
RESEARCH ARTICLE Open Access

Rapid and precise alignment of raw reads
against redundant databases with KMA
Philip T. L. C. Clausen1,2* , Frank M. Aarestrup2 and Ole Lund1

Abstract

Background: As the cost of sequencing has declined, clinical diagnostics based on next generation sequencing
(NGS) have become reality. Diagnostics based on sequencing will require rapid and precise mapping against
redundant databases because some of the most important determinants, such as antimicrobial resistance and core
genome multilocus sequence typing (MLST) alleles, are highly similar to one another.
In order to facilitate this, a novel mapping method, KMA (k-mer alignment), was designed. KMA is able to map raw
reads directly against redundant databases, it also scales well for large redundant databases. KMA uses k-mer
seeding to speed up mapping and the Needleman-Wunsch algorithm to accurately align extensions from k-mer
seeds. Multi-mapping reads are resolved using a novel sorting scheme (ConClave scheme), ensuring an accurate
selection of templates.

Results: The functionality of KMA was compared with SRST2, MGmapper, BWA-MEM, Bowtie2, Minimap2 and
Salmon, using both simulated data and a dataset of Escherichia coli mapped against resistance genes and core
genome MLST alleles. KMA outperforms current methods with respect to both accuracy and speed, while using
a comparable amount of memory.

Conclusion: With KMA, it was possible map raw reads directly against redundant databases with high accuracy,
speed and memory efficiency.

Background
In bioinformatics, the oldest and probably the single most
important tool is the alignment of one or more sequences.
Alignments informs us how similar a sequence is com-
pared with another sequence and can be used to quantify
the abundance of any similar sequence pattern. If the
found pattern has an annotation, this can be transferred
to the query sequence. The proper choice of alignment
method is thus critical for the further investigations [1].
Over the past decade several mapping methods have

been developed that enable direct mapping of raw reads
against target sequences. Previous studies have shown
read-mapping based approaches to be superior to the more
traditional methods where the reads are first assembled,
and the assembly is hereafter BLAST’ed. against a database.
The success of such methods are highly dictated by the

quality of the assembly, because BLAST remains too slow
to map the raw reads directly. Which is problematic within
repeat and low depth regions of the genome, where the as-
sembly often results in gaps between the assembled contigs,
leading to missing data [2, 3]. Today Bowtie2 [4], BWA-
MEM [5] and Minimap2 [6] are popular mapping methods
that allows for fast mapping and alignment of raw reads
against large reference genomes. All of these methods can
be adapted to map against entire databases of sequences,
but suffer from random selection when there is a tie for
best match. In order to resolve these ties, several tools have
been designed to resolve these random selections with ex-
tensive pre- and post-processing. Examples of these are
SRST2 [3] and MGmapper [7] which both pre- and
post-process the sequences for mapping with Bowtie2 and
BWA-MEM, respectively. Other methods, such as Salmon
[8], uses the EM algorithm in order to estimate the sequen-
cing level of homologous templates from mappings gener-
ated by traditional methods.
The redundant databases used in genomic epidemi-

ology are however still posing a challenge regarding
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mapping raw reads directly. When databases are con-
stantly updated with new sequences due to natural evo-
lution, the results are in a constantly changing state,
making clustering difficult. This feature of the databases
makes direct mapping of raw reads troublesome, as
there is no guarantee that the read will cover a unique
part of a reference sequence, resulting in a tie for best
match. Redundancy is a problem when mapping to bac-
terial databases, but to a lesser degree since these
databases are not as redundant as some of the gene da-
tabases, and better use can be made of paired end reads
since only one of the ends will often map to single genes.
There is a need for new methods to resolve the issue
with redundancy in an accurate and fast manner so that
acute decisions can be made. In response to this need, a
new alignment method, KMA (k-mer alignment), was
developed. KMA introduces a novel sorting scheme,
ConClave, in order to distinguish homologous templates.

Methods
We introduce a novel alignment method, KMA, and
scoring scheme, ConClave, which allows for mapping of
raw reads directly against redundant databases. KMA di-
verges from known mappers by allowing redundancy
within the databases, and KMA also produces consensus
sequences and a result overview. KMA was created to be
as intuitive and user friendly as possible, based on our
current user demands and analysis challenges. In order
to solve this, KMA works in five main steps: trimming
of reads, heuristic k-mer mapping, fine alignment, Con-
Clave scoring and reference assembly (see Fig. 1).

Heuristic k-mer mapping
When mapping against databases, a query sequence can
fall within two categories: the query does not look like
anything in the database or the query looks like some-
thing in the database. Depending on the database, it is
therefore necessary to determine at an early stage
whether alignment of a given sequence is feasible or if
the sequence should be discarded from further analysis.
Computationally, it is much faster to map raw reads
against template sequences and determine their approxi-
mate origin than it is to perform alignment giving the
exact differences between sequences. In order to exploit
this, KMA maps k-mers between the query sequence
and template database. The matching k-mers are then
used to produce a mapping score where a matching
k-mer is rewarded with a score of k while k-mer mis-
matches are penalized with − 1. For a query sequence to
be accepted for alignment, it must have a positive score
based on this mapping, equivalent to a minimum iden-
tity of (k + 1)− 1 in k-mer space. In the case where a
query sequence is accepted, the potential template

candidates are limited by linking the matching k-mers to
their respective template sequences.

Fine alignment
KMA uses a hash map of indexed k-mers from which to
start alignment, where this indexing is computed for
templates passing the heuristic k-mer mapping. The
indexed k-mers are then used as seeds from which to
start alignment, where each matching seed is extended
to give an optimal score. To enable a high resolution of
gaps and mismatches, KMA utilizes the Needleman-
Wunsch algorithm [9] to align the pieces of query and
template sequence between seed-extends. The tails of
the alignment, before the first seed and after the last, are
aligned with a specialized version of the Needleman-
Wunsch algorithm allowing for early stopping so that
leading and trailing gaps can be skipped.

ConClave scoring
As KMA is designed to map sequences against redun-
dant databases, the possibility of a tie for best matching
template should be considered more as rule than an ex-
ception. For KMA to be able to find the one most likely
template for each query sequence, a novel scoring
scheme, ConClave, was developed.
The ConClave scoring scheme requires that all best

matching templates are initially accepted for all best
matching query sequences. The alignment scores ob-
tained are then summed together for each template can-
didate in order to form the ConClave score, in this way
reflecting a maximum score for each template. For align-
ments where ties do not occur, a second score is con-
ducted as the unique ConClave score, which are used to
reflect the unique alignments.
Ties for best matching templates can now be resolved

by choosing the most likely template based on the Con-
Clave score. In case of a tie on the ConClave score, the
unique ConClave score is used to choose a best match-
ing template. For samples were two templates are
equally well-suited candidates, reflected by identical
ConClave scores, the algorithm will choose the first
sequence added to the database.

Reference assembly
The ConClave scoring and alignment of reads enables
assembly guided by a reference, resulting in a consensus
sequence for the given reference / template. From the
alignment, the differences between each read and the as-
sociated template are known, and this gives information
about which nucleotides are called at each position in
the template. Each nucleotide is then determined by ma-
jority voting, where the strength of the called nucleotide
is tested with a McNemar test, giving a robust base call-
ing performance across different sequencing platforms
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[10]. In case a nucleotide is not significantly overrepre-
sented according to the McNemar test (according to a
user specified α, default 0.05), it is reported in lower
case.
After reference assembly, statistics for each template

are collected in a single file, containing features such as
template identity, coverage and depth.

Performance evaluation and comparison
The performance of KMA was evaluated on a dataset of
13 Escherichia coli from Grad et al. (2012). The dataset
included 11 E. coli from the German / French outbreak

in 2011 and two historical E. coli [11]. Phenotypic sus-
ceptibility tests were known for all of the 13 E. coli, and
the presence of the beta-lactamase blaCTX-M-15 were
verified by PCR [11].
The 13 E. coli were mapped to the ResFinder database

of known resistance genes [12], where the associated
phenotype of each gene were compared with phenotypic
susceptibility tests.
In order to measure the performance on larger data-

bases, a core genome MLST (cgMLST) database for E. coli
was downloaded from EnteroBase (available at: http://
enterobase.warwick.ac.uk [Accessed 18 January 2018]. The

Fig. 1 Overview of step 1–4 of the KMA algorithm. 1: trim reads. 2. Match k-mers between query and database. 3a: Extend matching k-mer seeds,
and identify regions with mismatches. 3b: Use the Needleman-Wunsch algorithm to align regions of mismatching k-mers. 4: Conclave scoring
used to choose one best-aligning template per query sequence.
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cgMLST scheme contains 2447741 closely related genes,
which together matches the size of the human genome.
KMA was compared with six different methods: SRST2

(v. 0.1.8) [3], MGmapper (v. 2.7) [7], BWA-MEM (v-
0.7.15) [5], Bowtie2 (v. 2.2.4) [4], MiniMap2 (v. 2.6) [6]
and Salmon (v. 0.9.1) [8], each capable of mapping raw
reads directly against entire databases of sequences.
SRST2 uses Bowtie2 to map against a homology-re-

duced database, clustered at 90% identity using CD-hit
[13]. From each cluster, one allele is chosen, as the one
with the highest alignment score from all alignments to-
wards that cluster. After mapping and alignment, SRST2
performs SNP calling and reports the differences between
query and template sequences [3].
For MGmapper to accept a template, it has to contain at

least one unique mapping read when mapped with BWA-
MEM. After mapping the reads, MGmapper reports the
depth and template coverage of the accepted genes [7].
Salmon was developed for quantifying RNA transcript

levels using the EM-algorithm. Which partially matches
the redundant database problem, as only a subset of the
templates in the database are likely to be present. Sal-
mon can be used as an extension to BWA-MEM, Bow-
tie2 and Minimap2, when the alignment method is set
to report several alignments per read [8].
SAMtools and BEDTools were used to estimate depth

and template coverage of mappings performed with
BWA-MEM, Bowtie2 and Minimap2 so that these could
be used for a more direct comparison as well [14, 15].
To prove the difficulty of mapping raw reads directly

against redundant databases, a simulated dataset of
single-end and paired-end reads was created, where each
gene in the ResFinder database was split into raw reads
with a length 100 bp, and an insert size of 250 for the
paired end set. Error and indel rates were set to zero so
that the simulated reads would represent the perfect
case scenario of short-read sequencers. Meaning, that
any inconsistencies from the mapping methods, would
reveal each of their weaknesses in mapping against re-
dundant databases, and give a clear view of their as-
sumptions. Simulated reads were created with chopDB,
which is included alongside the commands used to com-
pare KMA with existing methods and the ResFinder
database.

Results
Salmon was not used in combination with Minimap2,
because Minimap2 did not report more than one align-
ment per read no matter how the “-N” and “-p” options
were set.

Simulated datasets
For the simulated datasets, the comparison was straight
forward as the location of every read was known.

For both the single and paired-end datasets, KMA
mapped everything correctly, where every read in each
sample was mapped to the correct template only (see
Table 1). For all samples, SRST2 mapped almost all reads
to the correct template, only differing by a read in most
cases. However, since SRST2 allows for one read to map
towards several templates and even several places within
each template, a large number of false positives were
achieved, thus giving a lower correlation score (see
Table 1). For a few genes, SRST2 accepted up to 21 align-
ments (see Fig. 2). MGmapper did not assign any false
positives, but underestimated the depth of the correct
templates. This was especially the case for the paired-end
dataset where MGmapper seemingly had trouble with
coupling of the reads. This resulted in MGmapper only
being able to assign 19.6% of the actual reads. BWA-
MEM and MiniMap2 follow a similar pattern compared
with MGmapper, where the methods are driven towards
false negatives (FN). They do however perform better on
the paired end reads. In contrast to the other methods
tested, Bowtie2 has a more equal distribution between
false positives (FP) and FN. Only BWA-MEM had im-
proved predictions when post processed with Salmon, but
only fro the single end reads, whereas Bowtie2 had a per-
formance decrease, on both the single and paired end
datasets (see Table 1 and Fig. 2).

German / French E. coli outbreak
Ninety percent template coverage, 90% template identity
and a minimum depth of 5 were the thresholds for pre-
dicting genes with KMA and SRST2. The identity
threshold was skipped for MGmapper and methods post
processed by SAMtools and BEDTools because introdu-
cing an identity threshold would require further
post-processing, while only giving lower correlation
scores. Only the depth threshold was used for Salmon,
because Salmon only estimates the transcript levels of

Table 1 Performance of KMA, SRST2, MGmapper, BWA-MEM,
Bowtie2, Minimap2 and Salmon, on simulated data generated
from the ResFinder database. A minimum mapping quality of 1
was used to ensure reproducibility

Method /
Performance

Single end read set Paired end read set

MCC Sensitivity PPV MCC Sensitivity PPV

KMA 1.000 1.000 1.000 1.000 1.000 1.000

SRST2 0.591 0.999 0.350 0.659 0.999 0.436

MGmapper 0.676 0.457 1.000 0.443 0.196 1.000

BWA-MEM 0.585 0.342 1.000 0.580 0.337 1.000

Bowtie2 0.480 0.480 0.480 0.577 0.577 0.577

Minimap2 0.591 0.353 0.988 0.671 0.455 0.991

BWA-MEM / Salmon 0.720 0.720 0.720 0.500 0.353 0.707

Bowtie2 / Salmon 0.390 0.389 0.398 0.250 0.177 0.368

MCC Matthews correlation coefficient, PPV Positive Prediction Value
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each template. Meaning that the exact location of each
read is lost, making the analysis of template coverage
and identity impossible.
MGmapper crashed when mapping the paired end

reads, but succeeded in single end mode when only the
forward reads were used. Paired end reads were con-
verted to interleaved format for BWA-MEM because it
crashed when the reads were split into two files.

Predicting antimicrobial resistance
Full concordance between phenotypic susceptibility tests
and the predicted antimicrobial resistance genes were
achieved for both KMA and SRST2. Results for nalidixic
acid resistance were excluded, since it is caused by chromo-
somal resistance genes that were not included in this study
[16]. The only disagreement between KMA and SRST2 for
this dataset were that SRST2 predicted the presence of
dfrA17 and dfrA32 in addition to the dfrA7 gene predicted
by KMA, in all of the outbreak strains (see Additional file 1:
Table S1). A closer examination of this result revealed that
the two additional genes predicted by SRST2 were due to
multi mapping reads between them and dfrA7.
As for the simulated dataset, MGmapper had no FP

predictions, but it missed most of the phenotypes. Even

though the outbreak strains are thought to be highly
similar, the results from MGmapper showed a highly
diverse pattern between the samples (see Additional
file 1: Table S1). Neither BWA-MEM, Bowtie2 nor Mini-
map2 predicted any genes exceeding the thresholds, no
matter the settings of SAMtools and BEDTools (see
Additional file 1: Table S2).
Better results were achieved for BWA-MEM and Bow-

tie2 when using Salmon, raising their correlation coeffi-
cient to 0.828 and 0.623, respectively (see Table 2). As for
SRST2, the post-processing with Salmon gave several dif-
ferent hits for each allele, giving a bias towards FP.
BWA-MEM combined with Salmon gave the same results
for all outbreak strains, with no false negatives. A single
false positive did however show up in all of the outbreak
strains, the catB4 gene conferring resistance to chloram-
phenicol, which were tested phenotypically determined as
susceptible. No clear pattern was observed for Bowtie2
combined with Salmon, where the predicted genes
showed a diverse pattern across all outbreak strains.

Mapping towards cgMLST alleles
The performance of each method was measured as their
ability to find one allele within each locus of the

Fig. 2 Distribution of false positives (FP) and false negatives (FN), for KMA, SRST2, MGmapper, Bowtie2, BWA-MEM, MiniMap2 and Bowtie2 and BWA-
MEM post processed with Salmon when mapping simulated reads from the ResFinder database back to the ResFinder database. A minimum mapping
quality of 1 was used to ensure reproducibility.
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cgMLST database, which together make the core gen-
ome of the bacteria.
As for the antimicrobial resistance genes, BWA-MEM,

Bowtie2 and Minimap2 had trouble assigning genes exceed-
ing the thresholds, thus giving a low correlation coefficient
(see Table 2). The performance of MGmapper was slightly
better than that of BWA-MEM used directly, giving a correl-
ation of 0.062 compared with BWA-MEM with a correlation
of 0.021 (see Table 2). As for the resistance gene prediction,
the correlation of BWA-MEM was improved when using
Salmon. In this case, however, Salmon did take up the ma-
jority of the computational resources when compared with
the mapping. When estimating the allele abundances, Sal-
mon had a peak memory consumption of 104.2 GB, and
used more time on the post-processing than BWA-MEM
used on mapping (see Table 2). KMA outperformed all of
the methods with a correlation of 0.998, only missing two
genes and detecting three duplicates on average.
SRST2 and Bowtie2 combined with Salmon were

stopped after 100 h, where neither method had com-
pleted a single sample.

Runtime analysis
CPU time and peak memory requirements were measured
with GNU time (v1.7), mapping and post-processing were

measured separately for all methods, unless included in
the method. KMA outperformed all of the existing
methods on speed when mapping both resistance genes
and cgMLST genes. The memory usage of KMA was
above that of Bowtie2, but just below that of MGmapper
and BWA-MEM, and less than a fourth of MiniMap2 (see
Table 2). The memory consumption and speed of KMA is
thus feasible to carry out on a laptop, with results accurate
enough to be used in surveillance.

Discussion
BWA-MEM, Bowtie2 and Minimap2 were not de-
signed to map against redundant databases, as they
are based on unique mappings and therefore do not
deal with multi mapping reads. This is also reflected
by MGmapper, albeit relying on only one unique
mapping.
Salmon was designed to predict RNA transcript levels,

which includes a certain level of redundancy. The ex-
pression pattern seen in bacteria differs from that of eu-
karyotes, which Salmon was designed for, explaining
some of the variation seen here. Salmon does, however,
improve the predictions when used with BWA-MEM,
with the major problem being over prediction, resulting

Table 2 Performance measures of KMA, SRST2, MGmapper, BWA-MEM, Bowtie2, Minimap2 and Salmon, for predicting genes directly
from raw reads. Thresholds for predicting a gene has been set to: 90% coverage, 90% identity and a minimum depth of 5. A minimum
mapping quality of 10 was used for methods relying on post processing with SAMtools and BEDTools, as this gave the best performance
across the tested thresholds

Mapping method Post- processing method Avg. mapping CPU time Avg. post- processing CPU time Peak memory MCC

Predicting antimicrobial resistance

KMA NA 00:00:24.6 NA 42.3 MB 1.000

SRST2 NA 00:10:21.3 NA 165.0 MB 1.000

MGmappera NA 00:13:14.2 NA 101.4 MB 0.288

BWA-MEM SAMtools / BEDTools 00:07:35.5 00:00:06.1 113.0 MB 0.000

BWA-MEMb Salmon 00:07:34.5 00:00:12.2 694.9 MB 0.828

Bowtie2 SAMtools / BEDTools 00:02:35.5 00:00:06.7 33.7 MB 0.000

Bowtie2b Salmon 00:03:16.4 00:02:24.5 935.8 MB 0.623

Minimap2 SAMtools / BEDTools 00:02:18.6 00:00:06.0 517.3 MB 0.000

Mapping towards cgMLST alleles

KMA NA 00:07:02.1 NA 8.3 GB 0.998

SRST2 NA > 99:99:99.9 NA NA NA

MGmappera NA 01:23:21.5 NA 8.7 GB 0.062

BWA-MEM SAMtools / BEDTools 02:14:50.8 00:14:06.7 8.9 GB 0.021

BWA-MEMb Salmon 03:22:45.4 04:41:09.6 104.2 GBP 0.530

Bowtie2 SAMtools / BEDTools 01:50:56.8 00:15:23.5 4.1 GB 0.035

Bowtie2b Salmon > 99:99:99.9 NA NA NA

Minimap2 SAMtools / BEDTools 01:20:56.2 00:13:11.7 33.6 GB 0.035
a MGmapper was executed on the forward reads only, as paired end mode crashed
b Report all alignments
P The post processing method was responsible for the peak memory consumption
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in a number of FPs. Even though Salmon provides better
predictions, it is hard to control the output because
alignments are not included. This makes it difficult to
sort out partial mapping templates, which might have
improved the predictions.
SRST2 uses clustering of the template database in

order to minimize the redundancy problem. It then
uses Bowtie2 to map against the clusters and accepts
all mappings, meaning that a single read can be
assigned to several clusters. This is where SRST2 has
its major drawback, as the clustering does not reflect
the mapping performed afterwards. As recommended
by SRST2, the databases were clustered with a 90%
similarity threshold using CD-hit [6, 14]. However,
two sequences being less than 90% identical can still
share large stretches of identical DNA, opening the
possibility for ties on a best matching template, which
reduces the PPV for SRST2. Clustering based on
identity will thus not give a non-redundant database,
but rather make a stochastic limitation of the redun-
dancy. This clustering of SRST2 may therefore be
solved by clustering sequences together with long
identical stretches of DNA, where the length of the
stretch should conform to the read length used to
map afterwards. When predicting phenotypic suscepti-
bility, this feature of SRST2 is of less importance, as
long as SRST2 finds at least one allele for each of the
resistance genes present.
KMA was designed as a specialized solution for

mapping against redundant databases, such as those
seen in genomic epidemiology, and is therefore not
a general solution compared with BWA-MEM, Bow-
tie2 and Minimap2. The memory usage of the index
used with KMA is not linear, and is dependent on
the redundancy within a given database. The higher
the redundancy the slower the increase is in data-
base size, whereas for non-redundant databases the
indexing will grow faster than for BWA-MEM and
Bowtie2.
BWA-MEM, Bowtie2 and Minimap2 have a large var-

iety of parameters to set, but none of the parameters
seem to have a dramatic effect on the results achieved
here.
The ConClave scoring scheme is the major differ-

ence between KMA and the methods compared, with
respect to the prediction performance. If the
ConClave scoring had been adapted to analyze
SAM-format, BWA-MEM and Bowtie2 would prob-
ably have had a similar prediction performance com-
pared with that of KMA. The speed advantage of
KMA lies mainly in the heuristic k-mer mapping,
which makes KMA able to discard non-mapping
sequences at an early state or at least limit the search
space.

Conclusion
Alignment of sequences plays a crucial role in bioinfor-
matics, and is often the cornerstone in sequence ana-
lysis. Choosing the right alignment method for the right
problem is thus evident for the further analysis. For
aligning raw reads directly against redundant databases,
KMA outperforms existing methods on both speed, pre-
cision and sensitivity.

Additional file

Additional file 1: Table S1 includes a detailed overview of the predicted
resistance genes from each sample, using the methods described in this
study. Table S2 extends Table 2, by measuring Matthews correlation
coefficient under different thresholds on mapping quality and whether
the reads are properly paired. (DOCX 79 kb)
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