J Am Chem Soc. Author manuscript; available in PMC 2011 March 14.

Published in final edited form as:

J Am Chem Soc. 2007 August 29; 129(34): 10328–10329. doi:10.1021/ja073643o.

Rapid and Efficient Electrocatalytic CO₂/CO Interconversions by Carboxydothermus hydrogenoformans CO Dehydrogenase I on an Electrode

Alison Parkin[†], Javier Seravalli[‡], Kylie A. Vincent[†], Stephen W. Ragsdale[‡], and Fraser A. Armstrong[†]

Fraser A. Armstrong: fraser.armstrong@chem.ox.ac.uk

[†]Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.

[‡]Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664

Microbial interconversions between CO and CO_2 are catalyzed by carbon monoxide dehydrogenases (CODH). These enzymes fall into three classes: Mo-CODH in which the active site is a CuMo-pterin, Ni-CODH in which the active site is a [Ni4Fe-5S] cluster, and Ni-CODH/ACS, in which a Ni-CODH is part of a larger complex coupling CO_2 reduction to acetyl CoA synthesis. The Ni-CODHs function in both directions, which is significant as both CO_2 and CO can be primary carbon sources and CO is an electron source. As evident from the standard reduction potential for reaction 1A ($E^0 = -0.10$ V vs SHE at pH 0; corresponding to approximately -0.51 V at pH 7), CO is more reducing than H_2 , and this property is the basis for the industrial "water gas shift reaction" (1B) in which H_2 is produced from water. Both CO and CO_2 are unreactive without a catalyst, but enzymecatalyzed reactions are fast, with turnover frequencies as high as 40000 s⁻¹ reported for CO oxidation by a Ni-CODH at pH 8, 70 °C.

$$CO_2 + 2H^+ + 2e^- \rightleftharpoons CO + H_2O \tag{1A}$$

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
 (1B)

There is hope that (photo)electrochemical CO_2 reduction may provide a "green" alternative route to fuels and organic compounds,⁴ and CO_2/CO cycling in conjunction with reaction 1B could be used to split water.⁵ An ideal *electro*catalyst for CO_2 reduction or CO oxidation would show high rates in either direction with minimal overpotential; in other words, CO_2/CO interconversion would behave as a reversible electrode reaction. Electrocatalysts producing CO or products such as formate or methanol have been reported,² but apart from some Cu alloys large overpotentials are observed.^{6,7} A recent paper described CO_2 reduction by a Ni-CODH, mediated by methyl viologen at a modest overpotential, but the reverse reaction was not reported.⁸

Correspondence to: Stephen W. Ragsdale; Fraser A. Armstrong, fraser.armstrong@chem.ox.ac.uk.

Supporting Information Available: Determination of apparent activation enthalpies, the formal reduction potential, K_{M} values, number of electrons involved in reactivation and complete ref 9. This material is available free of charge via the Internet at http://pubs.acs.org.

^{© 2007} American Chemical Society

The strictly anaerobic thermophile *Carboxydothermus hydrogenoformans* (*Ch*) thrives at 70 °C and can use CO as a sole carbon and energy source. ^{1,3} *Ch* produces at least five CODH complexes, ⁹ including CODH I (137.0 kDa) and CODH II (136.6 kDa), which are closely related homodimers involved in energy conservation (as part of a H⁺-pumping complex) and NADPH generation, respectively. The crystal structure of CODH II (Figure 1) reveals a [Ni4Fe-5S] and [4Fe-4S] cluster in each of the two subunits, which are bridged by a further, solvent-exposed [4Fe-4S] cluster that offers a route for electrons in and out of the enzyme. ¹⁰ As part of larger complexes, Ni-CODH is a module for cycling and distributing electrons from CO/CO₂ interconversions. We now demonstrate that *Ch* Ni-CODH I¹¹ attached to an electrode displays facile, direct interfacial electron exchange and provides a benchmark for "reversible" CO₂/CO electrochemistry.

The voltammograms in Figure 2 reveal the intense electrocatalytic activity of Ch Ni-CODH I adsorbed on a pyrolytic graphite "edge" (PGE) electrode rotating at high speed in an anaerobic sealed cell. Panels a and b reveal the separate reduction and oxidation activities under 100% CO_2 or 100% CO, while panels c and d show combined reduction *and* oxidation activities for a 1:1 CO_2/CO gas mixture at two different pH values.

No nonturnover signals appeared without substrate, so the electroactive coverage must be very low, ¹⁶ nor was activity observed upon adding H₂ to CO/CO₂-free experiments, confirming Ni-CODH I has no hydrogenase activity. For neither CO oxidation or CO₂ reduction does the catalytic current reach a limit, probably reflecting the high activity of enzyme molecules nonuniformly adsorbed on the PGE surface. 13 However, as discussed below, CO oxidation has an irregular potential dependence. Heating from 0 to 50 °C causes large increases in activity in both directions (higher temperatures decreased electrocatalytic activity, probably due to enzyme desorption, but the voltammetry was stable over several hours at 25 °C). The temperature dependence of rotation-rate independent currents yielded empirical activation enthalpies of $\Delta H^{\neq} = 48 \text{ kJ mol}^{-1}$ for CO₂ reduction and 30 kJ mol⁻¹ for CO oxidation (Supporting Information). For a 1:1 gas mixture (panels c and d), the zerocurrent potential (average in each scan direction) approximates to the formal potential for the CO₂/CO redox couple. We obtained $E^{0'} = -500$ mV at pH 6.7, 25 °C (Supporting Information). Increasing the pH raises the CO oxidation activity relative to CO2 reduction but the current always cuts sharply through the zero current axis at the CO₂/CO reduction potential, so there is no enzyme-inherent overpotential in either direction. An inspiring conclusion is that CO₂/CO redox cycling can be rendered "reversible", similar to the 2H⁺/H₂ couple at Pt or hydrogenase-modified electrodes. 14

Our CO and CO₂ levels far exceed those of natural environments, so we used a procedure described by Léger et al. ¹⁵ to compare $K_{\rm M}$ values for CO oxidation and CO₂ reduction. In this method (Supporting Information) the activity is recorded over a large, continuous concentration range down to extremely low levels. At 25 °C, pH = 6.0, the $K_{\rm M}$ (CO) value (13 experiments) is ca. 0.002 atm (ca. 2 μ M) but only a lower limit (ca. 0.06 atm) could be determined for $K_{\rm M}$ (CO₂). Although 25 °C is colder than normal growth conditions for Ch, the values reflect very well the enzyme's ability to scavenge low-level CO. The very high $K_{\rm M}$ for CO₂ means that in Figure 2, CO oxidation activity is saturated whereas CO₂ reduction is not, and at pH values below 6, $k_{\rm cat}$ for CO₂ reduction must actually be higher than for CO oxidation. ¹⁶

Reversible inactivation at a potential more positive than -320 mV, pH 7.5, has been reported for another Ni-containing CODH, ¹⁷ so the unusual shape of voltammograms in the CO oxidation region was investigated further. (Our electrochemical results were obtained over much shorter time scales than required to observe *irreversible* inactivation at high CO levels.11) Figure 3 shows that reversible inactivation is resolved by lowering the scan rate

(a) or if higher temperatures (b), lower pH (c), and lower CO levels (d) are used. At pH 4.7, 1% CO, not one but *two* reversible activation/inactivation processes are distinguished, at ca. -250 and ca. -50 mV. That we may be addressing two different forms of the enzyme merits further investigation. We assigned the high-potential activation as a one-electron process from its Nernstian reactivation profile (Supporting Information). The behavior mirrors that of hydrogenases which also undergo reversible anaerobic inactivation, particularly at low H_2 levels. 14,18

In conclusion, Ch Ni-CODH linked to a PGE electrode displays intense electrocatalytic activity for CO oxidation and CO_2 reduction. This not only provides a good way to study this enzyme under strict potential control but it also sets a standard for future studies of CO and CO_2 electrochemistry. One important aspect will be to link the catalytic reversibility more closely to C-cluster interconversions that have been detected by EPR. 1

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research is supported by the EPSRC and BBSRC (Grant 43/E16711, F.A.A.) and NIH (Grant GM39451, S.W.R.).

References

- 1. Ragsdale S. Crit. Rev. Biochem. Mol. Biol 2004;39:165–195. [PubMed: 15596550]
- DuBois, DL. Encyclopedia of Electrochemistry. Vol. Vol. 7a. Weinheim, Germany: Wiley-VCH; 2006. p. 202-225.
- 3. Svetlitchnyi V, Peschel C, Acker G, Meyer O. J. Bacteriol 2001;183:5134–5144. [PubMed: 11489867]
- 4. Kaneco S, Katsumata H, Suzuki T, Ohta K. Chem. Eng. J 2006;116:227-231.
- 5. Lewis NS, Nocera DG. Proc. Natl. Acad. Sci. U.S.A 2006;103:15729-15735. [PubMed: 17043226]
- 6. Watanabe M, Shibata M, Kato A, Azuma M, Sakata T. J. Electrochem. Soc 1991;138:3382-3389.
- 7. Gattrell M, Gupta N, Co A. J. Electroanal. Chem 2006;594:1–19.
- 8. Shin W, Lee SH, Shin JW, Lee SP, Kim Y. J. Am. Chem. Soc 2003;125:14688–14689. [PubMed: 14640627]
- 9. Wu M, et al. Public Libr. Sci. Genet 2005;1:563–574.
- Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O. Science 2001;293:1281–1285. [PubMed: 11509720] Drennan CL, Peters JW. Curr. Opin. Struct. Biol 2003;13:220–226. [PubMed: 12727516]
- Gu W, Seravalli J, Ragsdale SW, Cramer SP. Biochemistry 2004;43:9029–9035. [PubMed: 15248760]
- 12. Experiments were carried out in a glovebox as described in references 14 and 18 . The PGE electrode (0.03 cm²) was sanded with P800 emery paper then CODH (0.5 μ L, 0.6 mM) was applied. The pH was measured with a pH probe placed in the electrochemical cell. Experiments under 100% CO₂ (Figure 2) and $K_{\rm M}$ experiments (for CO and CO₂) were conducted at pH 6, 200 mM MES, since the pH of this solution remained stable upon CO₂ saturation. Other experiments employed mixed buffer, as in ref 18. Gas flow controllers were used to give accurate mixtures of CO and CO₂. The electrode was rotated rapidly (4000 rpm) to supply substrate at the electrode and remove product. A saturated calomel electrode (SCE) was used as reference. E(SHE) = E(SCE) + 0.242 V at 25 °C.
- 13. Léger C, Jones AK, Albracht SPJ, Armstrong FA. J. Phys. Chem. B 2002;106:13058–13063.
- 14. Vincent KA, Parkin A, Lenz O, Albracht SPJ, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA. J. Am. Chem. Soc 2005;127:18179–18189. [PubMed: 16366571]

15. Léger C, Dementin S, Bertrand P, Rousset M, Guigliarelli B. J. Am. Chem. Soc 2004;126:12162–12172. [PubMed: 15382953]

- 16. On the basis of conventional solution kinetic assays of CO oxidation, we estimate $k_{cat} = 5720 \ s^{-1}$ per CODH dimer at pH 7, 50 °C. Assuming a similar value holds for the adsorbed enzyme, a typical current density of 0.5 mA cm⁻² equates to an electroactive coverage of 0.46 pmol•dimer cm⁻². This is below the limit of detection for nonturnover signals.
- Heo J, Halbleib CM, Ludden PW. Proc. Natl. Acad. Sci. U.S.A 2001;98:7690–7693. [PubMed: 11416171]
- 18. Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SPJ, Armstrong FA. J. Am. Chem. Soc 2003;125:8505–8514. [PubMed: 12848556]

Figure 1. Structure of *Ch* CODH II showing the two subunits (blue and gray) and arrangement of Fe–S clusters (black) that relay electrons to and from the [Ni4Fe-5S] active sites (red). Inset

shows the [Ni4Fe-5S] cluster where the proposed binding site for CO on the Ni atom is

shown as *.10

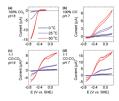


Figure 2.

Protein film voltammograms showing CO_2 reduction and CO oxidation activities of Ch CODH I under atmospheres of 100% CO_2 , 100% CO, or 1:1 CO_2/CO gas mixtures. Scan rate in panels a, c, and d was 10 mV/s; in panel b the scan rate was 30 mV/s. The electrode rotation was 4000 rpm. The pH is as indicated and the temperature color scheme given in panel a is used in other panels. Buffer compositions are given in ref 12. Electroactive coverage varies between different experiments.

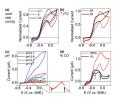


Figure 3.

Observations of Ch Ni-CODH I activity at high potential, changing: (a) scan rate, (b) temperature, (c) pH, and (d) CO. Unless stated otherwise, conditions are 0.7 mV/s, 100% CO, rotation rate of 4000 rpm, pH 5.0, 50 °C. In panels a and b the current is normalized with respect to the maximum oxidation current. In panels c and d black vertical arrows indicate resolution of two activation processes. Where a large amount of CO is oxidized, sufficient CO_2 accumulates to be detected as a reduction current. It is clear that complete inactivation is not achieved even at 1% CO.