morphological characterisation shows
that DL-MIRS is an approach that can learn and predict
physiological age structure in the field. Indeed, while estimates
of physiological age based on gonotrophic cycles are prone to
errors (for example, in counting hard-to-see follicular sacs in
ovarioles), potential limitations (e.g. due to the uncertainty of
classifying blood-fed and gravid mosquitoes into a specific age
class), and variation across sites, the overall concordance between
the predicted and observed age estimates across two countries
suggests that DL-MIRS can accurately predict the age structure of
wild populations.

In the future, the accuracy of DL-MIRS for mosquito analyses
could be substantially enhanced through the enrichment of
training sets with more spectra from additional populations and
colonies. Furthermore, the use of additional age-grading methods
for wild mosquitoes (for example measuring sporozoite rates)
would be crucial to further validate the DL-MIRS approach on
field populations. Currently, while implementation of this
approach in the field requires relatively minor calibration of the
target population, we envision that the inclusion of environ-
mental data known to influence ageing rate, such as temperature,
is likely to further triangulate predictions and increase prediction
accuracy and generalisability, further reducing the need for local
calibration. This approach would require an initial investment for
the ATR-FTIR spectrometer (~$20,000), but no other costs
thereafter. Consequently, DL-MIRS holds great promise and
potential for integration into vector surveillance, where it could
play a key role in enhancing control and winning the fight against
mosquito-borne diseases such as malaria.

Methods
Study sites. The experimental studies were conducted in two leading African
malaria vector control institutions: Ifakara Health Institute (IHI), Tanzania and
Institut de Recherche en Sciences de la Santé (IRSS), Burkina Faso. In IHI, the
study experiments were conducted in the mosquito biology laboratory Vector
Sphere and the larvae were collected from three villages in the Kilombero flood-
plains in Ulanga district, south-eastern Tanzania: Minepa village (8.285°S,
36.669°E), Tulizamoyo village (8.348°S, 36.732°E), and Sululu village (8.003°S,
36.832°E). The ecology and species available in Ulanga district were recently
described29. In IRSS, mosquito sampling was conducted in the north of Bobo-
Dioulasso in Vallée du Kou village VK5 village (4.4201°W, 11.3824°N) and in the
south of Bobo-Dioulasso in Soumousso (4.0438°W, 11.0125°N).

Mosquito collection and rearing. We collected An. arabiensis, An. gambiae and
An. coluzzii mosquitoes born either from lab colonies or from wild mosquitoes,
and reared either in the laboratory (at University of Glasgow [UoG], IHI or IRSS)

Fig. 6 DL-MIRS validation on wild mosquito populations. The proportion of wild female mosquitoes with 0, 1 or ≥2 gonotrophic cycles (G0, G1,
G2+G3+G4) was determined by ovarian dissection and morphological characterisation (yellow) or predicted by DL-MIRS on non-dissected mosquitoes
(blue). The same number of mosquitoes for each group was analysed on each day of collection, either from Burkina Faso (a, An. coluzzii) or from Tanzania
(b, An. arabiensis). The mean proportions and 95% credible intervals of the age proportion from dissected mosquitoes (yellow) were estimated with a
Dirichlet distribution. The age proportion predicted by the DL-MIRS (blue) is presented as box-whisker plots showing the median, interquartile range (IQR,
box), lowest/highest data within 1.5 IQR (whiskers), and outliers (red points) of the probability distribution of predictions from ten different models.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28980-8

6 NATURE COMMUNICATIONS |         (2022) 13:1501 | https://doi.org/10.1038/s41467-022-28980-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


or semi-field environments (at IHI or IRSS) (Fig. 1). Laboratory, specific semi-field
and wild validation methods are described below.

Laboratory colonies. Mosquitoes were reared in the three different insectaries
maintained under controlled temperature and humidity and a 12 h:12 h (light:dark)
photoperiod, following standard operations30. Adult mosquitoes were fed with
5–10% sugar solution ab libitum via filter paper. Mosquitoes were provided with
blood meals to allow egg production. Blood meals were provided using human
blood at IHI directly by a human arm and at UoG through membrane feeding
following31, and rabbit blood at IRSS directly on the animal. In each institution,
different malaria vector species and strains were reared, as indicated in Supple-
mentary Table 1. To produce age-matched mosquitoes, pupae were added to a
separate empty cage on the same day. To generate different reproductive condi-
tions, they were blood-fed on different days after emergence and allowed to lay eggs
in an oviposition cup 2 days after each blood meal. Mosquitoes were collected
either 2 days after a blood meal (i.e., before egg laying) or 4 days after the blood
meal (i.e., after egg-laying had occurred). Mosquitoes were starved for 6–12 h by
removing sugar before blood-feeding, and each cage was blood-fed every 6 days.
Thus, mosquitoes living 6 or more days after their first blood meal underwent
multiple gonotrophic cycles. Mosquitoes were sampled at ages ranging from 1 to
17 days old. A hundred and twenty mosquitoes per day (age) were assessed,
comprising each of the three physiological statuses.

Field-collected mosquitoes reared in the laboratory. At the Ifakara Health Institute,
An. arabiensis larvae at different stages were collected from Minepa and Tuliza-
moyo villages at different aquatic habitats. Larvae were brought to the insectary and
were sorted based on their morphology. The larvae were maintained in field water
and provided with ground fish food (TetraMin®) until pupation. A plastic pipette
was used to transfer pupae from the basins into disposable cups, which were then
placed inside 30 × 30 × 30 cm cages until they emerged as adults. Emerged female
and male adults were kept together to allow mating. These adult field-derived
mosquitoes were maintained at a same temperature 27 ± 1.0 °C, humidity 80 ± 5%
and a 12 h:12 h (light:dark) photoperiod, as lab-reared mosquitoes as previously
described. At IRSS, all female mosquitoes, whether blood-fed or gravid, were col-
lected by trained technicians with mouth aspirators from local houses where
mosquitoes have rested after a blood-feeding in VK5 and Soumousso villages. After
aspiration, mosquitoes were transferred immediately into 30 × 30 × 30 cm cages
covered with a wet cloth to avoid dehydration during transport. These mosquitoes
were transferred to a room where light, humidity, and temperature are similar to
that of the field (semi-field facility) and were maintained with glucose 5% for 72 h
to allow them to digest the blood. Then individual gravid females were transferred
to a single cup containing 10ml water to allow for oviposition. After 2 days, the
females that laid eggs were removed with forceps and fixed in 80% ethanol for
molecular species identification as previously described32. After oviposition, only
An. gambiae and An. coluzzii offspring from Soumousso and Vallée du Kou were
kept and reared until adulthood for MIRS sample collection. At both sites, blood-
feeding and oviposition occurred in the same way and with the same timings as
described for laboratory mosquitoes and a hundred and twenty mosquitoes per age
(1 to 17 days) were assessed.

Laboratory colonies reared in the semi-field. At each site, experiments were con-
ducted during the rainy season, which is when mosquito populations peak. Tem-
perature and humidity were monitored every day in the semi-field and recorded. In
addition, mosquitoes had access to live cattle for blood-feeding and the semi-field
chamber included water containers for mosquitoes to lay eggs in. These water
containers were checked each day that adult collections were performed. The water
was discarded and replaced daily in order to prevent the emergence of new adults.
This ensured a single age group was present in each semi-field enclosure. Pupae
from mosquito colonies (Supplementary Table 1) were released into the semi-field
on two consecutive days and then recaptured at specific days for MIRS sampling.
Day 0 was considered the day after the last batch of pupae was released into the
facility. At IHI, mosquitoes were collected from day 1 to 17 in batches of 100
mosquitoes per species and per age, while at IRSS mosquitoes were collected on
days 1, 4, 7, 10 and 15 in batches of 50 mosquitoes per species and per age.

Validation using field-collected wild mosquitoes. At IHI, female mosquitoes were
collected using human baited double net traps33 from 6 pm to 6 am in Sululu
village between May and August 2021. At IRSS, female mosquitoes were collected
inside houses using mouth aspirators from 6 pm to 7:30 am in VK5 between May
and July 2021. At both sites, immediately upon collection mosquitoes were
transferred into a cage and provided with 5% glucose solution, covered with a wet
cloth to avoid dehydration, brought to the lab, and kept under standard conditions
as described earlier. Mosquitoes were then dissected on the same day or 2–3 days
after collection to determine the number of gonotrophic cycles that they under-
went, using the Polovodova technique27; briefly, the head/thorax was separated
from the abdomen and preserved in silica for subsequent MIRS measurement. The
ovaries were then removed from the abdomen and individual ovarioles inspected
for the number of follicular sacs, corresponding to the number of completed
gonotrophic cycles. As the gonotrophic cycles can be determined neither in
mosquitoes that have blood in the midgut, nor in those that are undergoing egg

development, female that could visually be determined as gravid or blood-fed were
not dissected on the day that were collected, but left in the cage for 2 or 3 days with
an oviposition cup to allow for blood digestion and oviposition. However, some
mosquitoes were still found to contain developing oocytes or eggs at the time of
dissection (gravid); these were assigned to a gonotrophic cycle as described below,
but their mid-infrared spectra were not included in model retraining. Each day
that mosquitoes were dissected, an equal number of non-dissected mosquitoes was
killed with chloroform and kept in silica for subsequent MIRS measurement from
the same batch (i.e. mosquitoes collected from the same village on the same day);
this non-dissected group was used as the unseen dataset to be predicted by DL-
MIRS. In each village, a subset of mosquitoes was confirmed to be An. arabiensis
(IHI) or An. coluzzii (IRSS) by PCR, confirming previous findings that these
species are the most dominant An. gambiae s.l species in these villages29,34.

Spectroscopy. Upon collection of mosquitoes for all experiments conducted either
in the laboratory, field or semi-field, mosquitoes were firstly transferred into a cup
and then killed with cotton-soaked chloroform22. Afterwards, mosquitoes were
dried in a tube with silica gel desiccant for at least three days and then measured
with MIRS22. A single IR spectrum of each mosquito was acquired using Bruker
Vertex 70 (UK) and Bruker ALPHA (Burkina Faso and Tanzania) FTIR spectro-
photometers equipped with a diamond ATR accessory using Bruker OPUS Soft-
ware. To maximise the contact of the mosquito cuticle with the ATR crystal, the
samples were pressed against the crystal using the anvil attached to the instrument.
Background and MIR spectra were acquired by averaging >16 scans at a resolution
of 4 cm−1 over a range of 500–4000 cm−1. Mosquito spectra with low intensity or a
significant atmospheric intrusion were discarded automatically using a custom
script22,35.

Laboratory and semi-field mosquito MIRS datasets. The core datasets used are
built from samples collected as described in Supplementary Table 2, allocated
between training and test sets as detailed in Supplementary Table 3, and modified
for studies provided in the supplementary text as detailed in Table 4. All datasets
were used for the prediction of mosquito age and species, with age labelled as a
categorical outcome with three levels of ages 1–4 days, 5–10 days, and 11+ days.
Species was also a categorical with three levels, An. arabiensis, An. gambiae and An.
coluzzii.

Machine learning: building DL-MIRS. We trained a deep convolutional neural
network (CNN) using 1D convolutional layers to predict both age and species from
MIRS input data. We chose CNNs because mid-infrared spectra are composed of
multiple peaks which capture the biochemical characterisation of mosquitoes; a
network that includes numerous convolutional layers is capable of capturing
complex local features in the spectra. In addition, fully connected layers can
combine features learned by the convolutional layers to capture the correlation of
features across the entire spectra, a necessity for the high-dimensional spectra used
for analysing mosquito cuticles. Each 1D convolutional layer defines filters of fixed
width with trainable weights and biases, where each convolutional operation is the
sum of the dot product between the filter and the section of the spectra currently
considered. The assumption of locality made in convolutional neural networks
holds when using mid-infrared spectra due to fixed-width wavenumber bands
corresponding to individual vibrational modes. Consequently, convolutional layers
were able to learn local structure in the spectra. In addition, we applied batch
normalisation to improve the stability of the neural network and max pooling was
used to reduce the spatial size of the representation. Further, L2 regularisation was
used in each layer to reduce overfitting, with a convolutional stride of size one in
convolutional layers one, three and five, and stride of two in convolutional layers
two and three. We used size two max pooling in the final convolutional layer, and
dropout was applied before the dense layer to further reduced overfitting. The
convolutional neural network architecture was found by optimising the hyper-
parameters. For this, the number of layers was hand optimised, while the kernel,
stride, and pooling sizes for each convolutional layer were optimised using
gp_minimize from scikit-optimise v0.8.136.

Unless otherwise stated, we trained the DL-MIRS CNN using datasets balanced
across mosquito age groups and species. We began by splitting out 10% of the
dataset stratified by age and species for subsequent testing of the trained models.
The remaining 90% of the dataset was used for optimising models through 10-fold
cross-validation. Both age and species groups were binarised using
MultiLabelBinarizer36 and the spectra were standardised using StandardScaler36 to
centre each variable around its global mean and scale it to unit variance. Machine
learning was performed in Python v3.6.837 using keras v2.2.438 and tensorflow-gpu
v1.12.039.

When DL-MIRS was used on semi-field or wild specimens, the model was not
trained in its entirety and instead transfer learning was used. For this, we froze the
weights in the convolutional layers and the model only updated the weights in the
dense layers. This ensured that the model retained the same convolutional features
that were previously found. In both cases of retraining, we used the model
previously trained on lab-reared data (LV+GV). When retraining the models on
wild data (for which age was based on ovarian characterisation and gravid
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mosquitoes were excluded), the datasets were imbalanced (Supplementary Table 3),
so the optimisation gradients were re-weighted to mimic a balanced dataset.

Instead of taking the max value of the output probability distribution to be the
predicted class as in the rest of our results, for the wild data we took the predicted
probability distributions of the model since we were comparing the distribution of
dissected mosquitoes to that predicted by the model. For this, we made a
probabilistic prediction for each mosquito over the three classes. We then sampled
from this distribution 100 times and then took the mean over each of the mosquito
data points, yielding 100 samples for each model. We present these averaged
predictions of the probability distribution for the wild mosquito results.

Power estimation of vector control detection. To estimate the statistical power
of the DL-MIRS model to detect a shift in the age structure of a mosquito
population after each of two common insecticidal interventions, we generated
computer-simulated mosquito populations exposed to two different intervention
classes that vary in the expected speed of killing effect: (i) fast killing effect as
represented by long-lasting insecticide-treated nets (LLIN), and (ii) slower acting
killing effect as represented by attractive toxic sugar baits (ATSB). The age struc-
ture (i.e., the frequency of each age class) in the control (pre-intervention) popu-
lation was simulated assuming a constant daily mortality of 9%26 up to 20 days,
with no survival after 20 days post-emergence. The LLIN intervention was assumed
to cause a death rate of 36%, four times higher than natural mortality, but applying
only after day 3 assuming mosquitoes will host seek and encounter a bed-net only
after this age. In the population exposed to the ATSB intervention, mortality was
assumed to be two times higher (18%) than natural mortality, applying throughout
the mosquitoes’ lives. The age structure of each post-intervention population was
then compared with the control population using Wilcoxon/Mann–Whitney U
tests. Power was estimated across all 70 combinations of seven sample sizes
(n= 20, 50, 100, 150, 200, 250 and 300) and ten levels of enrichment of the training
data with EV data (0–17% of the training data was EV data). For each of these
70 scenarios, power was estimated as the proportion of 10,000 simulated datasets
where a significant (P < 0.05) difference in age structure was detected between
intervention and control populations. Simulations were performed in R v3.6.140.

Modelling the age structure from gonotrophic cycles. The posterior distribution
of the proportion of female mosquitoes in each age class (0, 1 or ≥2 gonotrophic
cycles), P= (p0, p1, p≥2), was modelled as a Dirichlet distribution,

P � DirichletðN0 þ α;N1 þ α;N ≥ 2 þ αÞ ð1Þ
from which mean proportions and 95% credible intervals were calculated. N0, N1

and N≥2 are the observed counts in each class and α= 1 is the concentration
parameter of the prior Dirichlet distribution.

Ethical statement. This study has been agreed by the institutional ethical com-
mittee of Institut de Recherche en Sciences de la Santé (IRSS) under the number
A012-2017/CEIRES on July 3, 2017 before its implantation on the sites. At Ifakara
Health Institute, Ethical approval for the study was obtained from the Ifakara
Health Institute Institutional Review Board (Ref. IHI/IRB/EXT/No: 005-2018), and
from the Medical Research Coordinating Committee (MRCC) at the National
Institutes of Medical Research (NIMR), Ref: NIMR/HQ/R.8c/Vol.II/880. At the
University of Glasgow, human blood for feeding female mosquitoes was obtained
from the Glasgow and West of Scotland Blood Transfusion Service. Ethical
approval for the supply and use of human blood was obtained from Scottish
National Blood Transfusion Service committee for the governance of blood and
tissue samples for non-therapeutic use, and Donor Research (submission Reference
No 18 15). Whole blood from donors of any blood group was provided in
Citrate–Phosphate–Dextrose–Adenine (CPD-A) anticoagulant/preservative. Fresh
blood was obtained on a weekly basis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mid-infrared spectral data generated in this study have been deposited in the
Enlighten database and are available at https://doi.org/10.5525/gla.researchdata.1235. All
other data generated in this study are provided in the Supplementary Information/Source
Data file. Source data are provided with this paper.

Code availability
All code used for machine learning and power analysis is available at https://github.com/
SimonAB/DL-MIRS_Siria_et_al41.
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