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SUMMARY 

• Biological invasions provide opportunities to study evolutionary processes 

occurring over contemporary timescales. To explore the speed and repeatability of 

adaptation, we examined the divergence of life-history traits to climate, using 

latitude as a proxy, in the native North American and introduced European and 

Australian ranges of the annual plant Ambrosia artemisiifolia.  

• We explored niche changes following introductions using climate niche dynamic 

models. In a common garden, we examined trait divergence by growing seeds 

collected across three ranges with highly distinct demographic histories. 

Heterozygosity-fitness associations were used to explore the effect of invasion 

history on potential success. We accounted for non-adaptive population 

differentiation using 11,598 SNPs.  

• We revealed a centroid shift to warmer, wetter climates in the introduced ranges. 

We identified repeated latitudinal divergence in life-history traits, with European 

and Australian populations positioned at either end of the native clines.  

• Our data indicate rapid and repeated adaptation to local climates despite the recent 

introductions and a bottleneck limiting genetic variation in Australia. Centroid 

shifts in the introduced ranges suggest adaptation to more productive 

environments, potentially contributing to trait divergence between the ranges.  

 

KEYWORDS 

Invasion, trait evolution, climate niche dynamics, local adaptation, latitudinal clines, 

climate adaptation, heterozygosity fitness correlations 
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INTRODUCTION 

During biological invasions species commonly spread over large and 

climatically diverse geographic areas. In doing so, they often re-establish within 

climatic niches found in their native ranges, and in some cases flourish in new 

environments (Sax & Brown, 2000; Allendorf & Lundquist, 2003; Atwater et al., 

2018). Although plasticity and broad ecological tolerance may facilitate the spread of 

invaders across such heterogeneous climates (e.g. Geng et al., 2007; Zhang et al., 

2010), a growing number of empirical examples suggest that rapid adaptation to local 

conditions can also enable the establishment and spread of these species in the face of 

new selective dynamics (Huey et al., 2000; Lachmuth et al., 2011; Colautti & Barrett, 

2013; Chown et al., 2014; Turner et al., 2014; Oduor et al., 2016). As such, invasions 

provide an opportunity to study contemporary adaptive processes, which is key in an 

era of rapid, human-induced, environmental change. As many single species have 

invaded several distinct regions of the globe, comparisons of the native range to 

multiple successful introductions could illuminate if and when traits evolve in parallel 

along climatic gradients (Moran & Alexander, 2014).  

Climate is known to be an important selective factor shaping a diverse array of 

plant traits from physiological (e.g. Maron et al., 2007; Ordoñez et al., 2009), to life 

history traits (e.g. Franks et al., 2007; Nakazato et al., 2008; Colautti & Barrett, 2013) 

to defence (e.g. Moles et al., 2011; Colomer�Ventura et al., 2015). For instance, 

specific leaf area commonly increases with latitude (Frenne et al., 2013), likely 

reflecting adaptation to latitudinal changes in temperature, precipitation, light 

availability, or herbivory (Poorter et al., 2009). Furthermore, trade-offs among life 

history traits can shape adaptive trait divergence in response to local conditions and 

impact the evolutionary trajectory of trait combinations in invasive populations 

(Etterson & Shaw, 2001; Griffith & Watson, 2005; Colautti et al., 2010; Hodgins & 

Rieseberg, 2011; Colautti & Barrett, 2013). Reductions in season-length at higher 

latitudes are frequently reported to select for early flowering at the cost of diminished 

plant size (Colautti et al., 2010; Li et al., 2014). Coordinated shifts in life-history 

traits along latitudinal gradients within ranges have been documented in several 

invasive plants (Dlugosch & Parker, 2008b; Hodgins & Rieseberg, 2011; Colautti & 

Barrett, 2013).  

Latitudinal patterns in plant size could have important evolutionary 

consequences for other plant traits. Variation in plant size can influence optimal 
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resource allocation to male and female sex function (Charnov, 1982; De Jong & 

Klinkhamer, 1989; Klinkhamer et al., 1997). In wind-pollinated plants, height can 

affect fitness returns directly through more effective pollen dispersal in taller plants 

(Burd & Allen, 1988; Klinkhamer et al., 1997), as well as indirectly through increased 

availability of resources (Lloyd & Bawa, 1984; De Jong & Klinkhamer, 1989; 

Klinkhamer et al., 1997; Zhang, 2006). Outcrossing wind-pollinated plants are 

predicted to adaptively change sex allocation to be more male-biased with increase in 

size (Lloyd, 1984; De Jong & Klinkhamer, 1989; de Jong & Klinkhamer, 1994; 

Klinkhamer et al., 1997), as local seed dispersal should lead to saturating female gain 

curves (Lloyd & Bawa, 1984; Sakai & Sakai, 2003), yet more linear male function 

gain curves are expected (Klinkhamer et al., 1997; Friedman & Barrett, 2009). 

Latitudinal clines in height could therefore be expected to lead to adaptive shifts in 

sex allocation. However, studies investigating the evolution of sex allocation patterns 

over wide geographic ranges are rare (Guo et al., 2010; Barrett & Hough, 2012).  

Many factors could impact trait evolution of native and invasive populations 

evolving in response to similar climatic gradients resulting in divergent outcomes. For 

instance, demographic events, such as bottlenecks, genetic drift in founding 

populations and admixture could differentially affect native and invasives’ adaptive 

capacity or influence the route by which adaptive evolution proceeds (Lee, 2002; 

Facon et al., 2006; Prentis et al., 2008; Rius & Darling, 2014; Bock et al., 2015; 

Estoup et al., 2016; Hodgins et al., 2018). Although the impacts of bottlenecks during 

colonization on molecular variation are well characterized its effect on quantitative 

trait variation are not well established (Dlugosch & Parker, 2008a; Dlugosch et al., 

2015a). Moreover, even if the required genetic variation is present in the introduced 

range, the probability of observing trait clines in the introduced range depends on the 

time since introduction and the strength of climate-mediated selection (Prentis et al., 

2008; Bock et al., 2015). Shifts in the biotic environment associated with introduction 

may also influence the evolution of plant traits, potentially impacting trait clines. 

Indeed, the impact of the biotic environment has been commonly considered in the 

examination of trait evolution in invasive plant species (Felker�Quinn et al., 2013). 

By contrast, the invasion history could create patterns of trait variation (e.g., through 

climate matching (Maron et al., 2004)) mimicking adaptive population divergence 

(Colautti et al., 2009; Colautti & Lau, 2015). Therefore careful consideration of the 

source populations is required during studies examining adaptive trait evolution 
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during invasion. Dissection of these various mechanisms is required to advance our 

understanding of the role of rapid evolution in invasive spread (Keller et al., 2009; 

Bonhomme et al., 2010; Lachmuth et al., 2011; Agrawal et al., 2015; Cristescu, 2015; 

Dlugosch et al., 2015a).  

We examine the repeatability and divergence of important life-history traits in 

the native North American and introduced European and Australian ranges of 

Ambrosia artemisiifolia. We raised seeds collected at 77 locations from broad climatic 

scales in a common garden and accounted for non-adaptive genetic differentiation 

using 11,598 genotype-by-sequencing SNPs, as neutral processes could impact trait 

variation. We here focus on evolution of plant size (height, biomass and growth), 

reproductive traits (flowering onset, dichogamy, sex function allocation, seed weight, 

total and relative reproductive biomass) and physiology (specific leaf area). We 

investigate four specific questions: 1) Do native and introduced populations occur in 

similar climates niches? As climate is likely important in governing trait variation in 

this species, we examined climatic niche shifts following introduction to assess how 

traits might be predicted to diverge within and among the ranges. 2) Is there evidence 

for rapid parallel adaptation to latitude? Repeatable trait clines for each range along 

latitudinal gradients, highly associated with many aspects of climate, would provide 

strong evidence that rapid adaptation to similar selective environments has occurred. 

We additionally explore coordinated shifts in traits potentially linked by trade-offs. 3) 

Is there evidence for trait differentiation between native and introduced ranges? By 

examining patterns across multiple introduced ranges, we can explore if novel 

recipient communities generated trait divergence during introduction, or if adaptation 

to local climates dominates patterns of trait variation. 4) Is there a correlation 

between heterozygosity and fitness related traits? Significant correlations would 

reveal if demographic changes such as bottlenecks, admixture and inbreeding have 

likely impacted the evolution of traits during this species’ extensive range expansion. 

Such correlations are predicted at the individual and population level in regions that 

have recently expanded their range, including those that have undergone admixture 

(Peischl & Excoffier, 2015).  

 

MATERIAL AND METHODS  

Study species 

Ambrosia artemisiifolia is a wind pollinated, outcrossing, hermaphrodictic 
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annual, which has aggressively spread from its native North America to many regions 

worldwide (Laaidi et al., 2003; Smith et al., 2013). The first records documenting the 

invasion are in central France around 1850 (Chauvel et al., 2006). Multiple 

introductions from distinct native sources ensued to both east and west Europe, 

resulting in levels of genetic variation equivalent to those found in the native range 

(Chun et al., 2010; Gladieux et al., 2010; Gaudeul et al., 2011; van Boheemen et al., 

2017). Genetic analysis suggests the Australian populations originate from a 

subsequent single introduction event around 80 years ago, derived from the European 

introduction, although the exact source is unknown (van Boheemen et al., 2017). 

Range expansion likely occurred both north- and southward following this south-

Queensland introduction (Palmer & McFadyen, 2012; van Boheemen et al., 2017) 

Latitudinal clines in phenology have been observed within the native North 

American range and the introduced ranges of Europe (Chun et al., 2011; Leiblein-

Wild & Tackenberg, 2014) and China (Li et al., 2014), with earlier reproduction and 

greater relative investment in reproductive biomass in high-latitudinal compared to 

low-latitudinal populations (Chun et al., 2011; Hodgins & Rieseberg, 2011; Li et al., 

2014). The wind-spread pollen is a major cause of hayfever worldwide and its 

medical treatment costs millions of dollars each year (Taramarcaz et al., 2005), 

providing considerable incentive to understand the factors impacting pollen 

production in this species. 

 

Climate niche dynamics 

 To estimate the climatic niche occupied by A. artemisiifolia in its native North 

American, introduced Eurasian and Australasian ranges, we used ordination-based 

species distribution models. Models were taken from a larger study of 835 species 

(Atwater et al., 2018), where the methods are described in detail. Briefly, occurrence 

data were collected from the Global Biodiversity Information Facility and plotted in 

2-dimensional climate space based on rotated component variables (RCA1: 

temperature and RCA2: precipitation) of the 19 WorldClim variables (Hijmans et al., 

2005) representing annual trends, seasonality and means in temperature or 

precipitation (Table S1, Supplementary Material). We selected these variables as they 

are commonly used in studies on species distribution and local adaptation including 

for studies of A. artemisiifolia (e.g. Leiblein-Wild & Tackenberg, 2014; Sun et al., 

2017). We next generated a climatic occupancy map that described the occurrence 
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probability of A. artemisiifolia as it varied among climates. Next, we divided this 

occupancy map by a map of sampling bias, as estimated from a dataset of 815 

terrestrial plant species (Atwater et al., 2018). Removal of both geographic and 

climatic sampling bias in this way produced bias-corrected estimates of occurrence 

probability in each set of climatic variables, for each of the three ranges (North 

American, Eurasian, and Australasian). Finally, these predictions were smoothed 

using We used Monte Carlo resampling (n = 120) to compare observed niche 

dynamics to those expected using randomly resampled occurrence points (Atwater et 

al., 2018). We used Schoener’s D (Schoener, 1968) to estimate niche overlap between 

the native range and each introduced range (i.e. the degree of similarity in occupancy 

probabilities between both ranges), and we estimated niche stability (the proportion of 

climates occupied by the species in both their introduced an native range), expansion 

(the proportion of climates occupied in the introduced range that are available but 

unoccupied in the native range), and unfilling (the proportion of climates occupied in 

the native range that are available but unoccupied in the introduced range)(Guisan et 

al., 2014). Finally, we tested whether the location of the niche centroid differed 

between native and introduced ranges. 

 

Data collection 

To investigate local environments, we described climatic differences between 

27 populations in the native range of North America, 32 populations in the introduced 

European range, and 18 populations in the introduced Australian range (Fig. S1, 

Supplementary Material). We used the 19 WorldClim variables and added a 

geographic dimension to the data by including altitude, latitude and longitude, as 

these variables are shown to be important in A. artemisiifolia growth and fitness 

(Chun et al., 2011; Chapman et al., 2014). To explore associations between climatic 

and geographic variables in the sampled populations, we applied a principal 

component analysis (PCA). We opted to present latitudinal trait clines only, as i) the 

primary principle component was highly correlated with latitude (Fig. S2); ii) 

precipitation and temperature variables were strongly associated with latitude 

(Spearman’s ρ
2
=0.326-0.417 (Table S2); iii) exploratory analyses revealed 

associations between each trait and many climatic and geographic variable were 

highly similar to trait~latitude trends (results not shown); and iv) is shown to affect A. 

artemisiifolia season length and photoperiod (Ziska et al., 2011). 
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To assess the potential for adaptive differentiation along latitudinal gradients, 

we measured trait variation in a common garden of raised seeds collected at broad 

geographical scales across the three ranges. This is a traditional approach to detect 

genetic differences among populations (e.g. Bossdorf et al., 2005; Colautti et al., 

2009; Hodgins & Rieseberg, 2011; Savolainen et al., 2013; de Villemereuil et al., 

2016). We collected seeds in 2013-2014 and randomly selected an average of 12 

maternal families with 20 seeds per family from each population (for a full 

description of data collection methods, see Supplementary Methods). Following a 6-

week stratification at 4°C (Willemsen, 1975), we placed seeds in a 30°C germination 

chamber with 12h light/dark cycle. Two weeks after germination, we planted a 

randomly selected seedling from each maternal line in a random order into 100ml 

kwikpot trays with Debco Seed Raising Superior Germinating Mix. We top-watered 

all plants and artificially manipulated daylight following the light cycle at 47.3°N 

(median latitude over all sampling locations). One month later, we performed a 

second transplant (hereafter day 0) to 0.7L pots with Debco mix and 1.5ml slow-

release fertilizer (Osmocote Pro, eight to nine months). We examined variation in life-

history traits including growth, phenology and vegetative and reproductive allocation 

(Table 1).  

 To assess neutral genetic differentiation underlying trait variation resulting 

from non-adaptive evolutionary processes, we extracted DNA from leaf tissue of 861 

individuals and performed double-digest genotype-by-sequencing library preparation 

(see Supplementary Methods). We aligned and filtered raw sequences following van 

Boheemen et al. (2017). Briefly, SNPs were aligned using BWA-mem (Li & Durbin, 

2009) to a draft reference genome for A. artemisiifolia (van Boheemen et al., 2017). 

We called variants with GATK HaplotypeCaller and filtered SNPs using GATK hard-

filtering recommendations (McKenna et al., 2010; Van der Auwera et al., 2013). We 

identified a total of 11,598 polymorphic biallelic SNPs with 50% SNP call rate. We 

inferred population genetic structure and calculated individual and population level q-

scores for the most likely number of clusters K (=2) with the Bayesian clustering 

method STRUCTURE v2.3.4 (Pritchard et al., 2000). We used these STRUCTURE q-

values as a measure of genetic and, therefore, trait differentiation resulting from non-

adaptive (neutral) mechanisms.  

  

Statistical analyses 
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We conducted all statistical analyses in R v3.4.3 (R Core Team, 2017). We 

improved normality and reduced heteroscedacity of the data by square root or log-

transforming traits where appropriate. We tested all univariate linear mixed models 

using the lme4 package (Bates et al., 2014). All models tested responses of the 

following traits: maximum plant height, total biomass, maximum growth rate, 

flowering onset, dichogamy, floral sex allocation, weight per seed, total and relative 

reproductive biomass and specific leaf area (Table 1). 

To explore patterns of latitudinal trait divergence among ranges, potentially 

indicative of local adaptation, we tested population mean trait responses to range 

(native North America, introduced Europe and Australia), latitude, their interaction 

and latitude
2
 (to account for non-linear trait responses) in multi- and univariate 

models ((M)ANCOVA). In these analyses, latitude values are not randomly 

distributed among ranges due to the geographic distribution of A. artemisiifolia, 

suggesting a violation of independence (Miller & Chapman, 2001). However, the 

values of the covariate (latitude) are observational and not manipulated by the 

independent variables (range) and the (M)ANCOVA assumptions are thus not 

violated (Keppel, 1991). We increased the power of the multivariate analysis 

(Scheiner, 2001) by removing highly correlated traits (Spearman’s ρ2
>0.6, Table S3, 

Supplementary Material) and calculated the approximate F-statistics and Wilks’ λ 

(multivariate F-value) to measure the strength of the associations. To account for 

demographic history in patterns of trait divergence in the univariate mixed models, we 

included population mean STRUCTURE q-scores as a random effect. Here, we 

calculated significance of fixed effects using type III Wald F tests with Kenward-

Roger’s approximation of denominator degrees of freedom and step-wise removed 

non-significant (p>0.05) fixed effects using the lmerTest package (Kuznetsova et al., 

2015), starting with the highest order interactions. To reduce false discovery of 

associations due to the number of traits being tested, we ‘fdr’ corrected p-values 

(hereafter q-values) of the combined final models using the p.adjust function, further 

reducing models when applicable. 

To explore differences in latitudinal trait clines between ranges as revealed in 

the ANCOVAs, we tested for significant two-way interactions between range and 

latitude which is indicative of non-parallel trait~latitude slopes among the ranges. To 

further dissect the extent of trait divergence and its dependence on latitude, we 
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compared ANCOVA model estimates of traits in the introduced ranges to the native 

estimates at the minimum and maximum observed latitude in each range, where 

applicable (EUmin, NAmax, NAmin and AUmax) (Fig. S4, Supplementary Material). We 

tested overall pairwise range differences in trait values for significant range effects, 

when higher order interactions involving range were not significant. We explored the 

highest order significant interactions, using χ
2
 tests with Holm p-value correction 

using the phia package (De Rosario-Martinez, 2013). 

We verified the presence of the well-described plant height-flowering time 

trade-off and examined associated patterns in other reproductive traits (dichogamy 

and sex allocation) within ranges. We tested linear relations between individual trait 

values of control treated plants in mixed models, with plant height, range and their 

interaction as fixed effects. In addition to individual STRUCTURE q-values, we 

added population as random effect. As above, we calculated fixed effects significance 

with type III Wald F tests, step-wise removing non-significant fixed effects. A 

significant interaction between range and height indicated a differential slope between 

the focal reproductive trait and plant height between ranges. We explored the highest 

order significant interactions using χ
2
 tests with Holm p-value correction using the 

phia package (De Rosario-Martinez, 2013). 

To explore the impact of heterozygosity on fitness related traits we calculated 

heterozygosity (HO) as the proportion of heterozygous loci out of the total number of 

called genotypes for each individual. Introductions could diminish or increase 

heterozygosity, which in turn could inhibit or stimulate invasion (e.g. inbreeding due 

to genetic drift or heterosis following admixture). First, we investigated geographical 

patterns in genetic diversity of populations by testing the effect of range, latitude, 

their interaction and latitude
2
 on population mean HO. To explore the effect of 

heterozygosity on selected traits, we included population mean HO, latitude, their 

interactions with range and latitude
2 

as fixed effects. Both analyses included 

population STRUCTURE q-values as a random effect. Again, we calculated fixed 

effects significance with type III Wald F tests, step-wise removing non-significant 

fixed effects and explored the highest order significant interactions using χ
2
 tests with 

Holm p-value correction with the phia package (De Rosario-Martinez, 2013). To 

reduce false positive association due to multiple testing, we only tested the response 

of growth (plant height and biomass) and fitness (total reproductive biomass and 

average seed weight) related traits. As we identified signatures of repeated local 
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adaptation in floral sex allocation (Results), we also tested the response of this trait. 

To reduce false discovery of associations due to the number of traits being tested, we 

‘fdr’ corrected p-values (hereafter q-values) of the combined final models using the 

p.adjust function, further reducing models when applicable. 

 

RESULTS 

Climate niche dynamics 

 Niche overlap (D) was significantly lower than expected between the North 

American native and Eurasian invasive range (P<0.001) although the native and 

Australasian range did not have significantly lower overlap than expected (P=0.425). 

However, niche stability was low between the native and both invasive ranges 

(P<0.001). Climatic niche unfilling and expansion were not significantly different 

than the null model, except that especially low expansion was found in the Eurasian 

population (P=0.017), meaning that while the niche shifted, the species did not tend to 

occupy completely novel climates in its Eurasian range. In both introduced ranges the 

niche centroid shifted significantly towards hotter, wetter climates (P<0.001; Fig. 1). 

We note that this climate analysis compares the entire Eurasian and Australasian 

ranges with the native North American range.  

 

Climate of sampled populations 

 For our common garden analysis we focused only on specific latitudinal 

transects in Europe and Australia to examine how traits have evolved along latitudinal 

clines during invasion, and did not include any Asian populations. We include this 

more general analysis of climate niche to assess how climate shifts might contribute 

to trait divergence among the ranges generally, although our sampling for the 

common garden was more limited. Climatic variables across all populations in the 

native North American, introduced European and introduced Australian ranges could 

be effectively summarized by the first two principle components (PC) in the PCA 

(Fig. S2, Table S2, Supplementary Material), which together explained 70.06% of 

between-population variation. Here, PC1 was strongly associated with latitude, 

temperature and seasonality, whereas PC2 was mostly precipitation related (Fig S2, 

Table S2). The climate experienced by Australian populations was distinct from the 

North American and European ranges (Fig. S2, Table S2), with higher annual, winter 

and summer temperatures, and with lower seasonal variation. Moreover, given the 
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sub-tropical location of Australian populations, the sampled populations experienced 

higher precipitation during the growing season (Fig. S2). 

 

Repeatability in trait clines among ranges 

Traits across all North American, European and Australian ranges were well 

summarized by the PCA, where the first two PCs explained 83.1% of all variation 

(Fig. S3, Supplementary Material). The main PCs were associated with each trait to a 

similar extent so no trait syndromes were apparent. Traits measured in Australian 

plants were generally distinct from the other populations although there was some 

overlap in multivariate space among the ranges (Fig. S3, Table S3). Multivariate trait 

analyses revealed a significant two-way interaction between latitude and range 

(F14,120=1.796, p=0.047, Wilks’ λ=0.684) (Table S4) suggesting latitudinal trait clines 

exist, but do not have the same relationship within ranges for all traits. Further 

dissection of these patterns in univariate analyses revealed maximum growth rate, 

flowering onset, dichogamy, average seed weight, total reproductive biomass and 

specific leaf area (SLA) displayed similar latitudinal clines among ranges, indicated 

by a significant latitude effect but an absence of a higher-order interaction (Fig. 2, 

Table 2). We identified range differences in latitudinal trait clines for maximum 

height, total biomass, floral sex allocation and relative reproductive biomass, as 

indicated by significant range:latitude interactions. However, all of these slopes were 

significantly different from zero and were in the same direction as the native North 

American patterns (Fig. 2, Table S5a).  

At higher latitudes, plants were shorter, weighed less, reached lower 

maximum growth rates and flowered earlier. Flowering onset extremes were 14-133 

days after transplant (population means for EU20 and AU13, Fig. 2). In all ranges, 

dichogamy (the temporal separation of pollen dispersal and emergence of receptive 

stigma within an individual plant) was prevalent. Protogyny (emergence of stigma 

prior to pollen release) predominated at higher latitudinal populations, with receptive 

stigmas being visible up to 40 days before any pollen was released within the same 

plant (EU20)(Fig. 2). Conversely, protandry prevailed at latitudes below 40° from the 

equator, with pollen release occurring up to 14 days before stigmas became receptive 

(NC)(Fig. 2). Floral sex allocation followed a similar trend across ranges, with a slight 

male function bias at lower latitudes, shifting towards an extreme female function bias 
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at high-latitude populations (Fig. 2). The biggest seeds were found at mid-latitudinal 

populations (38.6°N in KY), with seeds decreasing in size towards the high and low 

latitudes (Fig. 2, Table 2). Total reproductive biomass also showed a similar curved 

relationship, with the combined weight of racemes (male floral sex function) and 

seeds (female floral sex function) being up to three times as high at mid-latitudinal 

populations compared to high-latitudinal plants. In contrast, the relative reproductive 

biomass increased with latitude. Within each range, plants from lower latitudes had 

lower SLA (Fig. 2).  

 

Trait divergence between ranges 

While latitudinal trait clines were repeatable for many traits as described 

above, we identified shifts in trait values at comparable latitudes as revealed by 

significant range effects (Table 2). Maximum growth rates were highest in Europe 

and lowest in Australia (Fig. 2, Table 3a). European plants also flowered later than 

North American and Australian plants at similar latitudes. The temporal separation 

between pollen release and the appearance of receptive stigma (dichogamy) was 

greater in the native North America compared to Europe (Fig. 2, Table 3a). European 

seeds were heavier and plants had higher total reproductive biomass than those 

measured in the other ranges. At any given latitude, Australian leaves had higher SLA 

compared to the native range, with lowest SLA in European populations (Fig. 1, Table 

3a).  

Dissection of range differences in latitudinal trait clines (maximum plant 

height, total biomass, floral sex allocation and relative reproductive biomass) revealed 

most significant interactions between range and latitude were prompted by clinal 

differences between the introduced European and native North American populations 

(Table S5, Supplementary Material). For these traits, the discrepancy between North 

American and European trait values increased with increasing latitudes, such that at 

high-latitude populations, European plants were taller, heavier and less female-biased 

in floral sex allocation (Table 3b). Moreover, Australian plants found closest to the 

equator were significantly shorter than native North American expectations (Table 

3b).  

 

Trade-offs between life-history traits 
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We tested for the presence of a trade-off between plant height and flowering 

time and investigated associated patterns in dichogamy and floral sex allocation and 

height. As expected, taller plants started flowering later in both the native and the 

introduced European range, though this pattern was not significant in introduced 

Australian populations (Fig. 3, Table 4, Table S6, Supplementary Material). 

Correspondingly, we observed protogyny and a large female-biased sex allocation in 

short plants versus protandry with a slight male bias in tall plants. These dichogamy 

associations with height were not significant in Australia (Fig. 3, Table 4 & S6). 

However, it is possible that the height of some large Australian plants might have 

been truncated due to greenhouse conditions.  

 

Associations between heterozygosity and life-history traits 

To identify geographic patterns in observed heterozygosity (HO), we tested the 

effect of range, latitude and their interaction on HO. We found no latitudinal patterns 

in HO varying within ranges (range:latitude, χ
2

1=3.811, p=0.149) or among all ranges 

(latitude, χ
2

1=0.000, p=0.986). We did identify variable HO between ranges (range, 

(χ
2

1=6.446, p=0.040), resulting from significantly lower HO in Australia compared to 

native North America (χ
2
1=6.446; p=0.033). When accounting for latitude and 

population genetic structure, we found a significant interaction effect between mean 

population HO and range on total biomass (Fig. 4, Table 5). Pairwise range 

comparisons in post-hoc tests revealed a higher HO that was associated with heavier 

Australian plants (Table S7, Supplementary Material). Moreover, we found that mean 

population HO was positively correlated with seed size in all ranges (Fig. 4, Table 5). 

We found no effect of individual genomic heterozygosity on plant height, phenology, 

dichogamy, total or relative reproductive investment and floral sex allocation (Table 

5).  

 

DISCUSSION 

We show genetically based differentiation along multiple latitudinal clines in 

all examined traits including plant size, growth, reproductive investment, phenology, 

dichogamy, SLA, and sex allocation. Remarkably, the clinal patterns apparent in the 

native range evolved repeatedly within both introduced ranges over the course of only 

100-150 years and despite limited neutral genetic variation in the introduced 

Australian range. These patterns are consistent with rapid adaptation, as we accounted 
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for neutral genetic differentiation. Moreover, low effects of maternal environment are 

expected (Hodgins & Rieseberg, 2011) and the introduction history of this species 

(van Boheemen et al., 2017) reveals climate-matching (Maron et al., 2004) is 

unlikely. The adaptive trait divergence at similar latitudes, together with a centroid 

shift to warmer and wetter climates in the introduced ranges, could suggest invasive 

populations have adapted to more productive environments following introduction. 

The observed rapid evolution has implications for the evolutionary potential of this 

species and further range expansion following climate change. Furthermore, the 

divergence of reproductive traits such as flowering time, sex allocation and seed size 

during recent range expansion should impact the production of allergenic pollen as 

well as the abundance and dispersal of seed that could impact spread.  

 

Climate niche shifts 

Higher resource levels, such as increased water availability, are a known 

contributor to invasion in many plant species (Blumenthal, 2006; Dlugosch et al., 

2015b). Increased resource availability may occur through a shift in the fundamental 

or realized niche during invasion. The latter can result from reductions in competition, 

perhaps reflecting the presence of a vacant niche in the introduced range (e.g. 

Dlugosch et al., 2015b). Climate niche dynamics analysis reveals higher A. 

artemisiifolia abundance in warmer and wetter climates in the introduced ranges 

compared to the native range. It is possible that this centroid shift reflects an historic 

effect where colonization of warmer and wetter environments occurred earlier, or 

perhaps by genotypes pre-adapted to these climates (but see van Boheemen et al., 

2017). Alternatively, the shift might reflect changes in biotic interactions leading to 

greater abundance of this species in high resource environments or differences in the 

availability of these climates in the introduced regions. Evolutionary processes that 

allow introduced species to colonize warmer and wetter environments than those 

occupied by native plants could also cause centroid shifts. This evolutionary 

interpretation is supported as Australian populations follow trait trajectories parallel 

to, but extending beyond, those of the native range.  

 

Repeated latitudinal clines 

Our common garden experiments using samples collected across multiple 

similar latitudinal gradients, reveal that local adaptation can happen quickly and 
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predictably, with repeated evolution of native clines in both of the introduced ranges. 

Latitudinal clines in phenology and size are a common feature of many 

geographically widespread plant species (e.g. Colautti et al., 2010; Li et al., 2014), 

with A. artemisiifolia flowering shown to be driven by the association between season 

length and latitude (Ziska et al., 2011). Short season lengths at high latitudes can 

select for earlier flowering (Bradshaw & Holzapfel, 2008; Colautti & Barrett, 2013), 

while the evolution of delayed flowering at low latitudes reflects the trade-off 

between size and the timing of reproductive maturity, where fitness is maximized by 

flowering later at a large size (Colautti et al., 2010; Colautti & Barrett, 2013). This 

correlation between plant size and flowering time has been reported for A. 

artemisiifolia (Hodgins & Rieseberg, 2011; Leiblein-Wild & Tackenberg, 2014; 

Scalone et al., 2016) and our results are consistent with rapid genetic differentiation in 

plant size, growth rates and phenology in response to latitude-associated selection 

pressures such as season length.  

We exposed repeated patterns of genetic differentiation in sex allocation 

strategy over similar latitudinal clines, consistent with rapid adaptation to local 

climate. Plants sourced from higher latitudes displayed female-biased sex-allocation 

and protogyny, with more balanced floral sex allocation and a decrease in the 

temporal separation of male and female function towards the equator. Previous studies 

on A. artemisiifolia showed plasticity for sex-allocation and dichogamy in relation to 

plant size (Paquin & Aarssen, 2004; Friedman & Barrett, 2009; Friedman & Barrett, 

2011) and ample genetic variation for evolution to act on (Friedman & Barrett, 2011). 

Local seed dispersal should lead to saturating female gain curves (Lloyd & Bawa, 

1984; Sakai & Sakai, 2003), yet more linear male function gain curves are predicted 

in wind pollinated plants with increasing height (Klinkhamer et al., 1997; Friedman & 

Barrett, 2009). As a result, outcrossing wind-pollinated hermaphrodites with local 

seed dispersal, such as A. artemisiifolia, are predicted to adaptively change sex 

allocation to be more male-biased with increase in size (Lloyd, 1984; De Jong & 

Klinkhamer, 1989; de Jong & Klinkhamer, 1994; Klinkhamer et al., 1997), consistent 

with patterns observed in this study. Spatial heterogeneity has been observed in 

animal pollinated plants, where small, resource limited individuals often allocate more 

resources to male function (Korpelainen, 1998; Guo et al., 2010). However, these 

studies are on wild populations and cannot separate environmental and genetic effects 

in allocation patterns along resource gradients. Our current findings from common 
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garden experiments are therefore novel in identifying genetic differentiation among 

populations in sex allocation over spatial gradients.  

 

Trait divergence among the ranges 

Many hypotheses aim to explain the success of invasive species, including the 

evolution of increased competitive ability (EICA) through escape from native 

herbivores (Blossey & Notzold, 1995). Moreover, if trade-offs between performance 

and abiotic stress tolerance occur, greater resources could facilitate the evolution of 

more competitive phenotypes in introduced ranges (Grime, 1977; Bossdorf et al., 

2005; He et al., 2010; Dlugosch et al., 2015b). Our reported trait shifts in European 

population compared to natives at equivalent latitudes indeed suggest an increase in 

competitive ability, commonly measured as elevated plant growth and reproductive 

effort (Felker�Quinn et al., 2013). These observations might reflect the warmer and 

wetter European climate (Fig. 1), as no general evidence for EICA has been found in 

Europe (Hodgins & Rieseberg, 2011; van Boheemen et al., 2018) despite shifts in 

herbivore community composition in Europe and Australia (Genton et al., 2005; 

Palmer & McFadyen, 2012; Essl et al., 2015). Notably, although Europe was 

identified as the introduction source for Australian populations (van Boheemen et al., 

2017), traits measured within each range were highly dissimilar. Most of the sampled 

Australian populations extended beyond absolute latitudes of the other populations 

and were situated in warmer, less seasonal climates (Fig. S2). These factors might 

explain Australian trait variation beyond values observed in source populations.  

 

Heterozygosity and invasion 

Genetic drift within small founding populations and on the invasion front can 

lead to reduced genetic diversity, potentially impacting additive genetic variation 

(Dlugosch & Parker, 2008a; Excoffier & Ray, 2008; Peischl et al., 2013; Bock et al., 

2015). In A. artemisiifolia, Australian populations were bottlenecked and likely 

subjected to high genetic drift, whereas multiple introductions into Europe from 

distinct native sources has implicated admixture as a driver of invasion success (van 

Boheemen et al., 2017). We found the biomass of Australian, but not European, plants 

was indeed associated with heterozygosity, providing only partial support for the 

fitness benefits of heterozygosity during invasion (Peischl & Excoffier, 2015). 

Admixture and heterosis are unlikely to be main drivers of invasiveness in Europe, as 
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we found no relationship between population level heterozygosity and any trait other 

than seed size. Indeed, in most experimentally admixed European and native A. 

artemisiifolia crosses heterosis was absent (Hahn & Rieseberg, 2017). These 

observations suggest demographic processes had very limited consequences (negative 

or positive) on the fitness of these introduced populations. However, local adaptation 

of life history traits such as plant size across broad environmental gradients may mask 

heterozygosity-fitness correlations. Future studies could address this question by 

examining the association between heterozygosity and fitness in single populations 

(e.g. Conte et al., 2017). 

In plants, reduced seed size is one trait that could aid dispersal and might 

therefore be expected to evolve during range expansion (Bartle et al., 2013; Huang et 

al., 2015). Spatial sorting for dispersal traits at the expansion front has been well 

documented in other invasions, such as the cane toads (Estoup et al., 2004; Phillips et 

al., 2006). In Europe, spatial sorting for increased dispersal, and therefore smaller 

seeds, could have occurred at the range edge during expansion northwards. However, 

this mechanism would only explain the seed size decline in low-latitudinal 

populations in Australia, where range expansion likely occurred both north- and 

southward (Palmer & McFadyen, 2012; van Boheemen et al., 2017). Moreover, recent 

evidence shows dispersal distance is determined to a much larger extent by plant 

height than seed traits (Thomson et al., 2011; Tamme et al., 2014; Augspurger et al., 

2017). The association between seed size and mean population heterozygosity we 

identified in all three ranges could be expected when small seeds aid dispersal, as 

founder effects should also reduce heterozygosity during colonization. Though 

additional factors likely shape seed size evolution, our findings suggest seed size 

divergence could represent an important difference in life-history strategies between 

ranges. Moreover, we observed patterns indicating a relationship between genomic 

and ecological dynamics potentially linked to range expansion and colonization.  

 

Conclusion  

Invasive species often exhibit rapid adaptation despite facing novel selective 

pressures (Lachmuth et al., 2011; Colautti & Barrett, 2013; Chown et al., 2014; 

Turner et al., 2014). Moreover, the success of invasives is considered paradoxical as 

strong demographic changes are predicted to enhance inbreeding and reduce genetic 

variation and, consequently, evolutionary potential (Allendorf & Lundquist, 2003). 
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We investigated these apparent contradictions in a comprehensive study. We 

compared the native range with multiple introduced ranges with highly distinct 

demographic histories, characterized similarities and shifts in climatic niches, tested 

adaptation in a large number of life-history traits and explored heterozygosity-fitness 

associations while accounting for non-adaptive population differentiation. We found 

strong evidence for parallel adaptation in all three ranges. This study therefore 

emphasizes that although introduction dynamics can affect genetic diversity 

(Dlugosch & Parker, 2008a) the adaptive potential of those traits might not be 

constrained to a similar extent (Dlugosch et al., 2015a). 
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Table 1. Traits included in this study.  1 

Trait Description 

Max. height Maximum measured height 

Total biomass Above- and belowground dry biomass 

Max. growth rate Sensu Chuine et al. (2001) 

Flowering onset First recorded day of flowering (number of days after second transplant); first day of pollen release (male function) or receptive female function 

Dichogamy First recorded day of pollen release - first recorded day of receptive female function (a positive value is protogyny, a negative value is protandry) 

Floral sex allocation (female/male) Female (seeds) / male (raceme) dry weight (a value >1 is higher biomass allocation to female function) 

Weight per seed Dry weight per seed in milligrams, averaged over 20 seeds (where available) 

Total reproductive biomass Female (seeds) and male (raceme) dry weight 

Relative reproductive biomass Total reproductive biomass / total plant biomass 

Specific leaf area Leaf area of fully expanded fresh leaf/leaf dry weight 
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Table 2. Ambrosia artemisiifolia population mean trait responses to range, latitude, 3 

their interaction and latitude
2
, with population q-values as random effects. We 4 

reported Wald type III F-values, with Kenward-Roger degrees of freedom as subscript 5 

and symbols specifying significance (fdr corrected q) of effect.  6 

 7 
Range Latitude Latitude2 Range:Latitude 

Max. height 3.8862,70.57* 55.9631,71.9*** 0.5811,70.97(ns) 4.0682,70.35* 

Total biomass 3.3442,69.25# 3.2271,70.98# 5.2141,70.97* 3.6672,69.14* 

Max. growth rate 6.4052,71.98** 21.6581,70.76*** 2.0251,73(ns) 1.1012,69.14(ns) 

Flowering onset 6.8622,71.978** 158.3011,70.763*** 1.1021,73(ns) 3.432,69.14# 

Dichogamy 10.5211,73** 8.1632,71.18** 6.8051,72.99* 3.1572,69.14# 

Floral sex allocation (female/male) 6.3542,69.82** 6.0481,66.76* 7.9491,66.27* 7.0942,69.77** 

Weight per seed 4.1562,66.13* 25.7581,72.41*** 23.7041,72.88*** 0.182,67.29(ns) 

Total reproductive biomass 27.4781,73*** 6.8562,71.18** 20.5091,72.99*** 3.4272,69.14# 

Relative reproductive biomass 6.4362,70.57** 22.8391,71.9*** 2.9971,70.97(ns) 6.4222,70.35** 

Specific leaf area 7.6262,67.39** 17.1671,66.45*** 1.8071,63.65(ns) 3.0032,65.14# 

ns q>0.1; # q<0.1; * q<0.05, ** q<0.01; *** q<0.001 8 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/420752doi: bioRxiv preprint 

https://doi.org/10.1101/420752
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

Table 3. Range differences of A. artemisiifolia population mean traits at comparable 9 

latitudes for significant (q<0.05) range effects (a, Table 2) and trait differences 10 

between ranges at minimum (min) and maximum (max) latitudes (Figure S4, 11 

Supplementary Material) for significant range:latitude interactions by comparing trait 12 

values at (b, Table 2). 13 

  14 

a) 

North America - 
Europe 

North America - 
Australia 

Europe - 
Australia 

Max. growth rate 12.3281** 4.2641* 1.2781** 

Flowering onset 16.4651*** 0.1231(ns) 13.2691*** 

Dichogamy 18.81*** 0.0771(ns) 4.871# 

Weight per seed 7.441* 2.0591(ns) 6.0021* 

Total reproductive biomass 15.2281*** 0.8111(ns) 6.5161* 

Specific leaf area 2.7341# 14.9361*** 14.7361*** 

) 

North 
America-
Europe 

North 
America-
Australia 

Europe-Australia 

Max. growth rate 13.2691*** 4.1781* 11.6061** 

Flowering onset 16.4651*** 0.1231(ns) 13.2691*** 

Dichogamy 18.81*** 0.0771(ns) 4.871# 

Weight per seed 7.441* 2.0591(ns) 6.0021* 

Total reproductive 

biomass 
15.2281*** 0.8111(ns) 6.5161* 

Specific leaf area 2.7341# 14.9361*** 14.7361*** 

 15 
 16 
 17 
 18 
 19 
 20 
  21 

b) North America (NA) - Europe (EU) North America (NA) - Australia (AU) 
Trait EUmin NAmax NAmin AUmax 
Max. height 8.6791** 25.2361*** 4.8181# 0.0391(ns) 

Total biomass 0.3391(ns) 15.5721*** 0.5641(ns) 1.3071(ns) 

Floral sex allocation (female/male) 0.0121(ns) 26.4171*** 1.5861(ns) 0.0961(ns) 

Relative reproductive biomass 4.2891(ns) 7.5571* 0.0651(ns) 0.0171(ns) 

ns q>0.1; # q<0.1; * q<0.05, ** q<0.01; *** q<0.001 22 
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 23

Table 4. Flowering time and sex function allocation responses to maximum plant 23 

height (Height), range and their interaction, with individual q-values and population 24 

as random effects. We reported Wald type III F-values test, Kenward-Roger degrees 25 

of freedom as subscript and symbols specifying significance of effect.  26 

 27 
Trait Range Height Range:Height 

Flowering onset 20.6582,606.14*** 105.0821,766.54*** 14.7672,671.02*** 

Dichogamy 6.503,510.44** 51.2351,670.96*** 10.6212,545.18*** 

Floral sex allocation (female/male) 17.4512,508.47*** 138.0841,659.31*** 16.9632,508.47*** 

ns q>0.1; # q<0.1; * q<0.05, ** q<0.01; *** q<0.001 28 
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Table 5. Trait responses (population mean) to range, latitude, latitude
2
, heterozygosity (HO) and interactions, with population q-values as random 29 

effects. We reported Wald type III F-values test values, Kenward-Roger degrees of freedom as subscript and symbols specifying significance of 30 

effect.  31 

 32 

 
HO Range Latitude Latitude2 HO:Range Range:Latitude 

Max. height 0.0071,70.75(ns) 3.4352,69.52# 51.0071,70.95*** 0.1981,69.96(ns) 0.0952,59.46(ns) 3.6992,69.23# 

Total biomass 8.4551,53.099* 4.9422,65.157* 108.3621,68.316*** 0.6991,69.812(ns) 3.9472,64.456* 2.0552,66.152(ns) 

Total reproductive biomass 0.2631,71.8(ns) 7.1232,70.12** 19.1161,71.91*** 24.9121,71.96*** 0.2742,59.46(ns) 1.7212,68.2(ns) 

Weight per seed 5.8581,38.45* 3.2712,47.3# 23.5161,71.93*** 20.7761,71.84*** 0.0692,25.95(ns) 0.3322,55.71(ns) 

Floral sex allocation (female/male) 0.121,69.63(ns) 6.6192,68.56** 6.2291,69.87* 7.551,69.84* 0.0962,59.46(ns) 7.2872,68.47** 

ns q>0.1; # q<0.1; * q<0.05, ** q<0.01; *** q<0.001 33 
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 362 

FIGURE LEGENDS 363 

Figure 1. Climatic niche models of the native North American population (A) and 364 

introduced Australasian (B) and Eurasian (C) populations. Each panel shows the 365 

climate space occupied in the respective range, with a PCA variable corresponding to 366 

temperature on the x-axis and a PCA variable corresponding to precipitation on the y-367 

axis. Color indicates occurrence probability in a given climate (red: high occurrence, 368 

green: medium occurrence, blue: low occurrence, grey: no occurrence). Open circles 369 

plot climates of the North American source localities. Closed circles plot the climates 370 

of the respective introduced range. On panels B and C, the dashed line encloses the 371 

climates shared by both the native North American and respective introduced range. 372 

 373 

Figure 2. Traits responses (population means) to absolute latitude in the native North 374 

American (blue triangles), introduced European (green squares) and Australian (red 375 

circles) ranges, with model predictions and 95% shaded confidence intervals from 376 

step-wise reduced models (Table 2).  377 

 378 

Figure 3. Flowering time, dichogamy and floral sex allocation responses to maximum 379 

plant height (individual values) in the native North American (NA, blue triangles), 380 

introduced European (EU, green squares) and Australian (AU, red circles) ranges, 381 

with model predictions and 95% shaded confidence intervals from step-wise reduced 382 

models (Table 4). Differences in slopes are indicated by letters and are significantly 383 

different from zero unless otherwise indicated (ns)(Table S5, supporting information).  384 

 385 

Figure 4. Total biomass and weight per seed response to heterozygosity (population 386 

means) in the native North American (blue triangles), introduced European (green 387 

squares) and Australian (red circles) ranges, with model predictions and 95% shaded 388 

confidence intervals from step-wise reduced models (Table 5). Slopes of predicted 389 

lines are significantly different from zero, unless otherwise indicated as (ns). 390 

 391 
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