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Abstract

The infectious agents of the transmissible spongiform encephalopathies are composed of

amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify

very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this

in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected

human brains. End-point assay using serially diluted brain homogenates of sporadic

Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached

approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L)

yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc

concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; there-

fore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 val-

ues of the affected brains dropped more than three orders of magnitude after autoclaving at

121°C. This new method for quantitation of human prion activity provides a new way to re-

duce the risk of iatrogenic prion transmission.

Introduction

Human prion diseases (HPD) are neurodegenerative diseases caused by accumulation of amy-

loidogenic prion protein (PrPSc), which is generated from the cellular prion protein (PrPC) via

a conformational change. PrPSc is detected not only in neuronal tissues, but also in lymphoid

tissues (e.g., spleen, tonsil, lymph node) [1, 2] and muscles of some sporadic Creutzfeldt—

Jakob disease (CJD) (sCJD) patients [1]. In cases of variant CJD, PrPSc has been detected in

blood, rectum, adrenal gland, and thymus [3]. Accidental iatrogenic transmission of prion has

occurred due to use of human growth hormone [4], dura mater grafts [5], corneal grafts [6],
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and blood [7–9] from HPD patients or carriers. Infectivity mainly resides in the neural tissues

of sCJD patients, whereas prion infectivity in extraneural tissue is low, and it is difficult to esti-

mate the exact infectivity. Transmission studies of human prion, conducted in chimpanzees

and other primates [10–14], demonstrated that it takes more than 12 months to develop the

syndrome. Normal rodents infected with human prion require prolonged incubation times to

develop illness because of the so-called species barrier. Since then, several lines of transgenic

mice expressing human prion protein (or human—mouse chimeric protein) have been pro-

duced, and some of them exhibited abbreviated incubation times of 110 days following infec-

tion with human prion [15]. Quantitation of infectivity of tissue from a patient with HPD can

be achieved by animal bioassay using humanized mice [16, 17]; however, these mice have dif-

ferent susceptibilities to human prion strains [18–20], and the assays are still highly time-con-

suming and costly.

Previously, we developed the real-time quaking-induced conversion (RT-QUIC) assay for

detection of very small amounts of abnormal PrP in tissue and body fluids. This technique pro-

vides a highly sensitive means for detecting prion-seeding activity using human recombinant

PrP as a substrate [21]. Recent studies showed that seeding activity in vitro, determined by

end-point RT-QUIC, parallels the infectivity of prion-containing animal specimens [22, 23].

Moreover, these studies demonstrate that RT-QUIC is more sensitive than bioassay. Although

bioassay is the only tool currently available for determining the known infectivity of human

prion, in the future it will be possible to replace LD50 (50% lethal dose) with SD50 (50% seeding

dose). To define the distribution of infectivity in human bodies, we applied end-point

RT-QUIC to evaluation of human prion seeding activity in brains from patients with human

prion disease.

Materials and Methods

Patients

Sporadic CJD was diagnosed according to Parchi’s classification [24], i.e., based on the geno-

type at codon 129 of PRNP gene (methionine homozygous [MM], valine homozygous [VV], or

heterozygous [MV]), and the physicochemical properties of PrPSc. Autopsy brains from 10 pa-

tients with prion diseases were subjected to study after histopathological confirmation of the

clinical diagnosis. There were six cases of sCJD MM1 and a single case each of the MM2-corti-

cal form, the MM2-thalamic form, MV2, and Gerstmann—Sträussler—Scheinker syndrome

(GSS) associated with a mutation of Pro to Leu at codon 102 of PRNP (P102L) (Table 1).

Two brain specimens were used as control. One of the donors suffered dementia with Lewy

bodies (DLB), and in the other case the cause of death was dissecting aortic aneurysm without

any brain damage. Written informed consent to participate in the study was given by all pa-

tients’ families. The protocol for investigation was approved by the Ethics Committee of Naga-

saki University Hospital (ID: 10042823), and the study was registered with the University

Hospital Medical Information Network (ID: UMIN000003301). The protocol was also granted

ethical approval for the use of brain tissues by the Japan Surveillance Unit for human prion dis-

eases. Analysis of the PRNP gene was conducted by Dr. Kitamoto of the Japan Surveillance

Unit.

Brain homogenate preparation and heat treatment

All samples were taken from frontal cortex and stored at -80°C. Brain tissues were homoge-

nized at 10% (w/v) in ice-cold phosphate-buffered saline (PBS) supplemented with a protease

inhibitor mixture (Roche, Mannheim, Germany) using a multi-bead shocker (Yasui Kikai,
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Osaka, Japan), and stored at -80°C. Aliquots of 10% brain homogenates were inactivated by

autoclaving (SX700HY, TOMY, Tokyo, Japan) at 121°C for 20–60 min.

RT-QUIC

Purification of recombinant human PrP (rHuPrP: residues 23–231, codon 129M) was per-

formed as previously described [25]. After purification, rHuPrP was stored at -80°C. Brain ho-

mogenates (BHs) (10% [w/v]) were serially diluted (10-fold) with artificial cerebrospinal fluid

(A-CSF) containing 125 mMNaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mMMgCl2, 0.2 ng/ml BSA,

and 0.05% glucose. rHuPrP, suspended in 95 μl of RT-QUIC buffer (500 mMNaCl, 50 mM

PIPES pH7.0, 10 μMThioflavin T (ThT), and1 mM EDTA), was loaded into each well of a

96-well plate and mixed with 5 μl of brain sample, and then the assay was monitored for 53 h.

Four to eight replicates of each diluted sample were measured. The SD50 was calculated by the

Spearman—Kärber method [23]. We arbitrarily designated positive reactions as those with

fluorescence intensities more than double of the average of negative controls.

Dot blotting

Dot blotting was performed to determine the amount of PrP-res in brain homogenates. BHs

(10% [w/v]) were incubated with 20 μg/ml proteinase K for 30 min at 37°C. Protease was inac-

tivated by the addition of 2 mM Pefabloc sc (Shigma-Aldrich, Buchs, Switzerland). rHuPrP

was used to generate a standard curve; the concentrations of unknown samples were deter-

mined by interpolation on the graph. Samples (Human recPrP and 10% BHs) were blotted

onto nitrocellulose membrane (GE Healthcare, Freilburg, Germany). PrP-res on the membrane

was denatured with 3 M GdnSCN. After blocking with 5% skim milk in TBST (10 mM Tris-

HCl [pH 7.8], 100 mM NaCl, 0.1% Tween 20) for 1 h at room temperature, the membrane was

incubated overnight at 4°C with the primary antibody (AB) (6H4, Prionics, Zürich, Switzerland

1:5000) in 1% skim milk in TBST; after washing, the membrane was incubated for 1 h at room

temperature with the secondary AB (anti-mouse IgG HRP, GE Healthcare, Buckinghamshire,

UK, 1:5000) in 1% skim milk in TBST. Quantitative detection of PrP-res was performed using

a LAS-3000 luminescent image analyzer (Fujifilm, Tokyo, Japan).

Table 1. Summary of patients with prion disease.

Patient number Sex Age at death (years) codon 129 WB type mutation log SD50/ g brain (Mean ± S.D.) PrP-res/brain (μg/g)

1 male 73 MM 1 - 10.07 ± 0.19 1.1

2 male 64 MM 1 - 10.63 ± 0.43 5.4

3 male 70 MM 1 - 10.08 ± 0.58 3.3

4 male 74 MM 1 - 9.92 ± 0.59 1

5 female 75 MM 1 - 9.96 ± 0.44 1.1

6 female 64 MM 1 - 9.71 ± 0.40 0.6

7 female 43 MM - P102L 10.13 ± 0.25 1.1

8 male 69 MV 2 - 10.21 ± 0.26 0.9

9* male 35 MM 2 - 10.08 ± 0.36 2.3

10** male 67 MM 2 - 8.79 ± 0.26 N.D

Clinical data and the SD50 concentrations in the brain homogenates from patients with prion disease.

*: MM2 cortical form

**: MM2 thalamic form. N.D.: not detected. MM: methionine homozygosity at codon 129 of PRNP. MV: methionine/valine heterozygosity at codon 129 of

PRNP. S.D.: standard deviation. P102L: Pro-to-Leu point mutation at codon 102 of PRNP. WB: Western-blotting assay

doi:10.1371/journal.pone.0126930.t001
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Results

End-point RT-QUIC revealed high seeding activities in human brains
affected with sporadic and genetic prion diseases.

We first analyzed patient no.1 (patient 1, sCJD MM-1). Brain homogenate was diluted from

5×10–5 to 5×10–9 and subjected to end-point RT-QUIC assay to quantitate seeding activity.

The fluorescence of ThT was elevated at dilutions from 5×10–5 to 5×10–8, then at 5×10–9 dilu-

tion there was yielded no reaction, as did a negative controls (non-CJD BH, DLB-BH, and

A-CSF) (S1 Fig). The percentage of positive reaction decreased in a sigmoidal curve within the

dilution range and the SD50 was calculated (Fig 1a). We were successfully able to analyze eight

other sporadic CJDs and a genetic case, GSS-P102L; in all of these cases, the SD50 values were

similar (it reached around 10 log10 SD50/g of brain) (Figs 1b, 2 and Table 1).

1 SD50 unit is equivalent to 0.12 fg of PrP-res

We quantified PrP-res in the brain samples by dot blotting. Based on the signals of recombi-

nant human PrP (rHuPrP) (Fig 3a and 3b), the linearity of the standard curve was observed in

the range of 0.39–12.5 ng protein (R2 = 0.9899), we determined the amount or the concentra-

tion of PrP-res (Fig 3c and Table 1). The concentrations of PrP-res in BH samples were in the

range 0.6–5.4 μg/g (PrP-res/brain). In those samples, MM1 (patient 2) had the highest level of

PrP-res (5.4 μg/g), whereas the MM2 thalamic form (patient 10) had the lowest level, below the

detection limits. Similarly, in terms of the value of SD50, patient 2 was the highest and patient

10 was the lowest (Table 1). In cases of CJD-MM1, SD50 was linearly correlated with the level

of PrP-res (R2 = 0.8173) (Fig 3d) and 1 SD50 unit corresponded to 0.12 femto gram of PrP-res.

The lag time of RT-QUIC reaction are well correlated to amount of seeds
but not applicable for quantitative assay instead of SD50

RT-QUIC reactions exhibited elevation of ThT fluorescence after a lag phase of 15–18 h after

seeding with a 5 × 10–5 diluted brain sample, and the duration of the lag phase increased along

with higher dilutions. As a recent study by others has suggested a correlation between concen-

tration of prion and lag time of RT-QUIC [26], we performed RT-QUIC in combination with

three-fold serial dilution to confirm that the lag time can be used as a quantitative parameter

instead of SD50 (Fig 4a). The correlation coefficient obtained from linear regression between

PrP-res and lag time was lower than that obtained by polynomial regression between these two

parameters y=-1.733ln(x)+6.8538 (R2 = 0.9596). Of note, there was little difference among the

higher concentration specimens (SD50 value of 10
4.2 to 102.8). On the other hand, lower con-

centration of brain specimens (SD50 value of 10
1.3 to 100.4) had larger standard deviations (Fig

4b), resulting huge overlap of data between different dilutions. We also observed inhibition of

the RT-QUIC reaction seeded with 5 μl of seed containing 1 to 0.1% (SD50 value of 10
5.6 to

104.7) brain tissue. Taken together, although the good correlation was observed between seed-

ing activity and lag time, these data suggest the limitations on the use of “lag time” as a parame-

ter for prion activity under our experimental condition.

End-point QUIC can quantitatively evaluate the effect of treatment on
human prion directly.

Next, we tested the RT-QUIC assay to evaluate decontamination methods. After autoclave

treatment, brain homogenates from patients 3–5 and 8–10 were subjected to end-point

RT-QUIC. Heat treatment at 121°C for 20 and 60 min decreased the SD50 by 2.25 and 3.88 or-

ders of magnitude, respectively (Fig 5b). Fig 5a shows that brain from CJD (MM1) subjected to

Seeding Activity in CJD Brain
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Fig 1. Quantitation of seeding activity in brain tissue from a sporadic CJD patient using end-point RT-QUIC. (a) BH (Pt 1) was diluted (5 × 10–5 to
5 × 10–9) and subjected to RT-QUIC reaction containing human recPrP substrate. The fluorescence of ThT was elevated at dilutions from 5 × 10–5 to 5 × 10–
8. The 5×10–9 dilution yielded no reaction, as did a negative control consisting of A-CSF. (b) The percentage of positive reaction decreased in a sigmoidal
curve within the dilution range when BH was used as the seed. The SD50 was calculated using the Spearman—Kärber method.

doi:10.1371/journal.pone.0126930.g001
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Fig 2. End-point RT-QUIC analysis of 10 brain specimens from patients with prion diseases. End-point RT-QUIC assay was performed three times. (a)
Brain tissues from six patients with sCJD-MM1 were used to seed the RT-QUIC reaction. (b) Samples of GSS-P102L, sCJD-MV2, and sCJD-MM2 (cortical
and thalamic forms) were used to seed RT-QUIC reaction.

doi:10.1371/journal.pone.0126930.g002
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Fig 3. Correlation between SD50 and PrP-res in the brain. (a) Human recPrP was serial diluted and tested by dot blotting. (b) A standard curve was
constructed using diluted human recPrP. (c) Dot-blotting of BHs from patients with prion diseases. Pt 10 (MM2-thalamic form) had a very weak signal and fell
below the limit of detection. (d) There was a linear correlation between SD50 and the level of PrPSc in nine patient’s brains (y = 1.281 × 10-10x, R2 = 0.7192).
NC = Normal brain homogenate. y = value of PrP-res (μg/g brain). x = value of SD50/g brain

doi:10.1371/journal.pone.0126930.g003
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Fig 4. Preparation of standard curves based on lag phase and aggregate area in RT-QUIC. (a) Brain specimen from a patient with sCJD (patient 4) was
subjected to serial three-fold dilution and RT-QUIC reaction, with four replicates for each dilution. (b) Standard curves (gray line) based on lag phase.

doi:10.1371/journal.pone.0126930.g004
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Fig 5. Reduction of seeding activity by heat treatment. (a) Brain from patient with sCJD-MM1 (patient 3) was treated at 121°C for 20 min or 60 min, and
seeding activity was tested by end-point RT-QUIC. (b) Remaining SD50 after heat treatment. Black represents non-treated CJD-BH (patients 3–5 and 8–10).
Horizontal stripes and white represents SD50 after heat treatment for 20 min and 60 min, respectively. Heat treatment caused reduction of SD50 (2.25 to 3.88
orders of magnitude). Data are presented as means ± standard deviation.

doi:10.1371/journal.pone.0126930.g005
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121°C for 20 min and 60 min yielded an SD50 value of 10
7.75 and 107.5/g brain. CJD type 2 (pa-

tients 8–10) tended to be affected by heat treatment more than CJD type 1 (patients 3–5).

Discussion

The end-point RT-QUIC assay enables us to quantitate human prion seeding activity in brains

from patients with prion disease. In brains from sCJD-MM1, the average SD50 was 10
10.06. Ac-

cording to a previous report, LD50 of brain tissues from patients with sCJD-MM1 falls within

the range 107–9 LD50 /g [18]. Although our bioassays of these brain tissues is ongoing, it is likely

that SD50 could be 10–100 times more sensitive than LD50, because similar differences between

SD50 and LD50 were seen in experiments using hamster prion 263K [23]. Notably, it was also

possible to determine SD50 using the MM2-cortical form, the MM2-thalamic form, MV2, and

a case of GSS-P102L.

There was a linear correlation between SD50 and the level of PrP-res in the brains of six pa-

tients with CJD-MM1 (R2 = 0.8173). Based on estimation by dot-blot analysis, 1 SD50 was

equivalent to 0.1 fg of PrP-res, suggesting that our RT-QUIC can detect PrP over a wider range

than conventional Western blotting or ELISA. SD50 from all samples (10 patients, including

MM2-cortical, MM2-thalamic, MV2, and GSS-P102L) exhibited a low correlation with the

level of PrP-res (R2 = 0.7532), possibly because resistance to protease digestion of PrP is not al-

ways the same as seeding activity.

Inhibition of the RT-QUIC reaction were seen in samples seeded with 1 to 0.1% brain tissue

and 0.2% (5 × 10–2 dilution) spleen tissue (S2 Fig). A spleen specimens from a patient with

sCJD yielded an SD50 value of 10
7.5/g tissue. There was no positive reaction when normal

spleen tissue was used as the seed (data not shown). Tissue samples include an inhibitor of

RT-QUIC reaction; therefore, in order to quantitate seeding activity in tissue samples, it is im-

portant to reduce the concentration of this inhibitor by dilution.

Effective decontamination methods are essential in order to avoid iatrogenic transmission of

prion diseases by contaminated medical equipment [27, 28]. PrPSc is resistant to chemical disin-

fectants such as ethanol and formaldehyde. By contrast, bioassays revealed that autoclaving at

121°C for 30 min and 60 min reduced infectivity of CJD inoculated mouse brain by 3.1 and 3.8

log10 units/g tissue, respectively [29]. Here, we conducted our preliminary assessments using

human brain treated with simple heating. Heat treatments at 121°C for 20 min and 60 min re-

duced SD50 by 2.25 and 3.88 orders of magnitude, respectively. In the future, we will have to re-

assess LD50 using humanized mice and evaluate SD50 by RT-QUIC in all organs. Because

RT-QUIC is an easy and rapid assay for determining prion activity, this approach provides a

new way to evaluate biological patient specimens and reassess the safety of donated organs.

Supporting Information

S1 Fig. Non-prion brain has no seeding activity. Brain specimens from patients with prion

disease (Patients 2–10) and non-prion disease were diluted (5 × 10–5) and subjected to

RT-QUIC reaction. Positive reactions were observed in RT-QUIC reactions using brain tissues

from patients with prion disease. There was no response in the presence of non-prion samples

(Non-PrD 1 and 2).

(PDF)

S2 Fig. Seeding activity was detected in spleen tissue from patient with sCJD. Spleen speci-

men from the patient with sCJD was diluted (5 × 10–2 to 5 × 10–5) and subjected to

RT-QUIC reaction.

(PDF)
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