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ABSTRACT A central question in sequence comparison is 
the statistical significance of an observed similarity. For local 
alignment containing gap to optimize sequence similarity this 
problem has so far not been solved mathematically. Using as a 
basis the C h e d t e i n  theory of Poisson approximation, we 
present a practical method to approximate the probability that 
a local alignment score is a result of chance alone. For a set of 
similarity scores and gap penalties only one simulation of 
random alignments needs to be calculated to derive the key 
information allowing us to estimate the significance of any 
alignment calculated under this setting. We present applica- 
tions to data base searching and the analysis of pairwiise and 
self-comparisons of proteins. 

Every new DNA or protein sequence is compared with one 
or more sequence data bases to find similar or homologous 
sequences that have already been studied. There are numer- 
ous examples of important discoveries resulting from these 
data base searches. One of the most famous is the similarity 
between platelet-derived growth factor and the v-sis onco- 
gene product (1). Another example is the similarity between 
bovine CAMP-dependent protein kinase and the Rous avian 
sarcoma virus Src proteins (2), which supports the origination 
of the src genes in host genomes. When the cystic fibrosis 
gene was cloned and sequenced, a data base search revealed 
that the gene product had similarity to a family of related 
ATP-binding proteins involved in active transport of small 
hydrophilic molecules across the cytoplasmic membrane (3). 
A great deal of biology is learned from these searches, which 
are routinely used to create or test hypotheses about the 
function of a protein or DNA sequence or the membership of 
a sequence in a family. 

There are two mathematical aspects to data base searches: 
the algorithm used to find sequence similarities and the 
method used to determine which similarities are interesting. 
Clearly, the algorithm for searching is important. Both the 
objective function for scoring alignments and the speed of the 
algorithm are relevant, since scoring determines the align- 
ments themselves and speed determines how easy and prac- 
tical searching is. Less well appreciated is the importance of 
the criteria used to determine whether similarities are of 
interest. When searching data bases containing tens of thou- 
sands of individual sequences, automatic criteria are re- 
quired. Since detailed sequence-by-sequence biological rea- 
soning cannot be included, statistical significance is usually 
defined by comparison with the similarity of random se- 
quences. 

Two algorithms have become famous for rapid searches of 
data bases, FASTA and BLAST. They are local rather than 
global algorithms that look for intervals or segments of good 
matching between sequences. The FASTA family of programs 
(4, 5) achieves its speed by searching for diagonals in the 
comparison matrix where there is dense matching of k-tuples. 
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In the last stage of the analysis, restricted Smith-Waterman 
dynamic programming is performed, using Dayhoff scoring to 
weight amino acid substitutions. BLAST (6), which is faster, 
precomputes all segments or patterns that could score above 
some test value against a segment of the sequence. Then all 
instances of this collection of patterns in the data base are 
found and statistical significance is estimated by Poisson 
approximation. Both FASTA and BLAST look for best local 
matchings with scores, although BLAST does not include 
insertions/deletions (indels). The most rigorous method to 
search a data base uses the Smith-Waterman local alignment 
algorithm (7-9). Its associated statistical questions are so 
complex that until now only a few efforts to calculate 
significance of alignments with gaps have been undertaken 
(10, 11). 

The traditional method for assigning statistical significance 
is by simulation. Random sequences with the same distribu- 
tion of letters as the real sequences are aligned, thus creating 
a random sample of scores. Then the mean and standard 
deviation of this sample is computed and the real sequence 
alignment score is reported in “number of standard devia- 
tions above the mean.” There are problems with this ap- 
proach. It is simply too expensive in time to perform such a 
simulation for all sequences in a data base. Moreover “num- 
ber of standard deviations” carries with it an implicit and 
incorrect assignment of significance by the normal distribu- 
tion. Theory is needed because simulations rarely cover the 
extreme tails of a distribution. In addition, taking such an 
approach requires redoing the simulation not only when one 
uses a new scoring system but for different-length sequences. 
Both shortcomings are remedied by the conceptually simple 
and practical method we propose in this paper to estimate the 
significance of a wide class of local alignments. 

First we describe the Smith-Waterman algorithm (9) along 
with an important extension. The function is the weight 
given to a substitution of letter y for letter x, often from the 
Dayhoff matrix. The function -gk is the weight given to a gap 
or indel of length k. gk = a + 6k provides an efficient 
algorithm (12). For simplicity we present gk = 6k. The 
sequences x = ~ 1 x 2  . . . x,, and y = y ly2  . . . ym are to be 
compared. Let Hij  be the best score of any alignment ending 
at xi and yj or 0 ,  whichever is larger. Define Hij = 0 if i o r j  
is 0. Then the recursion is 

Hij = max{Hi-1,j.l + s.,,~,, Hi-l, - 6, Hij-1 - 6, 0). 111 

The best local similarity score between x and y is then H(x,y) 
= max{Hij: 1 5 i 5 n, 1 5 j I m}, and an alignment is 
determined by traceback from that location, (it J] say. The 
computing time is proportional to wm. Frequently the analyst 
is interested in finding all alignments that score well. This 
creates an immediate problem, as there are many alignments 
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that score well but differ in only minor ways from an optimal 
alignment ending at (i, 31. To cope with this difficulty first 
define an alignment clump as the group of alignments sharing 
at least one pair of aligned letters with a given alignment. The 
procedure is to select one alignment from a clump and then 
to declump or remove the effects of all alignments in the 
clump. The method of declumping was introduced to find 
nonintersecting suboptimal local alignments (13). Let H(1) be 
the score of the best alignment score. In a traceback from that 
score, an optimal alignment is produced. Now HQ) is the 
maximum score where no pair of alignment letters from the 
first alignment is used. The second score can be produced 
very quickly from the first by declumping and recomputing in 
the vicinity of the first alignment. In this way H(1), H(z), . . . , 
H(N) can be rapidly found. When there is more than one local 
alignment of interest, this is an important tool as, e.g., the 
analysis of repeats in a sequence. In addition, the ability to 
quickly produce the scores of clumps is key to our statistical 
analysis below. 

Next, we turn to the statistical distribution of local align- 
ment scores H(x,  y). The setup is simple. The sequences x and 
y are assumed to be random with letters statistically inde- 
pendent or given by a Markov chain, and the scoring weights 
sx,y and gk are fixed. The local alignment score of biologically 
unrelated sequences then has a statistical distribution that 
depends on the sequence lengths, letter distribution, and 
scoring weights. There are two extreme cases. First, let sx,y 
= +1 if x = y and 0 i fx  # y and g k  = 0, so that optimal 
alignment scores are the length of the longest common 
subsequence common to x and y. In this case, H(x, y) = H,, 
is proportional to sequence length n = m. With probability 1, 
the limit of H J n  converges to c, and while the existence of 
c was established in 1975 (14), its precise value is still 
unknown. The idea is that there is no penalty for errors, so 
waiting for another identity cannot decrease the score. In 
contrast, if sx,y = 1 if x = y and -m ifx # y and gk = m, then 
H(x, y) = H,, is the length of the longest perfect match 
between x and y. The growth of H,, is now proportional to 
log(n), and limit H,,/log(n) + 2 with probability 1. These are 
the only two growths possible (15). That is for a general 
scoring (s,,~) and gk = a + sk, there are two exhaustive sets, 
Slin and Slog, where ( ( s ~ , ~ ) ,  a, 6) E Slin implies H,, - cn and 
((s~,~), a, 6) E SI, implies H,, - dog(n). 

Let us look more carefully at the linear/logarithmic 
growths. The linear region of the parameter space is defined 
as those parameters where the average score per letter of a 
global alignment is positive. Hence, positive score is the 
average event. The logarithmic region is where the average 
score per letter of a global alignment is negative and the local 
alignment algorithm “shrinks” the alignment to a truly local 
one (16). Here, positive-scoring local alignments are rare 
events in the exponential number of possible local align- 
ments. By using a beautiful development of the Chen-Stein 
method (17), Poisson approximations can be established in 
some cases. The subtlety comes in the dependence between 
clumps of intersecting alignments and alignments that share 
sequence positions but not matched pairs of positions. The 
first type of dependence can be removed by declumping, and 
the second can be controlled by the Chen-Stein method. 

We introduce the most relevant known result frop se- 
quence matching (18,19). Let gk = m (no gaps) and s ~ , ~  be the 
scoring parameters. Given p E (0, l), the largest root off(A) 
= 1 - E ( h - S x ~ y )  = 0, where x and y are random letters, then 
lim H,,/logl~,(n*) + 1. For sequences of length n and m, the 
“center” of the distribution of optimal local alignment scores 
is logl/,(nm). Notice that p is determined by the letter 
distribution and s ~ , ~ .  For random sequences X, Y there is a 
constant y that can be numerically determined by solving an 
equation, such that 
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P{H(X, Y) > t = logl/,(rnn) +c}  = 1 - e-ymnp’. 121 

This method of assigning statistical significance is used in 
BLAST (6). The Poisson distribution is needed to approximate 
the number of clumps exceeding the center by c-i.e., those 
for which H > logl/,(nm) + c. This Poisson distribution has 
mean ymnp‘. This implies there are no scores that large with 
probability e-wv‘. The first result obtaining the center 
logl/,(nm) was given in ref. 18; it was later extended in ref. 
19, where a Poisson approximation was presented. In other 
work, Chen-Stein approximations have been established for 
alignments with rich fractions of mismatches (20), without 
scoring. We now show how to rapidly obtain practical and 
accurate Poisson approximations for the entire logarithmic 
regior+i.e., for alignments calculated under strong gap 
penalties. 

In Aldous (22), the Poisson clumping heuristic is de- 
scribed. The model locates clumps by a Poisson process and 
then independently assigns clump scores. The ideas from the 
previous paragraph can be interpreted in this way. The 
number of clumps scores exceeding a test value t = center + 
c has a Poisson distribution with mean A. In particular, the 
probability that at least one score exceeds t is 1 - P(no score 
exceeds t) = 1 - e-h. We provide numerical evidence that the 
Poisson clumping model holds in the entire logarithmic 
region. The end of an alignment (iJ marks the clump location 
and its score H is the clump score. Throughout the logarith- 
mic region the center is logl/,(nm). Furthermore, we dem- 
onstrate numerically that in the logarithmic region the mean 
A of the number of clumps above a threshold t has the form 
A = ymnp’ as in Eq. 2. 

Given this model for the statistical behavior of alignments 
with gaps, it is necessary to estimate the parameters y andp. 
Except for the no-gap case there is no analytic description of 
the parameters. However, the theory suggests two different 
ways of estimating yandp by using simulations. Both assume 
a fixed scoring scheme (sX,,, and a gap penalty function) and 
letter distribution. 

The obvious method is to apply the algorithm in Eq. 1 many 
times to statistically independent sequences and to calculate 
the empirical distribution function of optimal alignment 
scores-Le., the fraction of alignments with score less than 
t. The Poisson clumping heuristic suggests that the proba- 
bility for an alignment to score below t is given by e-ymnP’. 

After appropriate transformation (log[ -log(data)]) the em- 
pirical distribution function is expected to form a straight 
line. In fact, linear regression gives a correlation coefficient 
above 0.99. It is then straightforward to calculate the param- 
eters y and p,  and we call this method direct estimation. 

Yet the true power of the theory sketched above comes to 
bear in the second method, which we call declumping esti- 
mation. From afew comparisons we calculate H(I) ,  H(z) ,  . . . , 
H(N),  using the declumping algorithm described above. The 
crucial observation is that the mean A of the Poisson can be 
estimated from this data set by the average number of H(i) that 
exceed a threshold t, fitting these data by the function ymnp‘. 
Simulations show that plotting the empirical data on a loga- 
rithmic scale leads to an almost perfect straight line. Esti- 
mation of y and p by regression is then straightforward. As 
we demonstrate, both approaches provide almost equally 
good estimates of statistical significance, thus by their agree- 
ment supporting the assumptions on which they are based. 
Declumping estimation provides these parameters dramati- 
cally faster than direct estimation. 

There are several checks to perform. The first is to verify 
the agreement between our two proposed methods and the 
theory already established in the case of no indels (19). In 
fact, all three distribution functions agree extremely well. To 
test the quality of the approximation for alignments with 
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gaps, we simulate the empirical distribution function. Many 
distribution functions can be approximated satisfactorily by 
using a double exponential. Therefore, while direct estima- 
tion is not really challenged by approximating the empirical 
distribution function, for the declumping estimation to ap- 
proximate the empirical distribution function well would be 
highly remarkable. In fact, as shown in Fig. 1, the quality of 
approximation is nearly perfect, with the tails of the empirical 
and the approximated distribution being almost indistinguish- 
able. 

Taking the tests a step further, we want to know whether 
the dependence of the score on sequence length is modeled 
correctly. To this end we applied the approximation to 
sequences of length different from that used to estimate the 
parameters. Fig. 1 shows that both direct and declumping 
estimates perform well. We generally found the direct esti- 
mation to result in conservative estimates of significance 
when derived from long sequences. Not only does this 
demonstrate that the quality of approximation is sufficient to 
be used on a routine basis in sequence comparison, but the 
agreement between the two methods confirms that the Pois- 
son clumping model adequately describes the data. 

Our assumptions are also supported by the failure of the 
Poisson model to work for scoring systems in the linear 
region where alignments are essentially global instead of 
local. While the direct estimation appears to result in good fit 
even in the linear region, it immediately fails when we apply 
the derived parameters to accommodate length changes. In 
addition, counting clumps above a threshold as in the de- 
clumping simulation does not lead to an exponential function. 

The output of a data base search frequently seems distorted 
by the fact that matches to very long sequences score high 
and are near the top of the hit list. Based on one simulation 
done under the parameter settings of the data base search, 
one can now account for sequence lengths and sort the hit list 
on the basis of significance rather than score. If the data base 
is treated as one long sequence as in BLAST, then ranking by 
score is appropriate, and correct but conservative values of 
statistical significance are assigned. Instead we rank each 
individual comparison by estimated significance, usually 
obtaining a different ranking of comparisons. Since we are 
taking the most statistically significant comparison out of the 
large number of comparisons, the significance values should 
not be considered as correct for the overall data base com- 
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FIG. 1. Approximating the empirical distribution function (solid 
line) by using parameters derived by direct and declumping estima- 
tion. Parameters are derived from comparing length 900 random 
sequences and then applied to pairs of lengths 300, 600, and 900. 
Alignment used the PAM250 matrix (23) and gap@) = 12 + 3k. 
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parison. Instead we believe the hit list sorted by significance 
rather than by score is more useful to understanding biology. 

We implemented this procedure and achieved a substantial 
improvement in data base searches. For example, when the 
Protein Identification Resource PIRl data base is searched 
with the a chain of human hemoglobin, the farthest known 
relative one finds is lupin leghemoglobin. In terms of score we 
found 25 nonglobins scoring better than it. After sorting by 
significance instead of score, leghemoglobin still was the last 
globin on the list, but it moved up and only 10 nonglobins 
ranked better.$ In a similar experiment PIRl was searched 
with an azurin sequence, and we looked how far below the 
last azurin that plastocyanins are found. When sorted by 
score, plastocyanins occur between positions 37 and 262; 
when sorted by significance they are between positions 18 
and 107.n 

In the logarithmic region we can give statistical significance 
estimates for the order statistics H(1) 2 H(z) 2 H(3) 2 . . . 
associated with the clump scores (25). The kth best (de- 
clumped) alignment score H(k) has the approximate distribu- 
tion of the kth order statistic of a sample of Poisson mean 
yrnnp' random variables. That is 

Notice that P(H(u - logl/,(nrn) 5 c) = eymnp',  consistent with 
Eq. 2. 

We tested this approximation by calculating the first-, 
second-, and third-best alignments for pairs of randomly 
generated sequences. Approximating the resulting three em- 
pirical distribution functions using y and p derived from the 
optimal alignments and the above formula resulted in excel- 
lent fit for the suboptimal curves as well (Fig. 2). Again, this 
strongly reinforces our assumptions and also has direct 
applications to sequence comparison. We applied it to ana- 
lyze the sequence of hemopexin, which has been claimed to 
contain internal repeats. Apart from the self-match, the 
highest scores are 142 (significance level better than O.OOOl), 
62 (significance level OM), 57 (0.0366), and 56 (0.012). This 
pattern of increasing significance of the suboptimal solutions 
clearly supports the claim.11 Another consequence of our 
ability to assess the significance of suboptimal alignments is 
that we become less vulnerable to a wrong choice of gap 
penalties. Suppose two sequences are aligned under strong 
gap penalties and only part of the correct alignment is found. 
The rest is likely to come up as a high-scoring suboptimal 
solution which can readily be identified by using its signifi- 
cance. As an example we used a comparison of two immu- 
noglobulins, where the optimal alignment contains only about 
half of the desired alignment and has a p value of 0.04. The 
second-best solution, with a p value of 0.001, fills in the 
remaining part of the alignment.** 

$The search was performed with the PAM250 matrix (23), a gap 
penalty function gap(k) = 12 + 3k, and the distribution of amino 
acids given by McCalden and Argos (24). 

YSorting by score also leads to many sequences sharing the same 
score. For example, the last plastocyanin scores 55 and there are 66 
other hits of that same score; 262 is only the number of nonazurins 
scoring 56 or better. Not all plastocyanins from PIRl are included 
in this list, as some of them are found only far under any reasonable 
cutoff for a search. The search was performed with the PAM250 (23) 
matrix, agap penalty function gap(k) = 12 + 2k, and the distribution 
of amino acids given by McCalden and Argos (24). 

IlThe alignment was done with the PAM250 matrix (23) and a gap 
penalty function gap(k) = 12 + 3k. The parameters were derived by 
using direct simulation assuming uniform distribution of letters. 

**Based on PAM250 matrix (23) and gap@) = 12 + 3k. Compare to 
the analysis in ref. 16, where this comparison is studied in detail. 
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Score H 

FIG. 2. Using parameters derived by direct estimation from lo00 
pairs of length 300 sequences, we approximated the empirical 
distribution function of fmst-, second-, and third-best alignment. The 
empirical distribution function is based on 1O,o00 random compari- 
sons. The PAM250 matrix and gap(k) = 12 + 3k were used. 

Checking the distribution in Eq. 2 with the results of a data 
base search is easily accomplished. Compare the query 
sequence of length m to statistically independent sequences 
of length ai, i = 1 to N, from a data base. The score of the ith 
comparison is Hi. Then Yi = e-ymnp4, i = 1 to N, is 
(approximately) a sample of uniform (0,l) random variables. 
Order them Y(l) Y(2) 5 . . . 5 Y(N) and the average value 
of Y(,? = e-Wnnfl is (approximately) i/(N + 1). Taking loga- 
rithms, the fit from using parameters yandp can be evaluated 
by using the equations log(-logi/(N + 1)) - log(mni) = logy 
+ log(p). We have checked the fit by running the a chain 
of human hemoglobin against nonhemoglobins in Swis-hot 
and NEWAT [a data base from R. Doolittle that has duplicate 
sequences removed (21)]. In each case the fit is good with 
conservative estimates of significance. We also used higher- 
order dependence in the simulation, with identical results. 

We have demonstrated how to estimate the statistical 
significance of optimal and suboptimal local alignments and 
applied this to data base searches, the identification of 
internal repeats, and the improvement of alignment quality. 
General-purpose parameters for use in data base searches can 
be derived by using the compositions of the query sequence 
and the data base. For more subtle analysis such as the 
assessment of suboptimal alignments it is preferable to derive 

parameters from simulations mimicking closely the situation 
under study. Software is available by anonymous ftp from 
hto . usc .edu . 
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