
RESEARCH Open Access

Rapid algorithm prototyping and implementation
for power quality measurement
Krzysztof Kołek* and Krzysztof Piątek

Abstract

This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering

algorithms. Power supply quality is a very important aspect of modern power systems and will become even more

important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient

implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering

algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective

manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the

modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering

(CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on

an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard.

The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in

the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of

Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in

real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a

dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a

rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach

is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The

code generation process renders production-ready code that can be easily used on the target hardware. This is

especially important when standards for PQ measurement are in constant development, and the PQ issues in

emerging smart grids will require tools for rapid development and implementation of such algorithms.

Keywords: Automatic code generation; Flicker; PLL; Power quality; Rapid prototyping; Simulink; Synchronisation

1 Introduction

Smart Grids offer an opportunity for effective power sys-

tem management and utilisation of distributed and re-

newable energy resources. Efficient utilisation of the grid

includes maintaining power supply (voltage) quality and

emission (current) quality according to the specified

limits. These limits can be set by the regulator, provided

by standards or grid codes, or even agreed as part of an

energy supply contract. The requirement of measuring

the power quality (PQ) parameters has increased the

interest in applications using signal processing tech-

niques for PQ measurement. Comprehensive overviews

of this problem are presented in [1,2]. These books

describe classical methods of PQ analysis as well as the

application of advanced techniques like neural networks,

wavelet transform, and machine learning methods. It is

clear that there is a need for increasingly complex PQ

metering algorithms.

On the other hand, PQ metering is defined by stan-

dards, e.g. EN 61000-4-30. These standards define volt-

age quality measurement and provide implementation

details needed to build a PQ meter. Consequently, algo-

rithms for a PQ meter include not only signal processing

techniques, but also data aggregation, gapless measure-

ment, and synchronization with line voltage waveforms

or time references, etc.

Because further requirements for PQ are constantly

developing, there is a need for a rapid development plat-

form for new algorithms. A rapid development framework
* Correspondence: kko@agh.edu.pl

AGH University of Science and Technology, al. A.Mickiewicza 30, Kraków

30-059, Poland

© 2015 Kołek and Piątek; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19

DOI 10.1186/s13634-015-0192-3

mailto:kko@agh.edu.pl
http://creativecommons.org/licenses/by/4.0

should enable fast modelling, testing, and hardware imple-

mentation. The framework would be useful for preparing

a reference PQ meter to test algorithms for PQ measure-

ment or event classification in the field, prepare test pro-

cedures for upcoming certification processes, or test new

ideas for PQ metering. This framework should enable

rapid modelling, facilitate model validation and testing, as

well as enable automatic code generation for different

hardware platforms, including code generation for micro-

processors and reconfigurable FPGA devices.

The conventional V-model of software development

includes specification, design, implementation, integration,

testing, and verification and validation stages. This imple-

mentation process is performed manually and is time

intensive. The complexity of PQ measurement algorithms

and the requirement for short development cycles motiv-

ate the investigation of a more efficient, reliable, and cost-

effective alternative. Model-Based Design (MBD), adapted

to the development of measurement algorithms, is here

considered as an option. The MBD approach to the devel-

opment of measurement algorithms consists of five steps:

1. Modelling input test signals and defining reference

responses to the test inputs

2. Synthesis of measurement algorithms (Computer-Aided

Engineering (CAE) tools are heavily used at this stage.)

3. Simulation of measurement algorithms excited by

the test sequences

4. Tuning the algorithms to achieve compliance of the

simulated responses with reference responses

5. Synthesis of the algorithms on a target hardware

platform

The MBD approach focuses on modelling and simula-

tion, hence most of the development time is independ-

ent of target hardware. Moreover, some CAE packages

automatically convert the models into a source code

library, which simplifies and accelerates the synthesis

stage. The automatic code generation method reduces

the number of errors that appear during manual coding.

Several attempts have been made to design rapid

development methods for power systems algorithms. In

[3], an analysis of CAE tools such as MATLAB/Simulink

and dSpace/TargetLink describes how they perform fun-

damental steps such as physical modelling, simulations,

control algorithms design and testing, hardware evalu-

ation, parameter optimization, and finally code generation

for real-time software implementations. As an example,

the development of a controller for a low power single-

phase transformerless inverter was presented. The develop-

ment, verification, and implementation stages of automatic

code generation to implement over/under-power pro-

tection functions and MATLAB/Simulink active power

filter control blocks are given in [4] and [5], respectively.

The active power filter allows the rapid on-line tuning of

the filter’s parameters, selection of control algorithms, and

can be applied to generate code for microcontrollers.

Kirubakaran et al. in [6] presented a Digital Signal Pro-

cessing (DSP) controller for a fuel-cell based system.

MATLAB/Simulink was used to generate Pulse Width

Modulation (PWM) signals for the TMS320F2812 DSP.

The same DSP was applied to implement a unity power

factor PWM rectifier and shunt active power filter, as

described in [7]. The automatic code generation in the

MATLAB/Simulink environment for the fixed-point DSP

was presented. A slightly different development path is

given in [8]. Simulink diagrams are automatically converted

to C code, afterward converted to assembly language, and

finally transferred to a DSP for execution.

SCADA systems are considered to be the target platform

for algorithms generated in Simulink. In [9], a Simulink

implementation of a grid load forecast algorithm was given.

The Simulink diagram was applied to automatically gener-

ate OPen Connectivity (OPC) Data Access and Modbus/

TCP servers. The servers were “embedded” into a SCADA

for real-time load prediction.

More specifically, PQ algorithms have been investigated.

McGranaghan and Santoso in [10] presented a summary

of the problems encountered during both offline and on-

line analyses of PQ algorithms. In [11], a discrete model of

the IEC 61000-4-15 flickermeter was presented. The full

discrete flickermeter channel, developed as Simulink dia-

gram, is shown, however the aim of this model is only

simulation, and hence the implementation path is not

considered. An implementation method for a Simulink al-

gorithm that conforms the IEEE 1459-2000 standard for

measurement of electric power quantities is presented in

[12]. The MATLAB xPC Target toolbox was used to run

the code generated automatically from the Simulink dia-

gram on a PC computer. The methods defined by the IEC

61000-4-30 standard were investigated in [13]. The mod-

elling and analysis of the algorithms were carried out in a

MATLAB/Simulink environment. The algorithms were

then automatically executed on a dSPACE DS 1104 board.

In addition, studies on the compliance of automatically

generated code with safety standards were performed.

Krizan et al. in [14] dealt with the usability of automatic-

ally generated C code in critical applications. Compli-

ance with the DO-178C and DO-331 standards were

presented. DO-178C and DO-331 address the entire

software development cycle, from functional specifica-

tion to software verification. The DO-178C and DO-331

are documents used by certification authorities such as

the Federal Aviation Administration, European Aviation

Safety Agency and Transport Canada to approve soft-

ware for aerospace systems. In [15], the authors used the

IEC 61508 standard and investigated options for running

automatically generated code on safety PLCs. Stages for

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 2 of 12

code generation, evaluation, and conversion before the

code was applied in safety systems were presented.

Finally, some effort has been made to generate auto-

matic code for reconfigurable FPGA circuits and their

applications in power systems. Mekonnen et al. in [16]

presented the simulation of a complete full-bridge PWM

converter for a solar grid-tie inverter that also provided

the benefits of auto VHDL-code generation for an RMS-

based digital controller. In [17], a rapid prototyping plat-

form for photovoltaic power inverters was presented.

The hardware-in-the-loop approach was used to develop

and validate PWM signals for different converter topolo-

gies. The control strategies are developed as Simulink di-

agrams, and the goal of the platform is the automatic

VHDL code generation for Xilinx FPGAs.

The scope of this paper covers the development of

algorithms for PQ metering while following the MBD

approach. The algorithms developed and validated first

as models are then transferred to C code automatically.

The MATLAB/Simulink CAE plays a central role during

the development. The generated code is executed on a

hardware platform and real-time processing results are

compared to the measurement generated by a commer-

cial reference device. The implementation path for two

example algorithms is presented. The algorithms are

chosen because of their importance in PQ metering. The

authors’ intention is to show not the novelty of the algo-

rithms but rather the rapid implementation issues.

1.1 Rapid prototyping

1.1.1 Rapid prototyping approach

The main advantage of the rapid prototyping approach

is the ability to focus on the problem while omitting the

details of its implementation. Development is carried

out in an environment that offers a high level of abstrac-

tion, and the implementation on a hardware platform is

performed by automatically generated code in the target

programming language. The differences with respect to

the classical software development process can be shown

using the example of a filter design. The classical ap-

proach requires the selection of the filter structure, the

calculation of parameters, and, finally, the implementa-

tion of the filter in a programming language. The rapid

prototyping path is reduced to giving the type and pa-

rameters of the filter bandwidth. The source code of the

filter procedures is then generated automatically. This

approach results in ability to rapidly test and verify the

proposed strategy while at the same time reducing the

number of programming errors.

The MATLAB/Simulink stages of design and imple-

mentation of a measurement algorithm are shown in

Figure 1. A data processing algorithm is developed as a

Simulink diagram and then excited by test data vectors

until the results are compliant with the reference results.

At this point in the process, the design consists entirely

of simulations without any references to the hardware

on which the designed algorithm is intended to run.

The implementation on target hardware requires the

replacement of simulation inputs and outputs by real

signals. The interface can be established by controlling

A/D and D/A converters, using files or databases, or

over standard communication protocols such as Modbus,

OPC Data Access, or OPC Unified Architecture. Modern

processors map the A/Ds and D/As as memory, and com-

munication protocol buffers also are allocated in memory,

hence, without loss of generality, it can be assumed that in

each case, communication is performed by reading and

writing to memory locations. To switch from simulation

to execution by a microprocessor, only the simulated in-

puts and outputs need to be swapped for memory access

blocks.

At this stage, the C code can be automatically gener-

ated. The MATLAB Coder [18] and Simulink Coder [19]

packages are required to translate a Simulink diagram

into equivalent C procedures. The generated code con-

tains three sets of procedures: initialisation procedures

executed once when the calculations begin, solver proce-

dures that calculate the model at each sampling period,

and termination procedures. Usually, the metering algo-

rithms do not have a specific operating time, so the

termination procedures are never called.

The generated code is functionally equivalent to the

Simulink diagram. The solver procedures read data from

the defined memory location, carry out the calculations,

and store the results to the given memory addresses. In

the case of a PQ metering application, the Simulink dia-

grams implement calculations for root mean square

values (RMS), spectrum, asymmetry, and flicker, result-

ing in the automatic generation of a PQ measurement

library.

The C procedures, generated from Simulink diagrams,

are used to create tasks in a real-time operating system

(RTOS). The data comes directly from A/D converters

with a sampling frequency of 10.24 kHz. The A/Ds

measure phase voltages and line currents, and the A/D

results are stored in First In-First Out (FIFO) queues

that trigger the execution of the tasks. The FIFO is a

buffer where samples are stored until the following tasks

become ready for execution, synchronizing the data

source to the data consumer, and preventing any meas-

urement points from being lost. The tasks read voltages

and currents by accessing the FIFO memory and perform

calculations for every incoming data sample. Inter-task

communication is performed over memory locations, as

was defined in the Simulink diagrams.

An alternative to the C-code generation path, the HDL

Coder [20] package converts Simulink diagrams into Veri-

log or VHDL descriptions (see [16] and [17] as examples).

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 3 of 12

HDL code is synthesizable and can be implemented as

an FPGA module. However, unlike C-code procedures,

HDL modules may not perform floating point calcula-

tions, and the algorithms must be converted into a

fixed-point representation. The Fixed-Point Designer

[21] toolbox supports this conversion, however, the con-

version is usually time-consuming and sometimes may

not even be possible.

1.1.2 Hardware platform

The Mars Starter Kit evaluation board from Enclustra

was selected as the test hardware platform [22]. The

board contains Zynq integrated circuits from Xilinx. The

Zynq units contain within the single integrated circuit a

dual-core ARM Cortex A9 processor equipped with the

double precision floating point extension, reconfigurable

FPGA fabric equipped with gates, registers, and RAM

resources as well as communication cores (see Figure 2).

An external A/D converter board is connected to meas-

ure grid voltages and currents. The board is equipped

with Analog Devices AD7980 1MSPS, 16-bit, successive

approximation analogue-to-digital converters. The A/Ds

are controlled by an IP (intellectual property) core

implemented in the FPGA. The core is developed in the

VHDL language and operates as a component of the

FPGA, as a kind of simple coprocessor. The A/D con-

verters require the sequence of control signals to be gener-

ated with accuracy on the order of a few dozen of

nanoseconds. Such accuracy cannot be achieved in pro-

gramming, and has to be implemented as a silicon circuit.

One ARM processor runs the FreeRTOS real-time oper-

ating kernel. FreeRTOS tasks are created directly from the

code generated automatically from Simulink diagrams.

The second ARM processor runs a Linux distribution and

is responsible mainly for implementing communication

with the device via Ethernet.

The laboratory prototype of the flickermeter is shown

in Figure 3. It consists of two boards—one equipped

with the Zynq, memory, interfaces, and connectors to

the communication channels. The second one operates

as an interface to the analogue inputs.

The prototype has compact dimensions, but also has

enough computational power to implement the chosen

measurement algorithms. The worst case CPU utilisation

of the ARM 1 processor is 7% when running the syn-

chronisation and flicker calculation algorithms. The

Figure 1 Stages of rapid prototyping approach.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 4 of 12

average ARM 2 utilisation is 5% when running the

Modbus/TCP server in the Linux environment.

1.2 Case studies

1.2.1 Synchronization with line voltage

A significant part of the PQ metering process is syn-

chronisation with the line voltage. The PQ metering

standards, namely EN 61000-4-30 and EN 61000-4-7,

define strict requirements in this area. In particular, all

quantities should be measured within 10 cycle intervals

for 50 Hz systems (for 60 Hz systems 12 cycles are re-

quired). In addition, RMS measurements for event de-

tection and flicker reference values must be measured by

means of a sliding one cycle interval that moves in half-

cycle steps. Consequently, correct detection of a cycle is

crucial. A typical phase locked loop (PLL) could be used

for this task; however, it can be prone to voltage distur-

bances (e.g. harmonic distortion) or events (e.g. voltage

dips). For three phase systems, the asymmetry could also

affect a typical PLL system. Therefore, a robust imple-

mentation of the PLL is an important task in order to

make a PQ meter operate correctly.

The PLL technique is a subject of great interest, and

many PLL architectures and applications have been pre-

sented (e.g. [23-26]). The Enhanced PLL (EPLL) contains

an adaptive notch filter and provides a higher degree of

insensitivity to variable-frequency input signals. A de-

tailed description of the EPLL structure is given in

[23,27-29]. This structure has been selected to demon-

strate the proposed rapid implementation method.

Figure 4 presents the Simulink diagram of the EPLL.

The Reference sin generator block is the source of test

data (see Figure 1). The RefSin output generates the sine

wave for which amplitude, phase, and frequency are dis-

turbed. The output of the EPLL is a sine signal denoted

as u(t). The EPLL also outputs the detected amplitude,

frequency, and phase, marked respectively as A(t), w0(t),

and phase(t). The Compare scope acquires the simulation

Figure 2 Zynq hardware platform.

Figure 3 Laboratory flickermeter prototype.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 5 of 12

results and is used to compare the response of the EPLL

to the reference signals.

The Hit Crossing block detects the zero crossing

points of the sine signal generated by the EPLL. It is

used for synchronising the PQ measurement algorithms

to the power signal. Correct detection of the amplitude,

frequency, and phase by the EPLL indicate the synchron-

ous operation of the loop. The difference between the

reference sine signal uref(t) and the EPLL output u(t) is

used to tune the loop. However, only the zero crossing

signal is used for the measurement algorithms.

The EPLL tuning requires calculation of the u1, u2,

and u3 gains (see Figure 4). The parameter values were

determined by numerical optimization of the loop re-

sponse to the test excitation. The response to a step

change in amplitude, frequency, and phase was tested.

The following cost sub-functions were applied:

where T0 is the sampling period, uref and u are respect-

ively input and output sine signals of the loop, Aref

and A are respectively reference and measured ampli-

tudes, wref and w are respectively reference and

measured pulsation values, phaseref and phase are

respectively reference and measured phase values, and

N is the number of samples during the numerical opti-

misation experiment. The sampling frequency was set

to 10.24 kHz. The optimisation procedure can be

defined as:

u1opt;u2opt; u3opt
� �

¼ min
u1;u2;u3

W � J

where W is a four element row vector of non-negative

constants. The optimisation is performed in the MATLAB

environment by calling the fminsearch function [30].

The selection of the W vector elements determines the

optimal u1opt, u2opt and u3opt values and finally the be-

haviour of the EPLL. For the flicker measurement, the

EPLL is used to synchronise the algorithm to the grid

signal when the loop output signal u(iT0) follows the

input signal uref(iT0). The optimal loop parameters are

calculated for W such that only the first element is a

non-negative value and the remaining elements are set

to zero. During the optimisation, the reference sine

J ¼

ffi

XN−1

i¼0
u iT 0ð Þ−uref iT0ð Þð Þ2

q

ffi

XN−1

i¼0
A iT 0ð Þ−Aref iT0ð Þð Þ2

q

ffi

XN−1

i¼0
w iT 0ð Þ−wref iT0ð Þð Þ2

q

ffi

XN−1

i¼0
phase iT 0ð Þ−phaseref iT0ð Þð Þ2

q

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

Figure 4 EPLL - simulation diagram.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 6 of 12

signal is disturbed by step phase, frequency, and ampli-

tude changes. The calculated optimal values are:

u1opt;u2opt; u3opt
� �

¼ 3 919:07; 147:7206; 208:1230½ �

For test purposes, the optimised loop is applied not to

the simulated signal but to synchronise to the real grid

signal measured in the university power laboratory. The

total harmonic distortion (THD) of the signal is 2.95%

and, additionally, the signal is disturbed by a − π/6 rad

step phase change, 5% frequency step, and 30% ampli-

tude sag. The disturbances of the phase, frequency, and

amplitude appear respectively at 60, 120, and 180 ms.

The results are shown in Figure 5. The upper diagram

presents input test signal uref and the sinusoidal re-

sponse of loop u. The bottom left picture shows the dif-

ference between uref and u. The time period between the

moments when the uref and u signals cross the zero volt-

age level is given in the bottom right diagram.

The miscellaneous sets of vector W values enable us

to switch the EPLL into amplitude, frequency, or phase

measurement modes and exemplify the flexibility of the

proposed approach.

After simulation and optimisation phases, the test sig-

nal sources are replaced by memory access drivers. The

updated diagram is given in Figure 6. The input driver

Ua and the output drivers Cross zero, EPLL sin, Ampli-

tude, Omega, and Phase are created as Simulink level-2

C-code S-functions [31]. The S-functions access memory

buffers and operate as interfaces between the Simulink

blocks and to the remaining flickermeter blocks.

The diagram is used to automatically generate code.

The generation procedures call the input S-function to

read the input signal from the memory hexadecimal ad-

dress FCA0000, run the EPLL algorithm, and call the

output S-functions to store the results to memory loca-

tions from EA000000 to EA000010. When running the

generated software in real time, it is essential that the

execution takes place with the same sampling period as

during code generation.

The steps presented during the EPLL implementation

can be applied to other algorithms. The next section

presents the rapid development path of the flicker meas-

urement algorithm. However this approach can also be

applied to the development of the remaining PQ algo-

rithms, and even to the development of control

strategies.

1.2.2 Flicker implementation

A nontrivial example of rapid prototyping and imple-

mentation of a metering problem is the flickermeter.

Light flicker measurement and the flickermeter are de-

scribed in detail in standard EN 61000-4-15. Basically,

the meter consists of several blocks (see Figure 7(a)).

The flickermeter is described in the standard as an

analogue device, i.e. all signal processing blocks are

Figure 5 EPLL synchronisation to a real signal.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 7 of 12

defined in the analogue domain. The reason for this is

that at the time of the standard creation, the flicker-

meter was intended to be single device built using stand-

ard electronic parts. Nowadays, the flicker severity

measurement is a function of a digital meter (PQ ana-

lyser) but the algorithms for computing short-term

flicker PST and long-term flicker PLT must follow the de-

scription in the standard. In state-of-the-art devices, all

the operations on the input signal are done in the digital

domain. Consequently, the problem of implementing a

flickermeter in a digital processor requires discretisation

of the analogue blocks and implementation of the

discrete transfer functions. The considered blocks are

(see Figure 7(a)):

1. Input gain control block: in the standard, the block

operates as a voltage adaptor and signal conditioning

unit and provides initial scaling. In the digital model,

the block provides only the scaling, which is done by

dividing the input signal by the reference signal. The

reference signal is the half-period RMS value processed

by the first order digital filter with a 27.3 s time

constant (as defined in the standard). The filter has to

be designed and implemented in the digital domain.

2. Square multiplier block: the squaring operation

resembles the behaviour of an incandescent lamp.

The block, together with the high pass filter from

the next block, operates as a demodulator. A digital

implementation of this algorithm is straightforward.

3. High pass filter and the weighting filter: the blocks

consist of three filters. The first high pass filter

eliminates the DC component of the voltage, and

the standard suggests a first order filter with a −3 dB

at 0.05 Hz cut-off frequency. The second filter is a

low pass one, and the standard requires a sixth order

Butterworth filter with a −3 dB at 35 Hz cut-off

Figure 6 EPLL - diagram prepared for code generation.

Figure 7 Block diagram and its Simulink model for instantaneous flicker computation. Block diagram of the IEC flickermeter according to

the standard EN 61000-4-15 (a) and its sample model for instantaneous flicker computation in MATLAB/Simulink (b).

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 8 of 12

frequency (for 230 V systems). A digital implementation

of the filter requires utilisation of filter design tools

in order to evaluate the parameters of the filter.

The last filter is the co-called weighting filter. It

simulates the spectral properties of the human

visual system. The filter is described as a Laplace

transfer function model:

G sð Þ ¼
kω1s

s2 þ 2λsþ ω2
1

: 1þ s=ω2

1þ s=ω3ð Þ 1þ s=ω4ð Þ

where the parameters k, λ, and ωi (i = 1…4) are

described in the standard and are different for 230 V

and 110 V systems. Therefore the first operation is

to obtain the discrete transfer function so the

frequency response of the analogue filter and the

discrete implementation are similar in the frequency

domain.
4. Squaring and smoothing: this block performs two

functions, it simulates the eye-brain perception by

means of a squaring operation and emulates the

memory effect of the brain. The effects can be

implemented as the sliding mean operator, however

the standard suggests the utilisation of a first order

filter with a 300 ms time constant. The output of this

block is instantaneous flicker Pinst.

5. Statistical analysis: this is the only block that utilises

digital data processing to obtain its output: PST and

PLT flicker levels. The computation is based on the

percentiles computation and calculates the flicker

according to the formula:

PST ¼
ffi

0:0314P0:1 þ 0:0525P1s þ 0:0657P3s þ 0:28P10s þ 0:08P50s

p

where:

P50s ¼ P30 þ P50 þ P80ð Þ=3
P10s ¼ P6 þ P8 þ P10 þ P13 þ P17ð Þ=5
P3s ¼ P2:2 þ P3 þ P4ð Þ=3
P1s ¼ P0:7 þ P1 þ P1:5ð Þ=3

and Px is the x-th percentile of the values of Pinst
logged during a specified time interval, where x is

0.1, 0.7, 1, 1.5, 2.2, 3, 4, 6, 8, 10, 13, 17, 30, 50, 80.

The interval can vary from 1 to 15 m, however, the

EN 61000-4-30 standard assumes 10 m for a typical

flicker severity evaluation. This conforms with the

interval set by EN 61000-4-30 for PQ evaluation.

The evaluation of PLT is performed using 12 samples

of PST, hence the long-term flicker describes the

flicker severity for the last 2 h. Because the block

is actually a discrete implementation in a digital

processor, it requires numerical procedures for

sorting and mathematical calculation.

The MATLAB/Simulink package provides toolboxes

and blocksets for both digital and analogue system design

and analysis. Therefore, implementation of the flicker-

meter in MATLAB/Simulink follows the development

stages of the rapid development method. The basic struc-

ture of the Simulink diagram that implements the signal

processing stages is shown in Figure 7(b). Note that the

model closely resembles the description in the standard.

Each filter defined by spectral properties is defined in the

z domain by means of standard tools available in the

MATLAB/Simulink package. The weighting filter requires

special procedures. In [11], the transfer functions of the

filters were obtained analytically by defining the filter in

the s domain and next using a Bilinear Transform to ob-

tain the transfer function in the z domain. This procedure

does not match the rapid implementation approach. Filter

parameters in the flickermeter blocks are strictly defined

in the standard, but their selection depends on the voltage

level. On the other hand, there are several discretisation

methods and the choice can affect the properties of the

flickermeter. The discretisation also depends on sample

time, which is related to the hardware platform, and there-

fore can be unspecified at modelling time. Consequently,

the best option is to discretise the filter numerically and

let the software perform all necessary computations. The

MATLAB/Simulink package supports this operation by

providing commands for the immediate discretisation of

transfer functions. This functionality is used to obtain a

fully automatic discretisation of the weighting filter.

Therefore, the filter is defined in the s domain and then

numerically discretised using MATLAB commands.

The validation of the model and recalibration can also be

done in the simulation environment. It requires additional

blocks for test signal generation. The test signals are

strictly defined in the EN 61000-4-15 standard. Figure 8

shows a sample flickermeter validation framework.

As in the case of the EPLL implementation in the

flickermeter diagram, the signals are reconnected to the

driver blocks to access the measurements and store the

PST and PLT values. The C code is automatically gener-

ated from the Simulink diagram, compiled, and executed

in real-time by the Zynq hardware platform.

1.2.3 Results of the flicker algorithm

The results of the generated flickermeter are shown in

Figure 9. The diagram presents 24 hours of measure-

ments. The upper diagram presents two PST values: one

generated by the reference class A PQ analyser (A-eberle

PQI-D) and the second generated by the test hardware

platform described in Section II B. The Zynq test device

ran the code generated automatically from the Simulink

diagram. The reference PQ meter is a class A meter

(according to IEC 61000-4-30) with the metering uncer-

tainty defined by the standard, e.g. for voltage, the

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 9 of 12

uncertainty is ± 0.1% of declared voltage (i.e. the grid’s

nominal). Flicker uncertainty is 5% and is defined by IEC

61000-4-15. For the test device, the metering was done

by means of voltage transducers of type LV 25-P [32].

According to the data sheet, the overall accuracy of the

transducers is 0.9% of the voltage range, which is 400 V

in this case.

The meters were arranged in the PQ metering labora-

tory in which the building mains was available for meter-

ing. The meters were connected to the same voltage

signals so the comparison refers to the real metering

situation.

The lower diagram presents the difference between

the data series. The difference can be explained by the

accuracy of the sensors. For the hardware platform, typ-

ical off-shelf transducers were used with a conditional

board not designed for precise measurements. On the

other hand, the typical error allowed in the standard for

PST is 5% when PST = 1.

2 Conclusions

This article presented a method of rapid code generation

for implementing and testing of PQ algorithms. The

method covers not only the PQ meter development, but

Figure 8 The flickermeter model testing framework.

Figure 9 The flickermeter results.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 10 of 12

also the preparation of the certification tests and proce-

dures. The MBD approach shortens the time from an

idea to an operating device. A user is supported by the

functions of a CAE package, can focus on the problem

itself, and skip the laborious implementation details of

the algorithms under development. In the presented

case, Simulink was used as the CAE platform. The effi-

ciency of the presented development path becomes ap-

parent in the implementation of the flicker calculation

algorithm. The flickermeter channel consists of a series

of filters and data processing blocks. It was first devel-

oped and validated in simulation, the C code was then

generated and implemented on a real hardware plat-

form. The correctness of the implemented algorithm

was confirmed by the match of the generated flicker

values with the results of the commercial reference

metering device.

PQ measurements have recently become an important

topic that has resulted in different regulatory documents.

An example is the differences between the EN 50160

standard for supply quality and national regulations. The

standard requires e.g. RMS voltage within ± 10% limits

in relation to the nominal (or declared) value for low

voltage networks. However, in some countries, the limits

are different, e.g. in France, the admissible change is

from −10% to +6%, and in Spain, it is ± 7%. In addition,

the statistical measure differs: the standard requires

computation of the 95 and 100 percentiles. The grid

codes in Poland for a transmission system require a 99

percentile for flicker and voltage distortion when a wind

farm connection is considered. There are also parame-

ters not required in the standard but required in the grid

codes, e.g. the THFF (telephone harmonic form factor).

The metering interval is also subject to change, e.g. in

Norway, a 1 minute interval is used. On the other hand,

there is the possibility of change of the limit values,

percentile, or even metering interval in the future.

This requires additional work in the software of a PQ

meter to make the change possible. The real problem

arises when non-standard algorithms are required, e.g.

the localization of a PQ disturbance source. This func-

tionality is very useful when the introduction of PQ

contracts is considered. However, the existing algo-

rithms are not ready for implementation because of

lack of efficiency.

The ability to easily add a new algorithm with new

functionality to a PQ meter is clearly necessary. Rapid

prototyping and implementation makes it possible to

test the algorithm and produce the code without manual

implementation.

This study highlights the need for a flexible and rapid

development method for devices to meet the as yet non-

existing standards. The presented approach is a step to-

wards satisfying these demands.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the AGH University of Science and Technology

under European Regional Development Found, Subsidy no POiG.01.03.01-30-

056/12 and by the AGH University of Science and Technology KIC-ASS Grant

no 7.7.120.7037.

Received: 29 October 2014 Accepted: 2 January 2015

References

1. MHJ Bollen, IYH Gu, Signal processing of power quality disturbances (IEEE Press,

New York, NY, USA, 2006)

2. A Zobaa, MM Canteli, R Bansal (eds.), Application of Signal Processing in

Power Quality Monitoring, in Power Quality Monitoring, Analysis and

Enhancement) (InTechOpen, 2012). doi:10.5772/21492

3. RV Dell'Aquila, L Balboni, R Morici, A new approach: modeling, simulation,

development and implementation of a commercial grid-connected transformerless

PV inverter, SPEEDAM International Symposium on Power Electronics, Electrical Drives,

Automation and Motion, 1422–1429, 2010. doi:10.1109/SPEEDAM.2010.5542040

4. X Yang, B Kirby, Q Zhao, Y Ma, F Xu, Model-based design process for product

development of substation IEDs, 2nd IEEE International Conference & Exhibition

(ENERGYCON), 2012, pp. 968–974. doi:10.1109/EnergyCon.2012.6348290

5. G Adam, A Zbanţ, G Livint, New Simulink control block for single phase shunt

active power filters, 8th International Symposium on Advanced Topics in

Electrical Engineering (ATEE), 2013, pp. 1–4. doi:10.1109/ATEE.2013.6563485

6. A Kirubakaran, S Jain, RK Nema, DSP-controlled power electronic interface

for fuel-cell-based distributed generation. IEEE Trans. Power Electron.

26(12), 3853–3864 (2011). doi:10.1109/TPEL.2011.2138162

7. K Vardar, T Sürgevil, E Akpinar, Rapid prototyping applications on three-phase

PWM rectifier and shunt active power filter. (International Conference on

Electrical and Electronics Engineering, 2009), p. 258–262

8. P Meena, KU Rao, D Ravishankar, Real-time detection and analysis of PQ

disturbances with DSP using MATLAB embedded link to code composer studio.

(Third International Conference on Power Systems, 2009), p. 1–5.

doi:10.1109/ICPWS.2009.5442725

9. K Kołek, K Piątek, P Włodarczyk, Rapid algorithm prototyping for SCADA

applications, (Advances in Electrical and Computer Engineering, in press)

10. MF McGranaghan, S Santoso, Challenges and trends in analyses of

electric power quality measurement data. EURASIP J. Adv. Signal Process

57985, 1–6 (2007). doi:10.1155/2007/57985

11. LW White, S Bhattacharya, A Discrete, MATLAB-Simulink flickermeter model

for power quality studies. IEEE Trans. Instrum. Meas. 59(3), 527–533 (2010).

doi:10.1109/TIM.2009.2023121

12. MI Milanes, V Minambres, E Romero, F Barrero, Quality meter of electric

power systems based on IEEE standard 1459-2000. (Compatibility and Power

Electronics, 2009), p. 86–92. doi:10.1109/CPE.2009.5156018

13. M Rogóż, Z Hanzelka, The design and construction of a power quality

parameters recorder. 9th International Conference. (Electrical Power Quality

and Utilisation, 2007), p. 1–6. doi:10.1109/EPQU.2007.4424150

14. J Krizan, L Ertl, M Bradac, M Jasansky, A Andreev, Automatic code generation

from MATLAB/Simulink for critical applications. (IEEE 27th Canadian

Conference on Electrical and Computer Engineering (CCECE), 2014), p. 1–6.

doi:10.1109/CCECE.2014.6901058

15. MH Schwarz, H Sheng, A Sheleh, J Boercsoek, IEEE/ACS International

Conference on Computer Systems and Applications, 1058 – 1063 (2008), 2008,

pp. 1058–1063. doi:10.1109/AICCSA.2008.4493678

16. ET Mekonnen, J Katcha, K Parker, An FPGA-based digital control development

method for power electronics. (IECON 38th Annual Conference on IEEE Industrial

Electronics Society, 2012), p. 222–226. doi:10.1109/IECON.2012.6388804

17. R Selvamuthukumaran, R Gupta, Rapid prototyping of power electronics

converters for photovoltaic system application using Xilinx System Generator.

IET Power Electron. 7(9), 2269–2278 (2014). doi:10.1049/iet-pel.2013.0736

18. MATLAB Coder. User's guide, http://www.mathworks.com/help/pdf_doc/

coder/coder_ug.pdf. Accessed 5 December 2014

19. Simulink Coder. User's guide, http://www.mathworks.com/help/pdf_doc/

rtw/rtw_ug.pdf. Accessed 5 December 2014

20. HDL coder, http://www.mathworks.com/products/hdl-coder/. Accessed 5

December 2014.

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 11 of 12

http://www.mathworks.com/help/pdf_doc/coder/coder_ug.pdf
http://www.mathworks.com/help/pdf_doc/coder/coder_ug.pdf
http://www.mathworks.com/help/pdf_doc/rtw/rtw_ug.pdf
http://www.mathworks.com/help/pdf_doc/rtw/rtw_ug.pdf
http://www.mathworks.com/products/hdl-coder/

21. Fixed-point designer. User's guide, http://www.mathworks.com/help/releases/

R2014b/pdf_doc/fixedpoint/FPTUG.pdf. Accessed 5 December 2014.

22. Mars Starter Kits, http://www.enclustra.com/en/products/hardware-kits/

mars-starter-kits/. Accessed 18 October 2014.

23. A Gupta, A Porippireddi, VU Srinivasa, A Sharma, M Kadam, Comparative

study of single phase PLL algorithms for grid synchronization applications.

IJECT 3(4), 237–245 (2012)

24. S Shinnaka, A Robust, Single-phase PLL system with stable and fast tracking.

IEEE Trans. Ind. Appl. 44(2), 624–633 (2008). doi:10.1109/TIA.2008.916750

25. M Karimi-Ghartemani, M Mojiri, A Safaee, JA Walseth, SA Khajehoddin, P Jain,

A Bakhshai, A new phase-locked loop system for three-phase applications. IEEE

Trans. Power Electron. 28(3), 1208–1218 (2013). doi:10.1109/TPEL.2012.2207967

26. XQ Guo, W Wy, HR Gu, Phase locked loop and synchronization methods for

grid-interfaced converters: a review. PRZEGLĄD ELEKTROTECHNICZNY

(Electric Rev) 87(4), 182–187 (2011)

27. B Singh, SR Arya, Implementation of single-phase enhanced phase-locked

loop-based control algorithm for three-phase DSTATCOM. IEEE Trans. Power.

Deliv. 28(3), 1516–1524 (2013). doi:10.1109/TPWRD.2013.2257876

28. M Karimi-Ghartemani, JA Walseth, Using the EPLL algorithm as a preprocessor

for fault analysis. (11th International Conference on Information Science,

Signal Processing and their Applications (ISSPA), 2012), p. 1377–1382.

doi:10.1109/ISSPA.2012.6310508

29. M Karimi-Ghartemani, M Karimi-Ghartemani, Linear and pseudolinear

enhanced phased-locked loop (EPLL) structures. IEEE Trans. Ind. Electron.

61(3), 1464–1474 (2014). doi:10.1109/TIE.2013.2261035

30. Optimization toolbox user's guide, MathWorks, http://www.mathworks.com/

help/pdf_doc/optim/optim_tb.pdf. Accessed 18 October 2014

31. Simulink. Developing S-functions, MathWorks, http://www.mathworks.com/

help/pdf_doc/simulink/sfunctions.pdf. Accessed 04 December 2014

32. Voltage Transducer LV 25-P, http://www.lem.com/docs/products/lv%2025-p.

pdf. Accessed 04 December 2014.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Kołek and Piątek EURASIP Journal on Advances in Signal Processing (2015) 2015:19 Page 12 of 12

http://www.mathworks.com/help/releases/R2014b/pdf_doc/fixedpoint/FPTUG.pdf
http://www.mathworks.com/help/releases/R2014b/pdf_doc/fixedpoint/FPTUG.pdf
http://www.enclustra.com/en/products/hardware-kits/mars-starter-kits/
http://www.enclustra.com/en/products/hardware-kits/mars-starter-kits/
http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf
http://www.mathworks.com/help/pdf_doc/simulink/sfunctions.pdf
http://www.lem.com/docs/products/lv%2025-p.pdf
http://www.lem.com/docs/products/lv%2025-p.pdf

	Abstract
	Introduction
	Rapid prototyping
	Rapid prototyping approach
	Hardware platform

	Case studies
	Synchronization with line voltage
	Flicker implementation
	Results of the flicker algorithm

	Conclusions
	Competing interests
	sections13634-015-0192-3
	sectionBib1

